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Audits

http://www.cmu.edu/hub/forms/ESG-AUDIT.pdf
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What is AI?

Lots of examples: poker, driving robots, 
RoboCup
Things that are easy for us to do, but no 
obvious algorithm
Search / optimization / summation
Handling uncertainty
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Propositional logic

Syntax
variables, constants, operators
literals, clauses, sentences

Semantics (model ↦ {T, F})

Truth tables, how to evaluate formulas
Satisfiable, valid, contradiction
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Propositional logic

Manipulating formulas (e.g., de Morgan)
Normal forms (e.g., CNF)
Tseitin transformation to CNF
How to translate informally-specified 
problems into logic (e.g., 3-coloring)
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Proofs
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Entailment

Sentence A entails sentence B, A ⊨ B, if B 
is True in every model where A is

same as saying that (A ⇒ B) is valid

9



Proof tree

A tree with a formula at each node
At each internal node, children ⊨ parent

Leaves: assumptions or premises
Root: consequence
If we believe assumptions, we should also 
believe consequence
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Proof tree example
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Proof by contradiction

Assume opposite of what we want to 
prove, show it leads to a contradiction 
Suppose we want to show KB ⊨ S

Write KB’ for (KB ∧ ¬S)

Build a proof tree with
assumptions drawn from clauses of KB’
conclusion = F
so, (KB ∧ ¬S) ⊨ F (contradiction)
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Proof by contradiction
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Proof by contradiction
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Inference 
rules
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Inference rule

To make a proof tree, we need to be able to 
figure out new formulas entailed by KB
Method for finding entailed formulas = 
inference rule
We’ve implicitly been using one already
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Modus ponens

Probably most famous inference rule: all 
men are mortal, Socrates is a man, 
therefore Socrates is mortal
Quantifier-free version: 
man(Socrates) ∧ 

(man(Socrates) ⇒ mortal(Socrates))

d
(a ∧ b ∧ c ⇒ d)  a  b  c
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Another inference rule

Modus tollens
If it’s raining the grass is wet; the grass is 
not wet, so it’s not raining

¬a
(a ⇒ b)  ¬b
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One more…

(a ∨ b ∨ c)  (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e

Resolution
Combines two sentences that contain a 
literal and its negation
Not as commonly known as modus 
ponens / tollens
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Resolution example

Modus ponens / tollens are special cases
Modus tollens:
(¬raining ∨ grass-wet) ∧ ¬grass-wet  ⊨ 
¬raining
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Resolution

Simple proof by case analysis
Consider separately cases where we 
assign c = True and c = False

(a ∨ b ∨ c)  (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e
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Resolution

Case c = True
(a ∨ b ∨ T) ∧ (F ∨ d ∨ e)

= (T) ∧ (d ∨ e)

= (d ∨ e)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

22



Resolution

Case c = False
(a ∨ b ∨ F) ∧ (T ∨ d ∨ e)

= (a ∨ b) ∧ (T)

= (a ∨ b)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

23



Resolution

Since c must be True or False, conclude
(d ∨ e) ∨ (a ∨ b)

as desired

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

24



Soundness and completeness

An inference procedure is sound if it can 
only conclude things entailed by KB

common sense; haven’t discussed 
anything unsound

A procedure is complete if it can conclude 
everything entailed by KB
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Completeness

Modus ponens by itself is incomplete
Resolution is complete for propositional 
logic

not obvious—famous theorem due to 
Robinson
caveat: also need factoring, removal of 
redundant literals (a ∨ b ∨ a) = (a ∨ b)
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Variations

Horn clause inference (faster)
Ways of handling uncertainty (slower)
CSPs (sometimes more convenient)
Quantifiers / first-order logic
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Horn clauses

Horn clause: (a ∧ b ∧ c ⇒ d)

Equivalently, (¬a ∨ ¬b ∨ ¬c ∨ d)

Disjunction of literals, at most one of 
which is positive
Positive literal = head, rest = body
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Use of Horn clauses

People find it easy to write Horn clauses 
(listing out conditions under which we can 
conclude head)

happy(John) ∧ happy(Mary) ⇒ 
happy(Sue)

No negative literals in above formula; 
again, easier to think about
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Why are Horn clauses important

Modus ponens alone is complete
So is modus tollens alone
Inference in a KB of propositional Horn 
clauses is linear

e.g., by forward chaining

30



Forward chaining

Look for a clause with all body literals 
satisfied
Add its head to KB (modus ponens)
Repeat
See RN for more details
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Handling uncertainty

Fuzzy logic / certainty factors
simple, but don’t scale

Nonmonotonic logic
also doesn’t scale

Probabilities
may or may not scale—more later
Dempster-Shafer (interval probability)
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Certainty factors

KB assigns a certainty factor in [0, 1] to 
each proposition
Interpret as “degree of belief”
When applying an inference rule, certainty 
factor for consequent is a function of 
certainty factors for antecedents (e.g., 
minimum)
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Problems w/ certainty factors

Famously difficult to debug a KB with 
certainty factors, because…
it’s hard to separate a large KB into 
mostly-independent chunks that interact 
only through a well-defined interface, 
because…
certainty factors are not probabilities (i.e., 
do not obey Bayes’ Rule)
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Nonmonotonic logic

Suppose we believe all birds can fly
Might add a set of sentences to KB

bird(Polly) ⇒ flies(Polly) 

bird(Tweety) ⇒ flies(Tweety)

bird(Tux) ⇒ flies(Tux)
bird(John) ⇒ flies(John)

…
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Nonmonotonic logic

Fails if there are penguins in the KB
Fix: instead, add

bird(Polly) ∧ ¬ab(Polly) ⇒ flies(Polly) 

bird(Tux) ∧ ¬ab(Tux) ⇒ flies(Tux)

…
ab(Tux) is an “abnormality predicate”
Need separate abi(x) for each type of rule
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Nonmonotonic logic

Now set as few abnormality predicates as 
possible
Can prove flies(Polly) or flies(Tux) with no 
ab(x) assumptions
If we assert ¬flies(Tux), must now assume 
ab(Tux) to maintain consistency
Can’t prove flies(Tux) any more, but can 
still prove flies(Polly)
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Nonmonotonic logic

Works well as long as we don’t have to 
choose between big sets of abnormalities

is it better to have 3 flightless birds or 5 
professors that don’t wear jackets with 
elbow-patches?
even worse with nested abnormalities: 
birds fly, but penguins don’t, but 
superhero penguins do, but …
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First-order 
logic
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First-order logic

So far we’ve been using opaque
vars like rains or happy(John)
Limits us to statements like “it’s raining” or 
“if John is happy then Mary is happy”
Can’t say “all men are mortal” or “if John 
is happy then someone else is happy too”

Bertrand Russell
1872-1970
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Predicates and objects

Interpret happy(John) or likes(Joe, pizza) 
as a predicate applied to some objects
Object = an object in the world
Predicate = boolean-valued function of 
objects
Zero-argument predicate x() plays same 
role that Boolean variable x did before
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Distinguished predicates

We will assume three distinguished 
predicates with fixed meanings:

True / T, False / F
Equal(x, y)

We will also write (x = y) and (x ≠ y)
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Equality satisfies usual axioms

Reflexive, transitive, symmetric
Substituting equal objects doesn’t change 
value of expression

(John = Jonathan) ∧ loves(Mary, John) 
⇒ loves(Mary, Jonathan)
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Functions

Functions map zero or more objects to 
another object

e.g., professor(15-780), last-common-
ancestor(John, Mary)

Zero-argument function is the same as an 
object—John v. John()

44



The nil object

Functions are untyped: must have a value 
for any set of arguments
Typically add a nil object to use as value 
when other answers don’t make sense
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Types of values

Expressions in propositional logic could 
only have Boolean (T/F) values
Now we have two types of expressions: 
object and Boolean

done(slides(15-780)) ⇒ 
happy(professor(15-780))

Functions convert objects to objects; 
predicates convert objects to Booleans; 
connectives convert Booleans to Booleans
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Definitions

Term = expression referring to an object
John
left-leg-of(father-of(president-of(USA)))

Atom = predicate applied to objects
happy(John)
raining
at(robot, Wean-5409, 11AM-Wed)
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Definitions

Literal = possibly-negated atom
happy(John), ¬happy(John)

Sentence = literals joined by connectives 
like ∧∨¬⇒

raining
done(slides(780)) ⇒ happy(professor)
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Semantics

Models are now much more complicated
List of objects (finite or countable)
Table of function values for each 
function mentioned in formula
Table of predicate values for each 
predicate mentioned in formula 

Meaning of sentence: model ↦ {T, F}

Meaning of term: model ↦ object
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For example
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KB describing example

alive(cat)
ear-of(cat) = ear
in(cat, box) ∧ in(ear, box)

¬in(box, cat) ∧ ¬in(cat, nil) …

ear-of(box) = ear-of(ear) = ear-of(nil) = nil
cat ≠ box ∧ cat ≠ ear ∧ cat ≠ nil …
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Aside: avoiding verbosity

Closed-world assumption: literals not 
assigned a value in KB are false

avoid stating ¬in(box, cat), etc.
Unique names assumption: objects with 
separate names are separate

avoid box ≠ cat, cat ≠ ear, …
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Aside: typed variables

KB also illustrates need for data types
Don’t want to have to specify ear-of(box) 
or ¬in(cat, nil) 

Could design a type system
argument of happy() is of type animate

Function instances which disobey type 
rules have value nil
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Model of example

Objects: C, B, E, N
Assignments:

cat: C, box: B, ear: E, nil: N
ear-of(C): E, ear-of(B): N, ear-of(E): N, 
ear-of(N): N

Predicate values:
in(C, B), ¬in(C, C), ¬in(C, N), …
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Failed model

Objects: C, E, N
Fails because there’s no way to satisfy 
inequality constraints with only 3 objects
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Another possible model

Objects: C, B, E, N, X
Extra object X could have arbitrary 
properties since it’s not mentioned in KB
E.g., X could be its own ear

56



An embarrassment of models

In general, can be infinitely many models
unless KB limits number somehow

Job of KB is to rule out models that don’t 
match our idea of the world
Saw how to rule out CEN model 
Can we rule out CBENX model?
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Getting rid of extra objects

Can use quantifiers to rule out CBENX 
model:
∀x. x = cat ∨ x = box ∨ x = ear ∨ x = nil

Called a domain closure assumption
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Quantifiers

Want “all men are mortal,” or closure
Add quantifiers and object variables
∀x. man(x) ⇒ mortal(x)

¬∃x. lunch(x) ∧ free(x)

∀: no matter how we fill in object 
variables, formula is still true
∃: there is some way to fill in object 
variables to make formula true
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Variables

Build atoms from variables x, y, … as well as 
constants John, Fred, …

man(x), loves(John, z), mortal(brother(y))
Build formulas from these atoms

man(x) ⇒ mortal(brother(x))

New syntactic construct: term or formula w/ 
free variables
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New syntax ⇒ new semantics

New part of model: interpretation
Maps variables to model objects

x: C, y: N
Meaning of a term or formula: look up its 
free variables in the interpretation, then 
continue as before
alive(ear(x)) ↦ alive(ear(C)) ↦ alive(E) ↦ T
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Working with interpretations

Write (M / x: obj) for the model which is 
just like M except that variable x is 
interpreted as the object obj
M / x: obj is a refinement of M
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Binding

Adding quantifier for x is called binding x
In (∀x. likes(x, y)), x is bound, y is free

Can add quantifiers and apply logical 
operations like ∧∨¬ in any order

But must wind up with ground formula (no 
free variables)

63



Semantics of ∀

A sentence (∀x. S) is true in M if S is true 
in (M / x: obj) for all objects obj in M
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Example

M has objects (A, B, C) and predicate 
happy(x) which is true for A, B, C
Sentence ∀x. happy(x) is satisfied in M

since happy(A) is satisfied in M/x:A, 
happy(B) in M/x:B, happy(C) in M:x/C

65



Semantics of ∃

A sentence (∃x. S) is true in M if there is 
some object obj in M such that S is true in 
model (M / x: obj)
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Example

M has objects (A, B, C) and predicate
happy(A) = happy(B) = True
happy(C) = False

Sentence ∃x. happy(x) is satisfied in M

Since happy(x) is satisfied in, e.g., M/x:B
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Scoping rules

Portion of formula where quantifier 
applies = scope
Variable is bound by innermost enclosing 
scope with matching name
Two variables in different scopes can have 
same name—they are still different vars
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Scoping examples

(∀x. happy(x)) ∨ (∃x. ¬happy(x))

Either everyone’s happy, or someone’s 
unhappy

∀x. (raining ∧ outside(x) ⇒ (∃x. wet(x)))

The x who is outside may not be the one 
who is wet
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Quantifier nesting

English sentence “everybody loves 
somebody” is ambiguous
Translates to logical sentences
∀x. ∃y. loves(x, y)

∃y. ∀x. loves(x, y)
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Reasoning 
in FOL
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Entailment, etc.

As before, entailment, unsatisfiability, 
validity, equivalence, etc. refer to all 
possible models
But now, can’t determine by enumerating 
models

since there could be infinitely many
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Equivalences

All transformation rules for propositional 
logic still hold
In addition, there is a “De Morgan’s Law” 
for moving negations through quantifiers

¬∀x. S  ≡  ∃x. ¬S

¬∃x. S  ≡  ∀x. ¬S

And, rules for getting rid of quantifiers
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Generalizing CNF

Eliminate ⇒, move ¬ in w/ De Morgan

but ¬ moves through quantifiers too

Get rid of quantifiers (see below)
Distribute ∧∨, or use Tseitin
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Do we really need ∃?

∃x. happy(x)

happy(happy_person())

∀y. ∃x. loves(y, x)

∀y. loves(y, loved_one(y))
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Skolemization

Called Skolemization 
(after Thoraf Albert 
Skolem) Thoraf Albert Skolem

1887–1963

Eliminate ∃ using function of arguments of all 
enclosing ∀ quantifiers
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Do we really need ∀?
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Getting rid of quantifiers

Standardize apart (avoid name collisions)
Skolemize
Drop ∀ (free variables implicitly 
universally quantified)
Terminology: still called “free” even 
though quantification is implicit
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For example

∀x. man(x) ⇒ mortal(x)

(¬man(x) ∨ mortal(x))

∀x. (honest(x) ⇒ happy(Diogenes))
(¬honest(y) ∨ happy(Diogenes))

∀y. ∃x. loves(y, x)

loves(z, f(z))
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Exercise

(∀x. honest(x)) ⇒ happy(Diogenes)
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Proofs
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Proofs

Proofs by contradiction work as before:
add ¬S to KB

put in CNF
run resolution
if we get an empty clause, we’ve proven 
S by contradiction

But, CNF and resolution have changed
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Generalizing resolution

Propositional: (¬a ∨ b) ∧ a ⊨ b

FOL: 
(¬man(x) ∨ mortal(x)) ∧ man(Socrates)

⊨ mortal(Socrates)

Difference: had to substitute x = Socrates
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Unification

Two FOL sentences unify with each other 
if there is a way to set their variables so 
that they are identical
man(x), man(Socrates) unify using the 
substitution x = Socrates
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Unification examples

loves(x, x), loves(John, y) unify using        
x = y = John
loves(x, x), loves(John, Mary) can’t unify
loves(uncle(x), y), loves(z, aunt(z)):
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Unification examples

loves(x, x), loves(John, y) unify using        
x = y = John
loves(x, x), loves(John, Mary) can’t unify
loves(uncle(x), y), loves(z, aunt(z)):

z = uncle(x), y = aunt(uncle(x))
loves(uncle(x), aunt(uncle(x)))
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Most general unifier

May be many substitutions that unify two 
formulas
MGU is unique (up to renaming)
Simple, fast algorithm for finding MGU 
(see RN)

87



First-order resolution

Given clauses (a ∨ b ∨ c),  (¬c’ ∨ d ∨ e)

And a variable substitution V
If c : V and c’ : V are the same
Then we can conclude
(a ∨ b ∨ d ∨ e) : V
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First-order factoring

When removing redundant literals, we 
have the option of unifying them first
Given clause (a ∨ b ∨ c), substitution V

If a : V and b : V are the same
Then we can conclude (a ∨ c) : V
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Completeness

First-order resolution (together with first-
order factoring) is sound and complete for 
FOL
Famous theorem
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Completeness
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Proof strategy

We’ll show FOL completeness by reducing 
to propositional completeness
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Propositionalization

Given a FOL KB in clause form
And a set of terms U (for universe)
We can propositionalize KB under U by 
substituting elements of U for free 
variables in all combinations
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Propositionalization example

(¬man(x) ∨ mortal(x))

mortal(Socrates)
favorite_drink(Socrates) = hemlock
drinks(x, favorite_drink(x))

U = {Socrates, hemlock, Fred}
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Propositionalization example

(¬man(Socrates) ∨ mortal(Socrates)) 
(¬man(Fred) ∨ mortal(Fred))          
(¬man(hemlock) ∨ mortal(hemlock))
drinks(Socrates, favorite_drink(Socrates)) 
drinks(hemlock, favorite_drink(hemlock)) 
drinks(Fred, favorite_drink(Fred))
mortal(Socrates) ∧ 
favorite_drink(Socrates) = hemlock
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Choosing a universe

To check a FOL KB, propositionalize it 
using some universe U
Which universe?
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Herbrand Universe

Herbrand universe H of formula S:
start with all objects mentioned in S
or synthetic object X if none mentioned
apply all functions mentioned in S to all 
combinations of objects in H, add to H
repeat
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Herbrand Universe

E.g., loves(uncle(John), Mary)
H = {John, Mary, uncle(John), 
uncle(Mary), uncle(uncle(John)), 
uncle(uncle(Mary)), … }
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Herbrand’s theorem

If a FOL KB in clause form is unsatisfiable
And H is its Herbrand universe
Then the propositionalized KB is 
unsatisfiable for some finite U ⊆ H
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Significance

This is one half of the equivalence we 
want: unsatisfiable FOL KB ⇒ 
unsatisfiable propositional KB
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Converse of Herbrand

A. J. Robinson proved “lifting lemma”
Write PKB for a propositionalization of 
KB (under some universe)
Any resolution proof in PKB corresponds 
to a resolution proof in KB
… and, if PKB is unsatisfiable, there is a 
proof of F (by prop. completeness); so, 
lifting it shows KB unsatisfiable
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Proofs w/ Herbrand & Robinson

So, FOL KB is unsatisfiable if and only if 
there is a subset of Herbrand universe 
making PKB unsatisfiable
If we have a way to find proofs in 
propositional logic, we have a way to find 
them in FOL
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Proofs w/ Herbrand & Robinson

To prove S, put KB ∧ ¬S in CNF: KB’

Build subsets of Herbrand universe in 
increasing order of size: U1, U2, …
Propositionalize KB’ w/ Ui, look for proof
If Ui unsatisfiable, use lifting to get a 
contradiction in KB’
If Ui satisfiable, move on to Ui+1
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Making it faster

Restrict semantics so we only need to 
check one finite propositional KB
Unique names: objects with different 
names are different (John ≠ Mary)

Domain closure: objects without names 
given in KB don’t exist
Restrictions also make entailment, validity 
feasible
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Why FOL
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What’s so special about FOL

Existence of a sound, complete inference 
procedure
Additions to FOL break this procedure

although sometimes there’s a 
replacement
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Equality

Paramodulation is sound and complete 
for FOL+equals (see RN)
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Second order logic

SOL adds quantification over predicates
E.g., principle of mathematical induction:
∀P. P(0) ∧ (∀x. P(x) ⇒ P(S(x))) 
⇒ ∀x. P(x)

There is no sound and complete inference 
procedure for SOL (Gödel’s famous 
incompleteness theorem)
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Others

Temporal logics (“P(x) will be true at 
some time in the future”)
Modal logics (“John knows P(x)”)
First-class functions (lambda operator, 
application)
…
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