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Lecture 3. FOL proofs; SAT

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Byron Boots, Sam Ganzfried
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Admin
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HW1

Out today
Due Tue, Feb. 3 (two weeks)

hand in hardcopy at beginning of class
Covers propositional and FOL
Don’t leave it to the last minute!
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Collaboration policy

OK to discuss general strategies
What you hand in must be your own work

written with no access to notes from 
joint meetings, websites, etc.

You must acknowledge all significant 
discussions, relevant websites, etc., on 
your HW
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Late policy

You have 3 late days to use on HWs
these account for conference travel, 
holidays, illness, or any other reasons

After late days, 75% for next day, 50% for 
next, 0% thereafter (but still must turn in)
Day = 24 hrs, HWs due at 10:30AM

5



Office hours

Office hours start this week (see website 
for times)
But, I have a conflict this week due to 
admissions; let me know by email if there 
is demand, and if so I can reschedule
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Matlab tutorial

Thu 1/22, 4–5PM, Wean Hall 5409
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Review
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In propositional logic

Compositional semantics, structural 
induction
Proof trees, proof by contradiction
Inference rules (e.g., resolution)
Soundness, completeness
Horn clauses
Nonmonotonic logic
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In FOL

Compositional semantics
objects, functions, predicates
terms, atoms, literals, sentences
quantifiers, free/bound variables
models, interpretations

Generalized de Morgan’s law
Skolemization,  CNF
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Project 
Ideas
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Traffic insanity
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Sensor planning

Plan a path for this robot so that it gets a 
good view of an object as fast as possible
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Mini-robots

Do something cool w/ Lego Mindstorms
plan footstep placements
plan how to grip objects

14



Poker
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Poker

Minimax strategy for heads-up poker = 
solving linear program
1-card hands, 13-card deck: 52 vars, 
instantaneous
RI Hold’Em: ~1,000,000 vars

2 weeks / 30GB (exact sol, CPLEX)
40 min / 1.5GB (approx sol)

TX Hold’Em: ??? (up to 1017 vars or so)
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Poker

Learning by repeated play
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Understand the web

Write a probabilistic knowledge base 
describing a portion of the web
Learn parameters of the model
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Proofs in 
FOL
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FOL is special

Despite being much more powerful than 
propositional logic, there is still a sound 
and complete inference procedure for FOL
Almost any significant extension breaks 
this property
This is why FOL is popular: very powerful 
language with a sound & complete 
inference procedure
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Proofs

Proofs by contradiction work as before:
add ¬S to KB

put in CNF
run resolution
if we get an empty clause, we’ve proven 
S by contradiction

But, CNF and resolution have changed
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Generalizing resolution

Propositional: (¬a ∨ b) ∧ a ⊨ b

FOL: 
(¬man(x) ∨ mortal(x)) ∧ man(Socrates)

⊨ (¬man(Socrates) ∨ mortal(Socrates))
∧ man(Socrates)

⊨ mortal(Socrates)

Difference: had to substitute x → Socrates
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Universal instantiation

What we just did is UI:
(¬man(x) ∨ mortal(x))
⊨ (¬man(Socrates) ∨ mortal(Socrates))

Works for x → any ground term
(¬man(uncle(student(Socrates))) ∨ 
mortal(uncle(student(Socrates))))
For proofs, need a good way to find useful 
instantiations
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Substitution lists

List of variable → value pairs

Values may contain variables (leaving 
flexibility about final instantiation)
But, no LHS may be contained in any RHS

i.e., applying substitution twice is the 
same as doing it once

E.g., x → Socrates, y → LCA(Socrates, z)
LCA = last common advisor
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Unification

Two FOL terms unify with each other if 
there is a substitution list that makes them 
syntactically identical
man(x), man(Socrates) unify using the 
substitution x → Socrates

Importance: purely syntactic criterion for 
identifying good substitutions
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Unification examples

loves(x, x), loves(John, y) unify using        
x → John, y → John

loves(x, x), loves(John, Mary) can’t unify
loves(uncle(x), y), loves(z, aunt(z)):
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Unification examples

loves(x, x), loves(John, y) unify using        
x → John, y → John

loves(x, x), loves(John, Mary) can’t unify
loves(uncle(x), y), loves(z, aunt(z)):

z → uncle(x), y → aunt(uncle(x))

loves(uncle(x), aunt(uncle(x)))
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Quiz

Can we unify
knows(John, x)   knows(x, Mary)

What about
knows(John, x)   knows(y, Mary)
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Standardizing apart

Can we unify
knows(John, x)   knows(x, Mary)

What about
knows(John, x)   knows(y, Mary)

No!

x → Mary, y → John
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Standardize apart

But knows(x, Mary) is logically equivalent 
to knows(y, Mary)!
Moral: standardize apart before unifying

30



Most general unifier

May be many substitutions that unify two 
formulas
MGU is unique (up to renaming)
Simple, moderately fast algorithm for 
finding MGU (see RN); more complex, 
linear-time algorithm

Linear unification. MS Paterson, MN Wegman. Proceedings of the 
eighth annual ACM symposium on Theory of Computing, 1976. 
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First-order resolution

Given clauses (a ∨ b ∨ c),  (¬c’ ∨ d ∨ e), 
and a substitution list V unifying c and c’
Conclude (a ∨ b ∨ d ∨ e) : V
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Example
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First-order factoring

When removing redundant literals, we 
have the option of unifying them first
Given clause (a ∨ b ∨ c), substitution V

If a : V and b : V are the same
Then we can conclude (a ∨ c) : V
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Completeness

First-order resolution (together with first-
order factoring) is sound and complete for 
FOL
Famous theorem
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Completeness
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Proof strategy

We’ll show FOL completeness by reducing 
to propositional completeness 
To prove S, put KB ∧ ¬S in clause form

Turn FOL KB into propositional KBs
in general, infinitely many

Check each one in order
If any one is unsatisfiable, we will have 
our proof
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Propositionalization

Given a FOL KB in clause form
And a set of terms U (for universe)
We can propositionalize KB under U by 
substituting elements of U for free 
variables in all combinations
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Propositionalization example

(¬man(x) ∨ mortal(x))

mortal(Socrates)
favorite_drink(Socrates) = hemlock
drinks(x, favorite_drink(x))

U = {Socrates, hemlock, Fred}
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Propositionalization example

(¬man(Socrates) ∨ mortal(Socrates)) 
(¬man(Fred) ∨ mortal(Fred))          
(¬man(hemlock) ∨ mortal(hemlock))
drinks(Socrates, favorite_drink(Socrates)) 
drinks(hemlock, favorite_drink(hemlock)) 
drinks(Fred, favorite_drink(Fred))
mortal(Socrates) ∧ 
favorite_drink(Socrates) = hemlock
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Choosing a universe

To check a FOL KB, propositionalize it 
using some universe U
Which universe?
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Herbrand Universe

Herbrand universe H of formula S:
start with all objects mentioned in S
or synthetic object X if none mentioned
apply all functions mentioned in S to all 
combinations of objects in H, add to H
repeat

Jacques Herbrand
1908–1931
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Herbrand Universe

E.g., loves(uncle(John), Mary) yields
H = {John, Mary, uncle(John), 
uncle(Mary), uncle(uncle(John)), 
uncle(uncle(Mary)), … }
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Herbrand’s theorem

If a FOL KB in clause form is unsatisfiable
And H is its Herbrand universe
Then the propositionalized KB is 
unsatisfiable for some finite U ⊆ H
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Significance

This is one half of the equivalence we 
want: unsatisfiable FOL KB ⇒ ∃ finite U. 
unsatisfiable propositional KB
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Example

(¬man(x) ∨ mortal(x)) ∧ man(uncle(Socrates)) 
∧ ¬mortal(x)

H = {S, u(S), u(u(S)), … }
If U = {u(S)}, PKB =
(¬man(u(S)) ∨ mortal(u(S))) ∧ man(u(S)) ∧ 
¬mortal(u(S))
Resolving twice yields F
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Converse of Herbrand

A. J. Robinson proved “lifting lemma”
Write PKB for a propositionalization of 
KB (under some universe)
Any resolution proof in PKB corresponds 
to a resolution proof in KB
… and, if PKB is unsatisfiable, there is a 
proof of F (by prop. completeness); so, 
lifting it shows KB unsatisfiable
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Example

(¬man(u(S)) ∨ mortal(u(S))) ∧ man(u(S)) 
∧ ¬mortal(u(S))

We resolved on man(u(S)) yielding 
mortal(u(S))
Lifted, resolve ¬man(x) w/ man(u(S)), 
binding x → u(S)

48



Proofs w/ Herbrand & Robinson

So, FOL KB is unsatisfiable if and only if 
there is a subset of its Herbrand universe 
making PKB unsatisfiable
I.e., if we have a way to find proofs in 
propositional logic, we have a way to find 
them in FOL

49



Proofs w/ Herbrand & Robinson

To prove S, put KB ∧ ¬S in CNF: KB’

Build subsets of Herbrand universe in 
increasing order of size: U1, U2, …
Propositionalize KB’ w/ Ui, look for proof
If Ui unsatisfiable, use lifting to get a 
contradiction in KB’
If Ui satisfiable, move on to Ui+1
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How long will this take?

If S is not entailed, we will never find a 
contradiction
In this case, if H infinite, we’ll never stop
So, entailment is semidecidable

equivalently, entailed statements are 
recursively enumerable
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Variation

Restrict semantics so we only need to 
check one finite propositional KB
Unique names: objects with different 
names are different (John ≠ Mary)

Domain closure: objects without names 
given in KB don’t exist
Restrictions also make entailment, validity 
feasible
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Who? What?
Where?
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Wh-questions

We’ve shown how to prove a statement like 
mortal(Socrates)
What if we have a question whose answer 
is not just yes/no, like “who killed JR?” or 
“where is my robot?”
Simplest approach: prove ∃x. killed(x, JR), 
hope the proof is constructive
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Answer literals

Simple approach doesn’t always work
Instead of ¬S(x), add (¬S(x) ∨ answer(x))

If there’s a contradiction, we can eliminate 
¬S(x) by resolution and unification, 
leaving answer(x) with x bound to a value 
that causes a contradiction
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Example
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FOL 
Extensions
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Equality

Paramodulation is sound and complete 
for FOL+equality (see RN)
Or, resolution + axiom schema
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Second order logic

SOL adds quantification over predicates
E.g., principle of mathematical induction:
∀P. P(0) ∧ (∀x. P(x) ⇒ P(S(x))) 
⇒ ∀x. P(x)

There is no sound and complete inference 
procedure for SOL (Gödel’s famous 
incompleteness theorem)
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Others

Temporal logics (“P(x) will be true at 
some time in the future”)
Modal logics (“John believes P(x)”)
Nonmonotonic FOL
First-class functions (lambda operator, 
application)
…
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Using FOL
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Knowledge engineering

Identify relevant objects, functions, and 
predicates
Encode general background knowledge 
about domain (reusable)
Encode specific problem instance
Pose queries (is P(x) true? Find x such 
that P(x))
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Common themes

RN identifies many common idioms and 
problems for knowledge engineering
Hierarchies, fluents, knowledge, belief, …
We’ll look at a couple
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Taxonomies

isa(Mammal, Animal)
disjoint(Animal, Vegetable)
partition({Animal, Vegetable, Mineral, 
Intangible}, Everything)
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Inheritance

Transitive: isa(x, y) ∧ isa(y, z) ⇒ isa(x, z)

Attach properties anywhere in hierarchy
isa(Pigeon, Bird)
isa(x, Bird) ⇒ flies(x)
isa(x, Pigeon) ⇒ gray(x)

So, isa(Tweety, Pigeon) tells us Tweety is 
gray and flies
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Physical composition

partOf(Wean4625, WeanHall)
partOf(water37, water)
Note distinction between mass and count 
nouns: any partOf a mass noun is also an 
example of that same mass noun
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Fluents

Fluent = property that changes over time
at(Robot, Wean4623, 11AM)

Actions change fluents
Fluents chain together to form possible 
worlds
at(x, p, t) ∧ adj(p, q) ⇒ poss(go(x, p, q)) ∧ 
at(x, q, result(go(x, p, q), t))
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Frame problem

Suppose we execute an unrelated action 
(e.g., talk(Professor, FOL))
Robot shouldn’t move: 

if at(Robot, Wean4623, t), want 
at(Robot, Wean4623, 
result(talk(Professor, FOL)))

But we can’t prove it using tools described 
so far!
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Frame problem

The frame problem is that it’s a pain to 
list all of the things that don’t change 
when we execute an action
Naive solution: frame axioms

for each fluent, list actions that can’t 
change fluent
KB size: O(AF) for A actions, F fluents
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Frame problem

Better solution: successor-state axioms
For each fluent, list actions that can 
change it (typically fewer): if go(x, p, q) is 
possible,
at(x, q, result(a, t)) ⇔ 
a = go(x, p, q) ∨ (at(x, q, t) ∧ a ≠ go(y, z))

Size O(AE+F) if each action has E effects
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Sadly, also necessary…

Debug knowledge base
Severe bug: logical contradictions
Less severe: undesired conclusions
Least severe: missing conclusions

First 2: trace back chain of reasoning until 
reason for failure is revealed
Last: trace desired proof, find what’s missing
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SAT
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Satisfiability

SAT is the problem of determining whether 
a given propositional logic sentence is 
satisfiable
A decision problem: given an instance, 
answer yes or no
A fundamental problem in CS

73



SAT is a general problem

Many other useful decision problems 
reduce to SAT
Informally, if we can solve SAT, we can 
solve these other problems
So a good SAT solver is a good AI 
building block
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Example decision problem

k-coloring: can we color a map using only 
k colors in a way that keeps neighboring 
regions from being the same color?
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Example decision problem

Propositional planning: given a list of 
operators (w/ preconditions, effects), can 
we apply operators in some order to 
achieve a desired goal?
Have cake & eat it too example
We’ll see later how to represent as SAT
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Reduction

Loosely, “A reduces to B” means that if 
we can solve B then we can solve A
More formally, A, B are decision problems 
(instances ↦ truth values)

A reduction is a poly-time function f such 
that, given an instance a of A

f(a) is an instance of B, and 
A(a) = B(f(a))

77



Reduction picture
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Reduction picture
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Reduction picture
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Back to example

Each square must be red, green, or blue
Adjacent squares can’t both be red 
(similarly, green or blue)
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Back to example

(ar ∨ ag ∨ ab) ∧ (br ∨ bg ∨ bb) ∧ (cr ∨ cg ∨ 
cb) ∧ (dr ∨ dg ∨ db) ∧ (er ∨ eg ∨ eb) ∧ (zr ∨ 
zg ∨ zb)
(¬ar ∨ ¬br) ∧ (¬ag ∨ ¬bg) ∧ (¬ab ∨ ¬bb)

(¬ar ∨ ¬zr) ∧ (¬ag ∨ ¬zg) ∧ (¬ab ∨ ¬zb)

…
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Direction of 
reduction

If A reduces to B:
if we can solve B, we can solve A
so B must be at least as hard as A

Trivially, can take an easy problem and 
reduce it to a hard one
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Not-so-useful reduction

Path planning reduces to SAT
Variables: is edge e in path?
Constraints:

exactly 1 path-edge touches start
exactly 1 path-edge touches goal
either 0 or 2 touch each other node
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More useful: reduction to 3SAT

We saw that decision problems can be 
reduced to SAT

is CNF formula satisfiable?
Can reduce even further, to 3SAT

is 3CNF formula satisfiable?
Useful if reducing SAT/3SAT to another 
problem (to show other problem hard)
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Reduction to 3SAT

Must get rid of long clauses
E.g., (a ∨ ¬b ∨ c ∨ d ∨ e ∨ ¬f)

Replace with
(a ∨ ¬b ∨ x) ∧ (¬x ∨ c ∨ y) ∧ 
(¬y ∨ d ∨ z) ∧ (¬z ∨ e ∨ ¬f)
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NP-completeness

S. A. Cook in 1971 proved that many 
useful decision problems reduce back and 
forth to SAT

showed how to simulate poly-size-
memory computer w/ (very complicated, 
but still poly-size) SAT problem

Equivalently, SAT is exactly as hard (in 
theory at least) as these other problems

87



Cost of reduction

Complexity theorists often ignore little 
things like constant factors (or even 
polynomial factors!)
So, is it a good idea to reduce your 
decision problem to SAT?
Answer: sometimes…
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Cost of reduction

SAT is well studied ⇒ fast solvers
So, if there is an efficient reduction, ability 
to use fast SAT solvers can be a win

e.g., 3-coloring
another example later (SATplan)

Other times, cost of reduction is too high
usu. because instance gets bigger
will also see example later (MILP)
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Choosing a reduction

May be many reductions from problem A 
to problem B
May have wildly different properties

e.g., solving transformed instance may 
take seconds vs. days
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