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HWI1
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o Out today
o Due Tue, Feb. 3 (two weeks)

o hand in hardcopy at beginning of class
o Covers propositional and FOL

o Don’t leave it to the last minute!



Collaboration pohcy
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o OK to discuss general strategies
o What you hand in must be your own work

o Written with no access to notes from
joint meetings, websites, etc.

o You must acknowledge all significant
discussions, relevant websites, etc., on

your HW



Late policy
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o You have 3 late days to use on HWs

o these account for conference travel,
holidays, illness, or any other reasons

o After late days, 75% for next day, 50% for
next, 0% thereafter (but still must turn in)

o Day = 24 hrs, HWs due at 10:30AM



Office hours
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o Office hours start this week (see website
for times)

o But, I have a conflict this week due to
admissions; let me know by email if there
is demand, and if so I can reschedule



Matlab tutorial

o Thu 1/22,4-5PM, Wean Hall 5409
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In propositional logic
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o Compositional semantics, structural
induction

o Proof trees, proof by contradiction
o Inference rules (e.g., resolution)

o Soundness, completeness

o Horn clauses

o Nonmonotonic logic



In FOL
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o Compositional semantics
o objects, functions, predicates
o terms, atoms, literals, sentences
o quantifiers, free/bound variables
o models, interpretations

o Generalized de Morgan’s law

o Skolemization, CNF
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Tratfic insanity
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Sensor planning
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o Plan a path for this robot so that it gets a
good view of an object as fast as possible
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Mini-robots
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o Do something cool w/ Lego Mindstorms
o plan footstep placements
o plan how to grip objects
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Poker
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Poker
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o Minimax strategy for heads-up poker =
solving linear program

o I-card hands, 13-card deck: 52 vars,
instantaneous

o RI Hold’Em: ~1,000,000 vars
o 2 weeks / 30GB (exact sol, CPLEX)
o 40 min/ 1.5GB (approx sol)
o TX Hold’Em: ??? (up to 107 vars or so)
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Poker
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o Learning by repeated play
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Understand the web
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15-780 Graduate Artificial Intelligence £

Geoff Gordon and Tuomas Sandholm
School of Computer Science, Carnegie Mellon Univers

Geoffrey J. Gordon

I'm an associate research professor in the Machine Leaming Deg |-,

(which used to be the CenptI; for Automated Leaming and Discc & About | People | Lech P h D Stu d e ntS L)
Camegie Mellon. I am also affiliated with the Robotics Institute

interested in multi-agent planning, reinforcement leamning, Mailing lists

decision-theoretic planning, statistical models of difficultdata(e. =~~~
video, text), computational learning theory, and gam

the page for the SELECT Lab, which Carlos Guestr

(as well as its mailing fist), &

Ispent AY 20034 as a visiting professor at the Stan’ 3
Before joming CMU I used to work for Burning Gls MACHINH %
company that provided intelligent searching and mat L3

resumes and job postings. The company was headq)
Diego, but T worked at their Pittsburgh office. E— Andrew Arnold

Indian Institute of Technology, Madras
BTECH in Computer Science & Engineering
ABOUT US | PROSPECTIVE | CURRENT | RESEARCH
STUDENTS STUDENTS

Columbia University
BA, Computer SciencelAl

Advisor: William Cohen

Research Interests: Machine Learning, feature induction, transfer leg

o Write a probabilistic knowledge base
describing a portion of the web

o Learn parameters of the model
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Proofs 1n
FOL
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FOL 1s special
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o Despite being much more powerful than
propositional logic, there is still a sound
and complete inference procedure for FOL

o Almost any significant extension breaks

this property

o This is why FOL is popular: very powerful
language with a sound & complete
inference procedure

20



Proofs
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o Proofs by contradiction work as before:
o add -~S to KB
o putin CNF
o run resolution

o If we get an empty clause, we’ve proven
S by contradiction

o But, CNF and resolution have changed

21



Generalizing resolution
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o Propositional: (~av b) nak= b
o FOL:
(mman(x) v mortal(x)) A man(Socrates)

= (—~man(Socrates) v mortal(Socrates))
A man(Socrates)

= mortal(Socrates)

o Difference: had to substitute x — Socrates
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Universal instantiation
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o What we just did is Ul:

(—man(x) v mortal(x))
= (—man(Socrates) v mortal(Socrates))

o Works for x — any ground term

(—man(uncle(student(Socrates))) v
mortal(uncle(student(Socrates))))

o For proofs, need a good way to find useful
instantiations

23



Substitution lists
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o List of variable — value pairs

o Values may contain variables (leaving
flexibility about final instantiation)

o But, no LHS may be contained in any RHS

o 1.e., applying substitution twice is the
same as doing it once

o E.g.,x— Socrates,y — LCA(Socrates, z)

LCA = last common advisor
24



Unification

WWMHMC'.{% M St A T e SNt s - Pel gy 10 0 et - .- - - - , “

o Two FOL terms unify with each other if
there is a substitution list that makes them

syntactically identical

o man(x), man(Socrates) unify using the
substitution x — Socrates

o Importance: purely syntactic criterion for
identifying good substitutions
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Unification examples
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o loves(x, x), loves(John, y) unify using
x — John,y — John

o loves(x, x), loves(John, Mary) can’t unify

o loves(uncle(x), y), loves(z, aunt(z)):
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Unification examples
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o loves(x, x), loves(John, y) unify using
x — John, y — John

o loves(x, x), loves(John, Mary) can’t unify
o loves(uncle(x), y), loves(z, aunt(z)):
o 7 —> uncle(x), y — aunt(uncle(x))

o loves(uncle(x), aunt(uncle(x)))

27



o Can we unify

knows(John, x) knows(x, Mary)

o What about
knows(John, x) knows(y, Mary)
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Standardizing apart
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o Can we unify
knows(John, x) knows(x, Mary)
No!

o What about
knows(John, x) knows(y, Mary)

x — Mary, y — John
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Standardize apart
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o But knows(x, Mary) is logically equivalent
to knows(y, Mary)!

o Moral: standardize apart before unifying
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Most general unifier
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o May be many substitutions that unify two
formulas

o MGU is unique (up to renaming)

o Simple, moderately fast algorithm for
finding MGU (see RN); more complex,
linear-time algorithm

Linear unification. MS Paterson, MN Wegman. Proceedings of the
eighth annual ACM symposium on Theory of Computing, 1976.
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First-order resolution
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o Given clauses (av bv c), (-c’vdve),
and a substitution list V unifying c and ¢’

o Conclude(avbvdve):V
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Example

Aot e et e AR
(Crng A ©UTmihe (1) = Lok ()
ey R\ 2 mﬁﬁmﬁ v rur ek (<)
rDhoy R~ roneod (K)

TSR
gl dsbond-{ Em%qu@
aamfﬂg_,&b* LAD @bt () A orde Cr]

33



First-order factoring

i Ilrmn. . o - l..{,’ﬁﬁ'ﬁﬂ"ﬂ*mﬁ!‘u--hﬁbiﬁ e ke TP e o -y

o When removing redundant literals, we
have the option of unifying them first

o Given clause (a v b v c), substitution V
o Ifa :Vandb :V are the same

o Then we can conclude (av c):V
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Completeness

o First-order resolution (together with first-

order factoring) is sound and complete for
FOL

o Famous theorem

35
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Proof strategy
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o We’ll show FOL completeness by reducing
to propositional completeness

o To prove S, put KB A =S in clause form
o Turn FOL KB into propositional KBs

o in general, infinitely many
o Check each one in order

o If any one is unsatisfiable, we will have
our proof

37



Propositionalization
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o Given a FOL KB in clause form
o And a set of terms U (for universe)

o We can propositionalize KB under U by
substituting elements of U for free
variables in all combinations

38



o

o

o

o

Propositionalization example
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(=man(x) v mortal(x))
mortal(Socrates)

favorite_drink(Socrates) = hemlock

drinks(x, favorite_drink(x))

U = {Socrates, hemlock, Fred}

39



Propositionalization example
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o (—man(Socrates) v mortal(Socrates))
(—man(Fred) v mortal(Fred))
(—man(hemlock) v mortal(hemlock))

o drinks(Socrates, favorite_drink(Socrates))

drinks(hemlock, favorite_drink(hemlock))
drinks(Fred, favorite_drink(Fred))

o mortal(Socrates) A
favorite_drink(Socrates) = hemlock

40



Choosing a universe

o 1o check a FOL KB, propositionalize it
using some universe U

o Which universe?

- " - -'._,qa”
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o Herbrand universe H of formula S

o

o

Herbrand Universe

Jacques Herbrand
1908-1931

start with all objects mentioned in S
or synthetic object X if none mentioned

apply all functions mentioned in S to all
combinations of objects in H, add to H

repeat

42



Herbrand Universe
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o E.g., loves(uncle(John), Mary) vields

H = {John, Mary, uncle(John),
uncle(Mary), uncle(uncle(John)),
uncle(uncle(Mary)), ...}

43



Herbrand’s theorem
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o If a FOL KB in clause form is unsatisfiable
o And H is its Herbrand universe

o Then the propositionalized KB is
unsatisfiable for some finite U C H

44



Significance
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o This is one half of the equivalence we
want: unsatisfiable FOL KB = 1 finite U.

unsatisfiable propositional KB

45



Example
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o (—man(x) v mortal(x)) A man(uncle(Socrates))
A “mortal(x)

o H=1{S,u(S), u(u(s)), ...}
o IfU = {u(S)}, PKB =

(—man(u(S)) v mortal(u(S))) n man(u(S)) A
—mortal(u(S))

o Resolving twice yields F

46



Converse of Herbrand
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o A.J. Robinson proved “lifting lemma’”

o Write PKB for a propositionalization of
KB (under some universe)

o Any resolution proof in PKB corresponds
to a resolution proof in KB

o ...and, if PKB is unsatisfiable, there is a
proof of F (by prop. completeness); so,
lifting it shows KB unsatisfiable

47



Example
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o (mman(u(S)) v mortal(u(S))) n man(u(S))
A —mortal(u(s))

o We resolved on man(u(S)) yielding
mortal(u(S))

o Lifted, resolve =man(x) w/ man(u(S)),
binding x — u(S)

48



Proofs w/ Herbrand & Robinson

APPSR
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o So, FOL KB is unsatisfiable if and only if
there is a subset of its Herbrand universe

making PKB unsatisfiable

o le., if we have a way to find proofs in
propositional logic, we have a way to find

them in FOL

49



Proofs w/ Herbrand & Robinson
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To prove S, put KB A =S in CNF: KB’

Build subsets of Herbrand universe in
increasing order of size: Uy, U, ...

Propositionalize KB’ w/ Ui, look for proof

If Ui unsatisfiable, use lifting to get a
contradiction in KB’

If U; satisfiable, move on to Ui

50



How long will this take?
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o If S is not entailed, we will never find a
contradiction

o In this case, if H infinite, we’ll never stop
o So, entailment is semidecidable

o equivalently, entailed statements are
recursively enumerable

51



Variation
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o Restrict semantics so we only need to
check one finite propositional KB

o Unique names: objects with different
names are different (John = Mary)

o Domain closure: objects without names
given in KB don't exist

o Restrictions also make entailment, validity

feasible

52
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Wh-questions
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o We’ve shown how to prove a statement like
mortal(Socrates)

o What if we have a question whose answer
is not just yes/no, like “who killed JR?” or
“Where is my robot?”

o Simplest approach: prove Ax. killed(x, JR),
hope the proof is constructive

54
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Answer literals
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o Simple approach doesn’t always work
o Instead of =S(x), add (=S(x) v answer(x))

o If there’s a contradiction, we can eliminate
=S(x) by resolution and unification,
leaving answer(x) with x bound to a value
that causes a contradiction

55
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Example
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Extensions



Equality
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o Paramodulation is sound and complete
for FOL+equality (see RN)

o Or, resolution + axiom schema
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Second order logic
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o SOL adds quantification over predicates

o E.g., principle of mathematical induction:

o YP. P(0) A (Vx. P(x) = P(S(x)))
= Vx. P(x)

o There is no sound and complete inference
procedure for SOL (Gddel’s famous
incompleteness theorem)
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Others
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o Temporal logics (“P(x) will be true at
some time in the future”)

o Modal logics (“John believes P(x)”)
o Nonmonotonic FOL

o First-class functions (lambda operator,
application)

60
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Knowledge engmeermg
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o Identify relevant objects, functions, and
predicates

o Encode general background knowledge
about domain (reusable)

o Encode specific problem instance

o Pose queries (is P(x) true? Find x such
that P(x))
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Common themes
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o RN identifies many common idioms and
problems for knowledge engineering

o Hierarchies, fluents, knowledge, belief, ...

o We'll look at a couple
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Taxonomies
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o 1sa(Mammal, Animal)
o disjoint(Animal, Vegetable)

o partition({Animal, Vegetable, Mineral,
Intangible}, Everything)
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Inheritance
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o Transitive: isa(x, y) A isa(y, z) = isa(x, z)
o Attach properties anywhere in hierarchy

o isa(Pigeon, Bird)
o isa(x, Bird) = flies(x)
o isa(x, Pigeon) = gray(x)
o So, isa(Tweety, Pigeon) tells us Tweety is
gray and flies
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Physical composition
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o partOf(Wean4625, WeanHall)
o partOf(water37, water)

o Note distinction between mass and count

nouns: any partOf a mass noun is also an
example of that same mass noun
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Fluents
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o Fluent = property that changes over time
o at(Robot, Wean4623, 11AM)
o Actions change fluents

o Fluents chain together to form possible
worlds

o at(x, p, t) A adj(p, q) = poss(go(x, p, q)) A
at(x, q, result(go(x, p, q), t))

67



Frame problem
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o Suppose we execute an unrelated action
(e.g., talk(Professor, FOL))

o Robot shouldn’t move:

o if at(Robot, Wean4623, t), want
at(Robot, Wean4623,
result(talk(Professor, FOL)))

o But we can’t prove it using tools described
so far!
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Frame problem
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o The frame problem is that it’s a pain to
list all of the things that don’t change
when we execute an action

o Naive solution: frame axioms

o for each fluent, list actions that can’t
change fluent

o KB size: O(AF) for A actions, F fluents
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Frame problem
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o Better solution: successor-state axioms

o For each fluent, list actions that can

change it (typically fewer): if go(x, p, q) is
possible,

at(x, q, result(a, t)) <
a = go(x,p,q) Vv (at(x, q,t) A a# go(y, z))
o Size O(AE+F) if each action has E effects
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Sadly, also necessary...
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o Debug knowledge base
o Severe bug: logical contradictions
o Less severe: undesired conclusions
o Least severe: missing conclusions

o First 2: trace back chain of reasoning until
reason for failure is revealed

o Last: trace desired proof, find what’s missing
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SAT
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Satisfiability
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o SAT is the problem of determining whether
a given propositional logic sentence is
satisfiable

o A decision problem: given an instance,
answer yes or no

o A fundamental problem in CS
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SAT 1s a general problem
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APPSR

o Many other useful decision problems
reduce to SAT

o Informally, if we can solve SAT, we can
solve these other problems

o So a good SAT solver is a good Al
building block
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Example decision problem
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o k-coloring: can we color a map using only
k colors in a way that keeps neighboring
regions from being the same color?
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Example decision problem

WWMHMC'.{% M St A T e SNt s - Pel gy 10 0 et - .- - - - , “

o Propositional planning: given a list of
operators (w/ preconditions, effects), can
we apply operators in some order to
achieve a desired goal?

o Have cake & eat it too example

o We'll see later how to represent as SAT
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Reduction
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o Loosely, “A reduces to B” means that if
we can solve B then we can solve A

o More formally, A, B are decision problems
(instances ~ truth values)

o A reduction is a poly-time function f such
that, given an instance a of A

o f(a) is an instance of B, and

o A(a) = B(f(a))
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Reduction picture
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Reduction picture
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Reduction picture
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Back to example
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o Each square must be red, green, or blue

o Adjacent squares can’t both be red
(similarly, green or blue)
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Back to example

o (arVv agV ap) A (brVv bg Vv bp) A (CrV Cg V
cp) A (dr v dgVvdp) A(ervegVep) A (zrV
Ze V 2b)

o (marVv =br) A(—agV —=bg) A (—map Vv —bp)
o (marV =z) A(=agV =Zg) A (—=apV =2p)

O e o o
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Direction of
reduction

o If A reduces to B:
o if we can solve B, we can solve A
o so B must be at least as hard as A

o Trivially, can take an easy problem and
reduce it to a hard one
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Not-so-useful reduction

o Path planning reduces to SAT

o Variables: is edge e in path?

o Constraints:
o exactly I path-edge touches start
o exactly 1 path-edge touches goal

o either O or 2 touch each other node
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More useful: reduction to 3SAT
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o We saw that decision problems can be
reduced to SAT

o 18 CNF formula satisfiable?
o Can reduce even further, to 3SAT
o 18 3CNF formula satisfiable?

o Useful if reducing SAT/3SAT to another
problem (to show other problem hard)
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Reduction to 3SAT
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o Must get rid of long clauses
o E.g.,(av -bvcvdvev —f)
o Replace with

(av =-bvx)A(-xVvcVvy)A
(nyvdvz)A(-zvVvevVv —f)
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NP-completeness
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o S.A. Cook in 1971 proved that many

useful decision problems reduce back and
forth to SAT

o showed how to simulate poly-size-
memory computer w/ (very complicated,
but still poly-size) SAT problem

o Equivalently, SAT is exactly as hard (in
theory at least) as these other problems
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Cost of reduction
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o Complexity theorists often ignore little
things like constant factors (or even
polynomial factors!)

o So, is it a good idea to reduce your
decision problem to SAT?

o Answer: sometimes...

88



Cost of reduction
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o SAT is well studied = fast solvers

o So, if there is an efficient reduction, ability
to use fast SAT solvers can be a win

o e.g., 3-coloring
o another example later (SATplan)

o Other times, cost of reduction is too high
o usu.because instance gets bigger

o will also see example later (MILP)
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Choosing a reduction
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o May be many reductions from problem A
to problem B

o May have wildly different properties

o e.g., solving transformed instance may
take seconds vs. days
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