15-780: Graduate AI Lecture 3. FOL proofs; SAT

Geoff Gordon (this lecture) Tuomas Sandholm TAs Byron Boots, Sam Ganzfried

Admin

HW1

- Out today
- Due Tue, Feb. 3 (two weeks)
 - hand in hardcopy at beginning of class
- Covers propositional and FOL
- Don't leave it to the last minute!

Collaboration policy

- OK to discuss general strategies
- What you hand in must be your own work
 - written with no access to notes from joint meetings, websites, etc.
- You must acknowledge all significant discussions, relevant websites, etc., on your HW

Late policy

- You have 3 late days in total to split across all HWs
 - these account for conference travel, holidays, illness, or any other reasons
- After late days, 75% for next day, 50% for next, 0% thereafter (but still must turn in)
- Day = 24 hrs, HWs due at 10:30AM

Office hours

- Office hours start this week (see website for times)
- But, I have a conflict this week due to admissions; let me know by email if there is demand, and if so I can reschedule

Matlab tutorial

• Thu 1/22, 4–5PM, Wean Hall 5409

Review

In propositional logic

- Compositional semantics, structural induction
- Proof trees, proof by contradiction
- Inference rules (e.g., resolution)
- Soundness, completeness
- Horn clauses
- Nonmonotonic logic

In FOL

- Compositional semantics
 - objects, functions, predicates
 - terms, atoms, literals, sentences
 - quantifiers, free/bound variables
 - models, interpretations
- Generalized de Morgan's law
- Skolemization, CNF

Project Ideas

Traffic insanity

Sensor planning

 Plan a path for this robot so that it gets a good view of an object as fast as possible

Mini-robots

- Do something cool w/ Lego Mindstorms
 - plan footstep placements
 - plan how to grip objects

Poker

Poker

- Minimax strategy for heads-up poker = solving linear program
- 1-card hands, 13-card deck: 52 vars, <u>instantaneous</u>
- RI Hold'Em: ~1,000,000 vars
 - 2 weeks / 30GB (exact sol, CPLEX)
 - 40 min / 1.5GB (approx sol)
- TX Hold'Em: ??? (up to 10¹⁷ vars or so)

Poker

- Learning by repeated play
 - we'll discuss learning algorithms later
- Possibly state-of-the-art for 2 players
- We don't know another feasible approach for 3 or more players
- Project: pick a poker domain, compare several learning algorithms and/or other solution methods

Understand the web

- Write a probabilistic knowledge base describing a portion of the web
- Learn parameters of the model

Proofs in FOL

FOL is special

- Despite being much more powerful than propositional logic, there is still a sound and complete inference procedure for FOL
- Almost any significant extension breaks this property
- This is why FOL is popular: very powerful language with a sound & complete inference procedure

Proofs

- Proofs by contradiction work as before:
 - \circ add $\neg S$ to KB
 - put in CNF
 - run resolution
 - if we get an empty clause, we've proven
 S by contradiction
- But, CNF and resolution have changed

Generalizing resolution

- *Propositional:* $(\neg a \lor b) \land a \vDash b$
- FOL:

```
(\neg man(x) \lor mortal(x)) \land man(Socrates)
```

- ⊨ (¬man(Socrates) ∨ mortal(Socrates)) ∧ man(Socrates)
- $\models mortal(Socrates)$
- Difference: had to substitute $x \rightarrow Socrates$

Universal instantiation

• What we just did is UI:

```
(\neg man(x) \lor mortal(x))
\vDash (\neg man(Socrates) \lor mortal(Socrates))
```

- Works for x → any ground term
 (¬man(uncle(student(Socrates))) ∨ mortal(uncle(student(Socrates))))
- For proofs, need a good way to find useful instantiations

Substitution lists

- ∘ *List of variable* → *value pairs*
- Values may contain variables (leaving flexibility about final instantiation)
- But, no LHS may be contained in any RHS
 - i.e., applying substitution twice is the same as doing it once
- \circ E.g., $x \to Socrates$, $y \to LCA(Socrates, z)$

 $LCA = last\ common\ advisor$

Unification

- Two FOL terms unify with each other if there is a substitution list that makes them syntactically identical
- man(x), man(Socrates) unify using the substitution $x \rightarrow Socrates$
- Importance: purely syntactic criterion for identifying useful substitutions

Unification examples

- loves(x, x), loves(John, y) unify using $x \rightarrow John, y \rightarrow John$
- \circ loves(x, x), loves(John, Mary) can't unify
- loves(uncle(x), y), loves(z, aunt(z)):

Unification examples

- loves(x, x), loves(John, y) unify using $x \rightarrow John, y \rightarrow John$
- loves(x, x), loves(John, Mary) can't unify
- loves(uncle(x), y), loves(z, aunt(z)):
 - \circ $z \rightarrow uncle(x), y \rightarrow aunt(uncle(x))$
 - loves(uncle(x), aunt(uncle(x)))

Quiz

Can we unify
 knows(John, x) knows(x, Mary)

What about
 knows(John, x) knows(y, Mary)

Quiz

• Can we unify

knows(John, x) knows(x, Mary)No!

• What about

knows(John, x) knows(y, Mary)

 $x \rightarrow Mary, y \rightarrow John$

Standardize apart

- But knows(x, Mary) is logically equivalent to knows(y, Mary)!
- Moral: standardize apart before unifying

Most general unifier

- May be many substitutions that unify two formulas
- MGU is unique (up to renaming)
- Simple, moderately fast algorithm for finding MGU (see RN); more complex, linear-time algorithm

Linear unification. MS Paterson, MN Wegman. Proceedings of the eighth annual ACM symposium on Theory of Computing, 1976.

First-order resolution

- Given clauses ($a \lor b \lor c$), ($\neg c' \lor d \lor e$), and a substitution list V unifying c and c'
- \circ Conclude (a \lor b \lor d \lor e) : V

Example

rains no outside (x) => wet (x)

wet (x)=> rusty (x) v rust proof (x)

robot (x)=> ~ rust proof (x)

rains

guidebot (Roby)

guidebot (A) => robot (x) no outside (x)

rains a outside (x) => wet (x) 1,2 = robot (Robby) Trains v 7 outsite(x) v wet(x) 1,3 = toutside (Robby) wet (x) => rusty (x) v rust proot (x) 4,5 = " rustproof (Robly) "must (y) v rusty (y) v rust prov f(y) 6,7 = 9 rains v wet(R) (x) Foodten - (=(x) todor 4-10000+(2) V 7 (US+p100+(&) 8,9 = wet (Robby) 10,11 = 3 wet (Rabby) u Norty (R)
12,13 = 15 rusty (R) "quideloof (Robby) griderot() > robot(x) 1 outside (x) 14,15 E F 2 ng or de Sorla) u robot(a) 3 n guddod (b) u outside (b) - (3x. rusty (x)) in Lost(C)

First-order factoring

- When removing redundant literals, we have the option of unifying them first
- \circ Given clause (a \lor b \lor c), substitution V
- If a: V and b: V are the same
- Then we can conclude $(a \lor c) : V$

Completeness

- First-order resolution (together with firstorder factoring) is sound and complete for FOL
- Famous theorem

Completeness

Proof strategy

- We'll show FOL completeness by reducing to propositional completeness
- To prove S, put $KB \land \neg S$ in clause form
- Turn FOL KB into propositional KBs
 - in general, infinitely many
- Check each one in order
- If any one is unsatisfiable, we will have our proof

Propositionalization

- Given a FOL KB in clause form
- And a set of terms U (for universe)
- We can propositionalize KB under U by substituting elements of U for free variables in all combinations

Propositionalization example

- \circ $(\neg man(x) \lor mortal(x))$
- man(Socrates)
- favorite_drink(Socrates) = hemlock
- drinks(x, favorite_drink(x))

 \circ $U = \{Socrates, hemlock, Fred\}$

Propositionalization example

- (¬man(Socrates) ∨ mortal(Socrates))
 (¬man(Fred) ∨ mortal(Fred))
 (¬man(hemlock) ∨ mortal(hemlock))
- drinks(Socrates, favorite_drink(Socrates))
 drinks(hemlock, favorite_drink(hemlock))
 drinks(Fred, favorite_drink(Fred))
- man(Socrates) \(\)
 favorite_drink(Socrates) = hemlock

Choosing a universe

- To check a FOL KB, propositionalize it using some universe U
- Which universe?

Herbrand Universe

• **Herbrand universe** H of formula S:

Jacques Herbrand 1908–1931

- start with all objects mentioned in S
- or synthetic object X if none mentioned
- apply all functions mentioned in S to all combinations of objects in H, add to H
- repeat

Herbrand Universe

E.g., loves(uncle(John), Mary) yields
 H = {John, Mary, uncle(John), uncle(Mary), uncle(uncle(John)), uncle(uncle(uncle(Mary)), ...}

Herbrand's theorem

- If a FOL KB in clause form is unsatisfiable
- And H is its Herbrand universe
- Then the propositionalized KB is unsatisfiable for some **finite** $U \subseteq H$

Significance

 This is one half of the equivalence we want: unsatisfiable FOL KB ⇒ ∃ finite U.
 unsatisfiable propositional KB

Example

- $\circ (\neg man(x) \lor mortal(x)) \land man(uncle(Socrates)) \\ \land \neg mortal(x)$
- $\circ H = \{S, u(S), u(u(S)), \dots\}$
- ∘ If $U = \{u(S)\}$, PKB = $(\neg man(u(S)) \lor mortal(u(S))) \land man(u(S)) \land \neg mortal(u(S))$
- Resolving twice yields F

Converse of Herbrand

- A. J. Robinson proved "lifting lemma"
- Write PKB for a propositionalization of KB (under some universe)
- Any resolution proof in PKB corresponds to a resolution proof in KB
- ...and, if PKB is unsatisfiable, there is a proof of F (by prop. completeness); so, lifting it shows KB unsatisfiable

Example

- $\circ (\neg man(u(S)) \lor mortal(u(S))) \land man(u(S))$ $\land \neg mortal(u(S))$
- We resolved on man(u(S)) yielding mortal(u(S))
- Lifted, resolve $\neg man(x)$ w/ man(u(S)), binding $x \rightarrow u(S)$

Proofs w/ Herbrand & Robinson

- So, FOL KB is unsatisfiable if and only if there is a subset of its Herbrand universe making PKB unsatisfiable
- I.e., if we have a way to find proofs in propositional logic, we have a way to find them in FOL

Proofs w/ Herbrand & Robinson

- To prove S, put $KB \land \neg S$ in CNF: KB'
- Build subsets of Herbrand universe in increasing order of size: $U_1, U_2, ...$
- \circ Propositionalize KB' w/ U_i , look for proof
- If U_i unsatisfiable, use lifting to get a contradiction in KB'
- \circ If U_i satisfiable, move on to U_{i+1}

How long will this take?

- If S is not entailed, we will never find a contradiction
- In this case, if H infinite, we'll never stop
- So, entailment is **semidecidable**
 - equivalently, entailed statements are recursively enumerable

Variation

- Restrict semantics so we only need to check one finite propositional KB
- Unique names: objects with different names are different (John ≠ Mary)
- **Domain closure**: objects without names given in KB don't exist
- Restrictions also make entailment, validity feasible

Who? What? Whohere?

Wh-questions

- We've shown how to answer a question like "is Socrates mortal?"
- What if we have a question whose answer is not just yes/no, like "who killed JR?" or "where is my robot?"
- Simplest approach: prove $\exists x. killed(x, JR)$, hope the proof is constructive

Answer literals

- Simple approach doesn't always work
- Instead of $\neg S(x)$, add $(\neg S(x) \lor answer(x))$
- If there's a contradiction, we can eliminate $\neg S(x)$ by resolution and unification, leaving answer(x) with x bound to a value that causes a contradiction

Example

Wills (Jack, Cax) VW-lls (Curiosity, Cat)

Kills (Jack, Cat) VK-115 (Curiosity, Cat) -le-115 (Jack, x) - hills (x, Cat) 1,3 x - Jack E Wille (Conorty, Cat) 314 x -> Conosity = F 5-1 Kills (x, Cat) v answer (x) 1,5 x -> Conocaty wills (Jack, cat) , ancwer ((uniscity) Zie x 7 cat = answor (curiosity)

FOL Extensions

Equality

- **Paramodulation** is sound and complete for FOL+equality (see RN)
- Or, resolution + axiom schema

Second order logic

- SOL adds quantification over predicates
- E.g., principle of mathematical induction:

$$\bullet \quad \forall P. P(0) \land (\forall x. P(x) \Rightarrow P(S(x)))$$

$$\Rightarrow \forall x. P(x)$$

 There is no sound and complete inference procedure for SOL (Gödel's famous incompleteness theorem)

Others

- Temporal logics ("P(x) will be true at some time in the future")
- Modal logics ("John believes P(x)")
- Nonmonotonic FOL
- First-class functions (lambda operator, application)

o ...

Using FOL

Knowledge engineering

- Identify relevant objects, functions, and predicates
- Encode general background knowledge about domain (reusable)
- Encode specific problem instance
- Pose queries (is P(x) true? Find x such that P(x))

Common themes

- RN identifies many common idioms and problems for knowledge engineering
- Hierarchies, fluents, knowledge, belief, ...
- We'll look at a couple

Taxonomies

- isa(Mammal, Animal)
- disjoint(Animal, Vegetable)
- partition({Animal, Vegetable, Mineral, Intangible}, Everything)

Inheritance

- Transitive: $isa(x, y) \land isa(y, z) \Rightarrow isa(x, z)$
- Attach properties anywhere in hierarchy
 - isa(Pigeon, Bird)
 - $\circ isa(x, Bird) \Rightarrow flies(x)$
 - \circ isa(x, Pigeon) \Rightarrow gray(x)
- So, isa(Tweety, Pigeon) tells us Tweety is gray and flies

Physical composition

- partOf(Wean4625, WeanHall)
- partOf(water37, water)
- Note distinction between mass and count nouns: any partOf a mass noun is also an example of that same mass noun

Fluents

- Fluent = property that changes over time
 at(Robot, Wean4623, 11AM)
- Actions change fluents
- Fluents chain together to form possible worlds
- $\circ at(x, p, t) \land adj(p, q) \Rightarrow poss(go(x, p, q), t)$ $\land at(x, q, result(go(x, p, q), t))$

Frame problem

- Suppose we execute an unrelated action (e.g., talk(Professor, FOL))
- Robot shouldn't move:
 - if at(Robot, Wean4623, t), want at(Robot, Wean4623, result(talk(Professor, FOL)))
- But we can't prove it using tools described so far!

Frame problem

- The **frame problem** is that it's a pain to list all of the things that don't change when we execute an action
- Naive solution: frame axioms
 - for each fluent, list actions that can't change fluent
 - KB size: O(AF) for A actions, F fluents

Frame problem

- Better solution: successor-state axioms
- For each fluent, list actions that **can** change it (typically fewer): if go(x, p, q) is possible, $at(x, q, result(a, t)) \Leftrightarrow a = go(x, p, q) \lor (at(x, q, t) \land a \neq go(x, q, z))$
- Size O(AE+F) if each action has E effects

Sadly, also necessary...

- Debug knowledge base
 - Severe bug: logical contradictions
 - Less severe: undesired conclusions
 - Least severe: missing conclusions
- First 2: trace back chain of reasoning until reason for failure is revealed
- Last: trace desired proof, find what's missing