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HWI1
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o Reminder: HW1 is out
o Download from course website
o We’ll provide hardcopies on request

o Questions’?
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Proofs in FOL
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o Proof by contradiction

o Unification, variable substitutions

o First-order resolution & factoring

o Above is a sound, complete proof system
o Herbrand universe, propositionalizing

o Lifting lemma



Variations on FOL & proofs
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o Wh-questions (who killed JR?), answer
literals

o Equality (paramodulation or axiom
schema)

o Second-order logic
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Knowledge engmeermg

o Hierarchies (isa, partOf), inheritance
o Fluents
o Frame problem

o Debugging
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Temporal
Logics



QCTL*: a fa1rly powerful TL
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o Quantified Computation-Tree Logic *

o FOL + representation of time +
quantifiers over time
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Time 1n QCTL>‘<
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o Statements interpreted relative to a current
history and time point (h, w)

o E.g., truth of a literal depends on w
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New quant1ﬁers n QCTL>I<
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o AS = “always §”

o Sis true for (h’, w) for all h’ passing
through w

o PUQ = “Puntil Q”

o there is some time v in h, with v > w,

such that P holds for (h, u) for all u
withw < u < v, and Q holds at (h, v)
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Derived quantifiers
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o F P = “inthe future, P” =TU P
o also called “finally, P”

o GP= “globally, P" = PUF

o EP = “possibly, P” = 2A =P
o labeled E for existential
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Incompleteness for QCTL*
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o Theorem: the set of valid formulas of
QCTL* is not recursively enumerable,
even if we restrict to formulas with at most
two variables and only unary or 0-ary
predicates.

| Hodkinson, F Wolter, M Zakharyaschev. Decidable and undecidable
fragments of first-order branching temporal logics. Proc. 17th Annual

IEEE Symposium on Logic in Computer Science (LICS 2002), pp. 393-402.
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Intuition
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o The length of a single future is countably
infinite, and the set of all futures is
uncountably infinite

o QCTL* quantifies over uncountable sets
o FOL only can quantify over countable sets

o e.g.,no FOL translation of AFP
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SAT
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Satisfiability
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o SAT is the problem of determining whether
a given propositional logic sentence is
satisfiable

o A decision problem: given an instance,
answer yes or no

o A fundamental problem in CS
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SAT 1s a general problem

g L e i i Landania . PP

APPSR

o Many other useful decision problems
reduce to SAT

o Informally, if we can solve SAT, we can
solve these other problems

o So a good SAT solver is a good Al
building block
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Example decision problem
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o k-coloring: can we color a map using only
k colors in a way that keeps neighboring
regions from being the same color?
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Example decision problem
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o Propositional planning: given a list of
operators (w/ preconditions, effects), can
we apply operators in some order to
achieve a desired goal?

o Have cake & eat it too example

o We'll see later how to represent as SAT
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Reduction
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o Loosely, “A reduces to B” means that if
we can solve B then we can solve A

o More formally, A, B are decision problems
(instances ~ truth values)

o A reduction is a poly-time function f such
that, given an instance a of A

o f(a) is an instance of B, and

o A(a) = B(f(a))
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Reduction picture
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Reduction picture
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Reduction picture
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Back to example
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o Each square must be red, green, or blue

o Adjacent squares can’t both be red
(similarly, green or blue)
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Back to example

o (arVv agV ap) A (brVv bg Vv bp) A (CrV Cg V
cp) A (dr v dgVvdp) A(ervegVep) A (zrV
Ze V 2b)

o (marVv =br) A(—agV —=bg) A (—map Vv —bp)
o (marV =z) A(=agV =Zg) A (—=apV =2p)

O e o o
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Direction of
reduction

o If A reduces to B:
o if we can solve B, we can solve A
o so B must be at least as hard as A

o Trivially, can take an easy problem and
reduce it to a hard one
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Not-so-useful reduction

o Path planning reduces to SAT

o Variables: is edge e in path?

o Constraints:
o exactly I path-edge touches start
o exactly 1 path-edge touches goal

o either O or 2 touch each other node
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More useful: reduction to 3SAT
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o We saw that decision problems can be
reduced to SAT

o 18 CNF formula satisfiable?
o Can reduce even further, to 3SAT
o 18 3CNF formula satisfiable?

o Useful if reducing SAT/3SAT to another
problem (to show other problem hard)
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SAT reduces to 3SAT
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o Must get rid of long clauses
o E.g.,(av -bvcvdvev —f)
o Replace with

(av =-bvx)A(-xVvcVvy)A
(nyvdvz)A(-zvVvevVv —f)
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NP-completeness
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o S.A. Cook in 1971 proved that many

useful decision problems reduce back and
forth to SAT

o showed how to simulate poly-size-
memory computer w/ (very complicated,
but still poly-size) SAT problem

o Equivalently, SAT is exactly as hard (in
theory at least) as these other problems

S. A. Cook. The complexity of theorem-proving procedures,

Proceedings of ACM STOC'71, pp. 151-158, 1971.
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Cost of reduction
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o Complexity theorists often ignore little
things like constant factors (or even
polynomial factors!)

o So, is it a good idea to reduce your
decision problem to SAT?

o Answer: sometimes...
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Cost of reduction
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o SAT is well studied = fast solvers

o So, if there is an efficient reduction, ability
to use fast SAT solvers can be a win

o e.g., 3-coloring
o another example later (SATplan)

o Other times, cost of reduction is too high
o usu.because instance gets bigger

o will also see example later (MILP)
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Choosing a reduction
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o May be many reductions from problem A
to problem B

o May have wildly different properties

o e.g., solving transformed instance may
take seconds vs. days
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