
15-780: Graduate AI
Lecture 3. FOL proofs; SAT

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Byron Boots, Sam Ganzfried

1

Admin

2

HW1

Out today
Due Tue, Feb. 3 (two weeks)

hand in hardcopy at beginning of class
Covers propositional and FOL
Don’t leave it to the last minute!

3

Collaboration policy

OK to discuss general strategies
What you hand in must be your own work

written with no access to notes from
joint meetings, websites, etc.

You must acknowledge all significant
discussions, relevant websites, etc., on
your HW

4

Late policy

You have 3 late days to use on HWs
these account for conference travel,
holidays, illness, or any other reasons

After late days, 75% for next day, 50% for
next, 0% thereafter (but still must turn in)
Day = 24 hrs, HWs due at 10:30AM

5

Office hours

Office hours start this week (see website
for times)
But, I have a conflict this week due to
admissions; let me know by email if there
is demand, and if so I can reschedule

6

Matlab tutorial

Thu 1/22, 4–5PM, Wean Hall 5409

7

Review

8

In propositional logic

Compositional semantics, structural
induction
Proof trees, proof by contradiction
Inference rules (e.g., resolution)
Soundness, completeness
Horn clauses
Nonmonotonic logic

9

In FOL

Compositional semantics
objects, functions, predicates
terms, atoms, literals, sentences
quantifiers, free/bound variables
models, interpretations

Generalized de Morgan’s law
Skolemization, CNF

10

Project
Ideas

11

Traffic insanity

12

Sensor planning

Plan a path for this robot so that it gets a
good view of an object as fast as possible

13

Mini-robots

Do something cool w/ Lego Mindstorms
plan footstep placements
plan how to grip objects

14

Poker

15

Poker

Minimax strategy for heads-up poker =
solving linear program
1-card hands, 13-card deck: 52 vars,
instantaneous
RI Hold’Em: ~1,000,000 vars

2 weeks / 30GB (exact sol, CPLEX)
40 min / 1.5GB (approx sol)

TX Hold’Em: ??? (up to 1017 vars or so)
16

Poker

Learning by repeated play

17

Understand the web

Write a probabilistic knowledge base
describing a portion of the web
Learn parameters of the model

18

Proofs in
FOL

19

FOL is special

Despite being much more powerful than
propositional logic, there is still a sound
and complete inference procedure for FOL
Almost any significant extension breaks
this property
This is why FOL is popular: very powerful
language with a sound & complete
inference procedure

20

Proofs

Proofs by contradiction work as before:
add ¬S to KB

put in CNF
run resolution
if we get an empty clause, we’ve proven
S by contradiction

But, CNF and resolution have changed

21

Generalizing resolution

Propositional: (¬a ∨ b) ∧ a ⊨ b

FOL:
(¬man(x) ∨ mortal(x)) ∧ man(Socrates)

⊨ (¬man(Socrates) ∨ mortal(Socrates))
∧ man(Socrates)

⊨ mortal(Socrates)

Difference: had to substitute x → Socrates
22

Universal instantiation

What we just did is UI:
(¬man(x) ∨ mortal(x))
⊨ (¬man(Socrates) ∨ mortal(Socrates))

Works for x → any ground term
(¬man(uncle(student(Socrates))) ∨
mortal(uncle(student(Socrates))))
For proofs, need a good way to find useful
instantiations

23

Substitution lists

List of variable → value pairs

Values may contain variables (leaving
flexibility about final instantiation)
But, no LHS may be contained in any RHS

i.e., applying substitution twice is the
same as doing it once

E.g., x → Socrates, y → LCA(Socrates, z)
LCA = last common advisor

24

Unification

Two FOL terms unify with each other if
there is a substitution list that makes them
syntactically identical
man(x), man(Socrates) unify using the
substitution x → Socrates

Importance: purely syntactic criterion for
identifying good substitutions

25

Unification examples

loves(x, x), loves(John, y) unify using
x → John, y → John

loves(x, x), loves(John, Mary) can’t unify
loves(uncle(x), y), loves(z, aunt(z)):

26

Unification examples

loves(x, x), loves(John, y) unify using
x → John, y → John

loves(x, x), loves(John, Mary) can’t unify
loves(uncle(x), y), loves(z, aunt(z)):

z → uncle(x), y → aunt(uncle(x))

loves(uncle(x), aunt(uncle(x)))

27

Quiz

Can we unify
knows(John, x) knows(x, Mary)

What about
knows(John, x) knows(y, Mary)

28

Standardizing apart

Can we unify
knows(John, x) knows(x, Mary)

What about
knows(John, x) knows(y, Mary)

No!

x → Mary, y → John

29

Standardize apart

But knows(x, Mary) is logically equivalent
to knows(y, Mary)!
Moral: standardize apart before unifying

30

Most general unifier

May be many substitutions that unify two
formulas
MGU is unique (up to renaming)
Simple, moderately fast algorithm for
finding MGU (see RN); more complex,
linear-time algorithm

Linear unification. MS Paterson, MN Wegman. Proceedings of the
eighth annual ACM symposium on Theory of Computing, 1976.

31

First-order resolution

Given clauses (a ∨ b ∨ c), (¬c’ ∨ d ∨ e),
and a substitution list V unifying c and c’
Conclude (a ∨ b ∨ d ∨ e) : V

32

Example

33

First-order factoring

When removing redundant literals, we
have the option of unifying them first
Given clause (a ∨ b ∨ c), substitution V

If a : V and b : V are the same
Then we can conclude (a ∨ c) : V

34

Completeness

First-order resolution (together with first-
order factoring) is sound and complete for
FOL
Famous theorem

35

Completeness

36

Proof strategy

We’ll show FOL completeness by reducing
to propositional completeness
To prove S, put KB ∧ ¬S in clause form

Turn FOL KB into propositional KBs
in general, infinitely many

Check each one in order
If any one is unsatisfiable, we will have
our proof

37

Propositionalization

Given a FOL KB in clause form
And a set of terms U (for universe)
We can propositionalize KB under U by
substituting elements of U for free
variables in all combinations

38

Propositionalization example

(¬man(x) ∨ mortal(x))

mortal(Socrates)
favorite_drink(Socrates) = hemlock
drinks(x, favorite_drink(x))

U = {Socrates, hemlock, Fred}

39

Propositionalization example

(¬man(Socrates) ∨ mortal(Socrates))
(¬man(Fred) ∨ mortal(Fred))
(¬man(hemlock) ∨ mortal(hemlock))
drinks(Socrates, favorite_drink(Socrates))
drinks(hemlock, favorite_drink(hemlock))
drinks(Fred, favorite_drink(Fred))
mortal(Socrates) ∧
favorite_drink(Socrates) = hemlock

40

Choosing a universe

To check a FOL KB, propositionalize it
using some universe U
Which universe?

41

Herbrand Universe

Herbrand universe H of formula S:
start with all objects mentioned in S
or synthetic object X if none mentioned
apply all functions mentioned in S to all
combinations of objects in H, add to H
repeat

Jacques Herbrand
1908–1931

42

Herbrand Universe

E.g., loves(uncle(John), Mary) yields
H = {John, Mary, uncle(John),
uncle(Mary), uncle(uncle(John)),
uncle(uncle(Mary)), … }

43

Herbrand’s theorem

If a FOL KB in clause form is unsatisfiable
And H is its Herbrand universe
Then the propositionalized KB is
unsatisfiable for some finite U ⊆ H

44

Significance

This is one half of the equivalence we
want: unsatisfiable FOL KB ⇒ ∃ finite U.
unsatisfiable propositional KB

45

Example

(¬man(x) ∨ mortal(x)) ∧ man(uncle(Socrates))
∧ ¬mortal(x)

H = {S, u(S), u(u(S)), … }
If U = {u(S)}, PKB =
(¬man(u(S)) ∨ mortal(u(S))) ∧ man(u(S)) ∧
¬mortal(u(S))
Resolving twice yields F

46

Converse of Herbrand

A. J. Robinson proved “lifting lemma”
Write PKB for a propositionalization of
KB (under some universe)
Any resolution proof in PKB corresponds
to a resolution proof in KB
… and, if PKB is unsatisfiable, there is a
proof of F (by prop. completeness); so,
lifting it shows KB unsatisfiable

47

Example

(¬man(u(S)) ∨ mortal(u(S))) ∧ man(u(S))
∧ ¬mortal(u(S))

We resolved on man(u(S)) yielding
mortal(u(S))
Lifted, resolve ¬man(x) w/ man(u(S)),
binding x → u(S)

48

Proofs w/ Herbrand & Robinson

So, FOL KB is unsatisfiable if and only if
there is a subset of its Herbrand universe
making PKB unsatisfiable
I.e., if we have a way to find proofs in
propositional logic, we have a way to find
them in FOL

49

Proofs w/ Herbrand & Robinson

To prove S, put KB ∧ ¬S in CNF: KB’

Build subsets of Herbrand universe in
increasing order of size: U1, U2, …
Propositionalize KB’ w/ Ui, look for proof
If Ui unsatisfiable, use lifting to get a
contradiction in KB’
If Ui satisfiable, move on to Ui+1

50

How long will this take?

If S is not entailed, we will never find a
contradiction
In this case, if H infinite, we’ll never stop
So, entailment is semidecidable

equivalently, entailed statements are
recursively enumerable

51

Variation

Restrict semantics so we only need to
check one finite propositional KB
Unique names: objects with different
names are different (John ≠ Mary)

Domain closure: objects without names
given in KB don’t exist
Restrictions also make entailment, validity
feasible

52

Who? What?
Where?

53

Wh-questions

We’ve shown how to prove a statement like
mortal(Socrates)
What if we have a question whose answer
is not just yes/no, like “who killed JR?” or
“where is my robot?”
Simplest approach: prove ∃x. killed(x, JR),
hope the proof is constructive

54
54

Answer literals

Simple approach doesn’t always work
Instead of ¬S(x), add (¬S(x) ∨ answer(x))

If there’s a contradiction, we can eliminate
¬S(x) by resolution and unification,
leaving answer(x) with x bound to a value
that causes a contradiction

55
55

Example

56

FOL
Extensions

57

Equality

Paramodulation is sound and complete
for FOL+equality (see RN)
Or, resolution + axiom schema

58

Second order logic

SOL adds quantification over predicates
E.g., principle of mathematical induction:
∀P. P(0) ∧ (∀x. P(x) ⇒ P(S(x)))
⇒ ∀x. P(x)

There is no sound and complete inference
procedure for SOL (Gödel’s famous
incompleteness theorem)

59

Others

Temporal logics (“P(x) will be true at
some time in the future”)
Modal logics (“John believes P(x)”)
Nonmonotonic FOL
First-class functions (lambda operator,
application)
…

60

Using FOL

61

Knowledge engineering

Identify relevant objects, functions, and
predicates
Encode general background knowledge
about domain (reusable)
Encode specific problem instance
Pose queries (is P(x) true? Find x such
that P(x))

62

Common themes

RN identifies many common idioms and
problems for knowledge engineering
Hierarchies, fluents, knowledge, belief, …
We’ll look at a couple

63

Taxonomies

isa(Mammal, Animal)
disjoint(Animal, Vegetable)
partition({Animal, Vegetable, Mineral,
Intangible}, Everything)

64

Inheritance

Transitive: isa(x, y) ∧ isa(y, z) ⇒ isa(x, z)

Attach properties anywhere in hierarchy
isa(Pigeon, Bird)
isa(x, Bird) ⇒ flies(x)
isa(x, Pigeon) ⇒ gray(x)

So, isa(Tweety, Pigeon) tells us Tweety is
gray and flies

65

Physical composition

partOf(Wean4625, WeanHall)
partOf(water37, water)
Note distinction between mass and count
nouns: any partOf a mass noun is also an
example of that same mass noun

66

Fluents

Fluent = property that changes over time
at(Robot, Wean4623, 11AM)

Actions change fluents
Fluents chain together to form possible
worlds
at(x, p, t) ∧ adj(p, q) ⇒ poss(go(x, p, q)) ∧
at(x, q, result(go(x, p, q), t))

67

Frame problem

Suppose we execute an unrelated action
(e.g., talk(Professor, FOL))
Robot shouldn’t move:

if at(Robot, Wean4623, t), want
at(Robot, Wean4623,
result(talk(Professor, FOL)))

But we can’t prove it using tools described
so far!

68

Frame problem

The frame problem is that it’s a pain to
list all of the things that don’t change
when we execute an action
Naive solution: frame axioms

for each fluent, list actions that can’t
change fluent
KB size: O(AF) for A actions, F fluents

69

Frame problem

Better solution: successor-state axioms
For each fluent, list actions that can
change it (typically fewer): if go(x, p, q) is
possible,
at(x, q, result(a, t)) ⇔
a = go(x, p, q) ∨ (at(x, q, t) ∧ a ≠ go(y, z))

Size O(AE+F) if each action has E effects

70

Sadly, also necessary…

Debug knowledge base
Severe bug: logical contradictions
Less severe: undesired conclusions
Least severe: missing conclusions

First 2: trace back chain of reasoning until
reason for failure is revealed
Last: trace desired proof, find what’s missing

71

SAT

72

Satisfiability

SAT is the problem of determining whether
a given propositional logic sentence is
satisfiable
A decision problem: given an instance,
answer yes or no
A fundamental problem in CS

73

SAT is a general problem

Many other useful decision problems
reduce to SAT
Informally, if we can solve SAT, we can
solve these other problems
So a good SAT solver is a good AI
building block

74

Example decision problem

k-coloring: can we color a map using only
k colors in a way that keeps neighboring
regions from being the same color?

75

Example decision problem

Propositional planning: given a list of
operators (w/ preconditions, effects), can
we apply operators in some order to
achieve a desired goal?
Have cake & eat it too example
We’ll see later how to represent as SAT

76

Reduction

Loosely, “A reduces to B” means that if
we can solve B then we can solve A
More formally, A, B are decision problems
(instances ↦ truth values)

A reduction is a poly-time function f such
that, given an instance a of A

f(a) is an instance of B, and
A(a) = B(f(a))

77

Reduction picture

78

Reduction picture

79

Reduction picture

80

Back to example

Each square must be red, green, or blue
Adjacent squares can’t both be red
(similarly, green or blue)

81

Back to example

(ar ∨ ag ∨ ab) ∧ (br ∨ bg ∨ bb) ∧ (cr ∨ cg ∨
cb) ∧ (dr ∨ dg ∨ db) ∧ (er ∨ eg ∨ eb) ∧ (zr ∨
zg ∨ zb)
(¬ar ∨ ¬br) ∧ (¬ag ∨ ¬bg) ∧ (¬ab ∨ ¬bb)

(¬ar ∨ ¬zr) ∧ (¬ag ∨ ¬zg) ∧ (¬ab ∨ ¬zb)

…

82

Direction of
reduction

If A reduces to B:
if we can solve B, we can solve A
so B must be at least as hard as A

Trivially, can take an easy problem and
reduce it to a hard one

83

Not-so-useful reduction

Path planning reduces to SAT
Variables: is edge e in path?
Constraints:

exactly 1 path-edge touches start
exactly 1 path-edge touches goal
either 0 or 2 touch each other node

84

More useful: reduction to 3SAT

We saw that decision problems can be
reduced to SAT

is CNF formula satisfiable?
Can reduce even further, to 3SAT

is 3CNF formula satisfiable?
Useful if reducing SAT/3SAT to another
problem (to show other problem hard)

85

Reduction to 3SAT

Must get rid of long clauses
E.g., (a ∨ ¬b ∨ c ∨ d ∨ e ∨ ¬f)

Replace with
(a ∨ ¬b ∨ x) ∧ (¬x ∨ c ∨ y) ∧
(¬y ∨ d ∨ z) ∧ (¬z ∨ e ∨ ¬f)

86

NP-completeness

S. A. Cook in 1971 proved that many
useful decision problems reduce back and
forth to SAT

showed how to simulate poly-size-
memory computer w/ (very complicated,
but still poly-size) SAT problem

Equivalently, SAT is exactly as hard (in
theory at least) as these other problems

87

Cost of reduction

Complexity theorists often ignore little
things like constant factors (or even
polynomial factors!)
So, is it a good idea to reduce your
decision problem to SAT?
Answer: sometimes…

88

Cost of reduction

SAT is well studied ⇒ fast solvers
So, if there is an efficient reduction, ability
to use fast SAT solvers can be a win

e.g., 3-coloring
another example later (SATplan)

Other times, cost of reduction is too high
usu. because instance gets bigger
will also see example later (MILP)

89

Choosing a reduction

May be many reductions from problem A
to problem B
May have wildly different properties

e.g., solving transformed instance may
take seconds vs. days

90

