15-780: Graduate AI Lecture 2. Proofs & FOL

Geoff Gordon (this lecture) Tuomas Sandholm TAs Byron Boots, Sam Ganzfried

Admin

Audits

• http://www.cmu.edu/hub/forms/ESG-AUDIT.pdf

Carnegie Mellon ENROLLMENT SERVICES

A------

The state of the s

Enrollment Services - The HUB Lower Level, Warner Hall 5000 Forbes Avenue Pittsburgh, PA 15213-3890 Phone: 412-268-8186 Fax: 412-268-8084 Email: thehub@andrew.cmu.edu http://www.cmu.edu/hub

I Indiana

Course Audit Approval Form

STUDENT INFORMATION		
Student ID Number:		
Student Name:	First	MI
College:	Department:	
Semester: FALL SPRING Circle One	SUMMER-1 SUMMER-2 SUMMER-All	YEAR 20
COURSE INFORMATION		

0 - - 41 - - - -

Review

What is AI?

- Lots of examples: poker, driving robots,
 RoboCup
- Things that are easy for us to do, but no obvious algorithm
- Search / optimization / summation
- Handling uncertainty

Propositional logic

- Syntax
 - variables, constants, operators
 - literals, clauses, sentences
- \circ Semantics (model \mapsto {T, F})
- Truth tables, how to evaluate formulas
- Satisfiable, valid, contradiction

Propositional logic

- Manipulating formulas (e.g., de Morgan)
- Normal forms (e.g., CNF)
- Tseitin transformation to CNF
- How to translate informally-specified problems into logic (e.g., 3-coloring)

Proofs

Entailment

- Sentence A entails sentence $B, A \models B$, if B is True in every model where A is
 - same as saying that $(A \Rightarrow B)$ is valid

Proof tree

- A tree with a formula at each node
- At each internal node, children \models parent
- Leaves: assumptions or premises
- Root: consequence
- If we believe assumptions, we should also believe consequence

Proof tree example

rains => pours
pours noutside => rusty
rains
outside

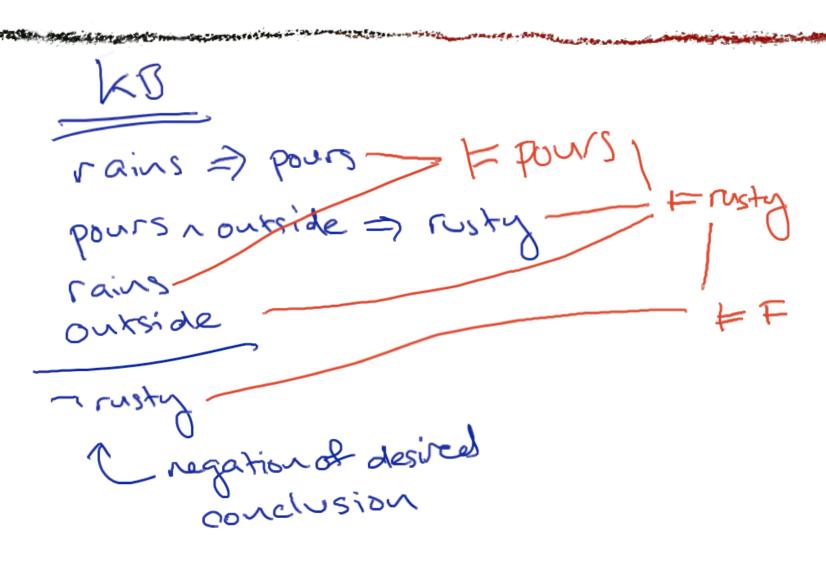
Proof by contradiction

- Assume opposite of what we want to prove, show it leads to a contradiction
- Suppose we want to show $KB \models S$
- Write KB' for $(KB \land \neg S)$
- Build a proof tree with
 - assumptions drawn from clauses of KB'
 - \circ conclusion = F
 - \circ so, $(KB \land \neg S) \models F (contradiction)$

Proof by contradiction

rains => Pours pours , outside => rusty 1 régation de desired

Proof by contradiction



Inference rules

Inference rule

- To make a proof tree, we need to be able to figure out new formulas entailed by KB
- Method for finding entailed formulas = inference rule
- We've implicitly been using one already

Modus ponens

$$\frac{(a \land b \land c \Rightarrow d) \ a \ b \ c}{d}$$

- Probably most famous inference rule: all men are mortal, Socrates is a man, therefore Socrates is mortal
- Quantifier-free version:

 $(man(Socrates) \Rightarrow mortal(Socrates))$

Another inference rule

$$\frac{(a \Rightarrow b) \ \neg b}{\neg a}$$

- Modus tollens
- If it's raining the grass is wet; the grass is not wet, so it's not raining

One more...

$\frac{(a \lor b \lor c) \ (\neg c \lor d \lor e)}{a \lor b \lor d \lor e}$

- Resolution
- Combines two sentences that contain a literal and its negation
- Not as commonly known as modus ponens / tollens

Resolution example

- Modus ponens / tollens are special cases
- Modus tollens:

```
(\neg raining \lor grass-wet) \land \neg grass-wet \vDash \neg raining
```

$$\frac{(a \lor b \lor c) \ (\neg c \lor d \lor e)}{a \lor b \lor d \lor e}$$

- Simple proof by case analysis
- Consider separately cases where we assign c = True and c = False

$$(a \lor b \lor c) \land (\neg c \lor d \lor e)$$

• Case
$$c = True$$

$$(a \lor b \lor T) \land (F \lor d \lor e)$$

$$= (T) \land (d \lor e)$$

$$= (d \lor e)$$

$$(a \lor b \lor c) \land (\neg c \lor d \lor e)$$

• Case
$$c = False$$

$$(a \lor b \lor F) \land (T \lor d \lor e)$$

$$= (a \lor b) \land (T)$$

$$= (a \lor b)$$

 $(a \lor b \lor c) \land (\neg c \lor d \lor e)$

Since c must be True or False, conclude
 (d v e) v (a v b)
 as desired

Soundness and completeness

- An inference procedure is **sound** if it can only conclude things entailed by KB
 - common sense; haven't discussed anything unsound
- A procedure is complete if it can conclude everything entailed by KB

Completeness

- Modus ponens by itself is incomplete
- Resolution is complete for propositional logic
 - not obvious—famous theorem due to Robinson
 - caveat: also need **factoring**, removal of redundant literals $(a \lor b \lor a) = (a \lor b)$

Variations

- Horn clause inference (faster)
- Ways of handling uncertainty (slower)
- CSPs (sometimes more convenient)
- Quantifiers / first-order logic

Horn clauses

- *Horn clause:* $(a \land b \land c \Rightarrow d)$
- \circ Equivalently, $(\neg a \lor \neg b \lor \neg c \lor d)$
- Disjunction of literals, **at most one** of which is positive
- \circ Positive literal = head, rest = body

Use of Horn clauses

People find it easy to write Horn clauses
 (listing out conditions under which we can conclude head)

 $happy(John) \land happy(Mary) \Rightarrow happy(Sue)$

No negative literals in above formula;
 again, easier to think about

Why are Horn clauses important

- Modus ponens alone is complete
- So is modus tollens alone
- Inference in a KB of propositional Horn clauses is linear
 - e.g., by forward chaining

Forward chaining

- Look for a clause with all body literals satisfied
- Add its head to KB (modus ponens)
- Repeat
- See RN for more details

Handling uncertainty

- Fuzzy logic / certainty factors
 - simple, but don't scale
- Nonmonotonic logic
 - also doesn't scale
- Probabilities
 - may or may not scale—more later
 - Dempster-Shafer (interval probability)

Certainty factors

- KB assigns a certainty factor in [0, 1] to each proposition
- Interpret as "degree of belief"
- When applying an inference rule, certainty factor for consequent is a function of certainty factors for antecedents (e.g., minimum)

Problems w/ certainty factors

- Famously difficult to debug a KB with certainty factors, because...
- it's hard to separate a large KB into mostly-independent chunks that interact only through a well-defined interface, because...
- certainty factors are not probabilities (i.e., do not obey Bayes' Rule)

Nonmonotonic logic

- Suppose we believe all birds can fly
- Might add a set of sentences to KB

```
bird(Polly) \Rightarrow flies(Polly)
```

 $bird(Tweety) \Rightarrow flies(Tweety)$

 $bird(Tux) \Rightarrow flies(Tux)$

 $bird(John) \Rightarrow flies(John)$

• • •

Nonmonotonic logic

- Fails if there are penguins in the KB
- Fix: instead, add

$$bird(Polly) \land \neg ab(Polly) \Rightarrow flies(Polly)$$

 $bird(Tux) \land \neg ab(Tux) \Rightarrow flies(Tux)$

. . .

- ab(Tux) is an "abnormality predicate"
- Need separate $ab_i(x)$ for each type of rule

Nonmonotonic logic

- Now set as few abnormality predicates as possible
- Can prove flies(Polly) or flies(Tux) with no ab(x) assumptions
- ∘ If we assert ¬flies(Tux), must now assume ab(Tux) to maintain consistency
- Can't prove flies(Tux) any more, but can still prove flies(Polly)

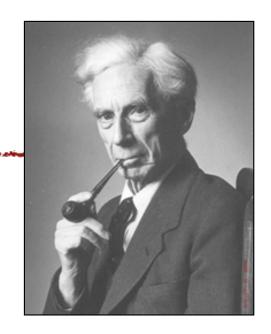
Nonmonotonic logic

- Works well as long as we don't have to choose between big sets of abnormalities
 - is it better to have 3 flightless birds or 5 professors that don't wear jackets with elbow-patches?
 - even worse with nested abnormalities: birds fly, but penguins don't, but superhero penguins do, but ...

First-order logic

First-order logic

Bertrand Russell 1872-1970



- So far we've been using opaque vars like rains or happy(John)
- Limits us to statements like "it's raining" or "if John is happy then Mary is happy"
- Can't say "all men are mortal" or "if John is happy then someone else is happy too"

Predicates and objects

- Interpret happy(John) or likes(Joe, pizza)
 as a predicate applied to some objects
- Object = an object in the world
- Predicate = boolean-valued function of objects
- Zero-argument predicate x() plays same role that Boolean variable x did before

Distinguished predicates

- We will assume three distinguished predicates with fixed meanings:
 - True / T, False / F
 - $\circ Equal(x, y)$
- We will also write (x = y) and $(x \neq y)$

Equality satisfies usual axioms

- Reflexive, transitive, symmetric
- Substituting equal objects doesn't change value of expression

 $(John = Jonathan) \land loves(Mary, John)$

 $\Rightarrow loves(Mary, Jonathan)$

Functions

- Functions map zero or more objects to another object
 - e.g., professor(15-780), last-commonancestor(John, Mary)
- Zero-argument function is the same as an object—John v. John()

The nil object

- Functions are untyped: must have a value for any set of arguments
- Typically add a **nil** object to use as value when other answers don't make sense

Types of values

- Expressions in propositional logic could only have Boolean (T/F) values
- Now we have two types of expressions: object and Boolean
 - $done(slides(15-780)) \Rightarrow$ happy(professor(15-780))
- Functions convert objects to objects;
 predicates convert objects to Booleans;
 connectives convert Booleans to Booleans

Definitions

- **Term** = expression referring to an object
 - John
 - left-leg-of(father-of(president-of(USA)))
- **Atom** = predicate applied to objects
 - happy(John)
 - raining
 - at(robot, Wean-5409, 11AM-Wed)

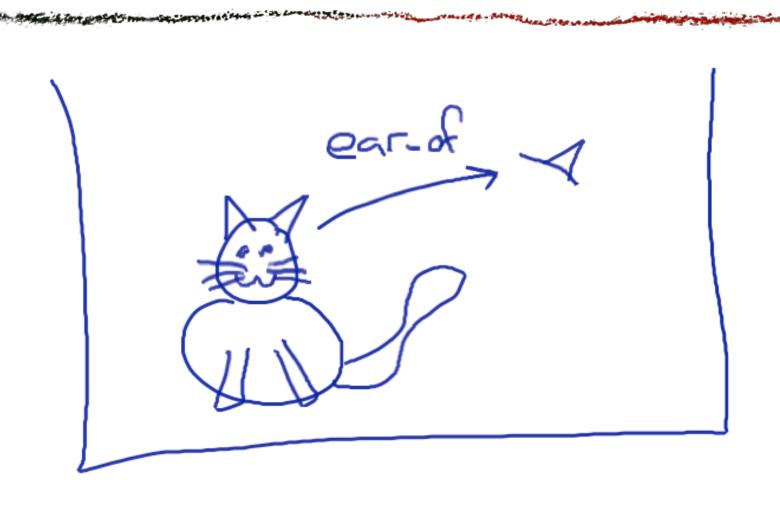
Definitions

- *Literal* = possibly-negated atom
 - \circ happy(John), \neg happy(John)
- Sentence = literals joined by connectives
 like ∧∨¬⇒
 - raining
 - $\circ done(slides(780)) \Rightarrow happy(professor)$

Semantics

- Models are now much more complicated
 - List of objects (finite or countable)
 - Table of function values for each function mentioned in formula
 - Table of predicate values for each predicate mentioned in formula
- *Meaning of sentence:* $model \mapsto \{T, F\}$
- Meaning of term: model → object

For example



KB describing example

- alive(cat)
- \circ ear-of(cat) = ear
- \circ in(cat, box) \land in(ear, box)
- $\circ \neg in(box, cat) \land \neg in(cat, nil) \dots$
- \circ ear-of(box) = ear-of(ear) = ear-of(nil) = nil
- \circ cat \neq box \land cat \neq ear \land cat \neq nil ...

Aside: avoiding verbosity

- Closed-world assumption: literals not assigned a value in KB are false
 - avoid stating $\neg in(box, cat)$, etc.
- Unique names assumption: objects with separate names are separate
 - \circ avoid box \neq cat, cat \neq ear, ...

Aside: typed variables

- KB also illustrates need for data types
- Don't want to have to specify ear-of(box)
 or ¬in(cat, nil)
- Could design a type system
 - argument of happy() is of type animate
- Function instances which disobey type rules have value nil

Model of example

- *Objects: C*, *B*, *E*, *N*
- Assignments:
 - *cat: C*, *box: B*, *ear: E*, *nil: N*
 - ear-of(C): E, ear-of(B): N, ear-of(E): N,
 ear-of(N): N
- Predicate values:
 - \circ $in(C, B), \neg in(C, C), \neg in(C, N), ...$

Failed model

- Objects: C, E, N
- Fails because there's no way to satisfy inequality constraints with only 3 objects

Another possible model

- *Objects: C*, *B*, *E*, *N*, *X*
- Extra object X could have arbitrary properties since it's not mentioned in KB
- E.g., X could be its own ear

An embarrassment of models

- In general, can be infinitely many models
 - unless KB limits number somehow
- Job of KB is to rule out models that don't match our idea of the world
- Saw how to rule out CEN model
- Can we rule out CBENX model?

Getting rid of extra objects

 Can use quantifiers to rule out CBENX model:

$$\forall x. \ x = cat \lor x = box \lor x = ear \lor x = nil$$

• Called a domain closure assumption

Quantifiers

- Want "all men are mortal," or closure
- Add quantifiers and object variables
 - $\circ \ \forall x. man(x) \Rightarrow mortal(x)$
 - $\circ \neg \exists x. lunch(x) \land free(x)$
- ∘ ∀: no matter how we fill in object variables, formula is still true
- ∘ ∃: there is some way to fill in object variables to make formula true

Variables

- Build atoms from variables x, y, ... as well as constants John, Fred, ...
 - man(x), loves(John, z), mortal(brother(y))
- Build formulas from these atoms
 - $\circ man(x) \Rightarrow mortal(brother(x))$
- New syntactic construct: term or formula w/ free variables

New syntax ⇒ new semantics

- New part of model: interpretation
- Maps variables to model objects
 - *x: C, y: N*
- Meaning of a term or formula: look up its free variables in the interpretation, then continue as before
- \circ alive(ear(x)) \mapsto alive(ear(C)) \mapsto alive(E) \mapsto T

Working with interpretations

- Write (M / x: obj) for the model which is just like M except that variable x is interpreted as the object obj
- M/x: obj is a refinement of M

Binding

- Adding quantifier for x is called **binding** x
 - In $(\forall x. likes(x, y))$, x is bound, y is free
- Can add quantifiers and apply logical operations like ∧∨¬ in any order
- But must wind up with ground formula (no free variables)

Semantics of ∀

∘ A sentence $(\forall x. S)$ is true in M if S is true in $(M \mid x: obj)$ for all objects obj in M

Example

- M has objects (A, B, C) and predicate happy(x) which is true for A, B, C
- Sentence $\forall x$. happy(x) is satisfied in M
 - since happy(A) is satisfied in M/x:A,
 happy(B) in M/x:B, happy(C) in M:x/C

Semantics of 3

• A sentence $(\exists x. S)$ is true in M if there is some object obj in M such that S is true in model $(M \mid x: obj)$

Example

- M has objects (A, B, C) and predicate
 - $\circ happy(A) = happy(B) = True$
 - \circ happy(C) = False
- Sentence $\exists x. happy(x)$ is satisfied in M
- Since happy(x) is satisfied in, e.g., M/x:B

Scoping rules

- Portion of formula where quantifier
 applies = scope
- Variable is bound by innermost enclosing scope with matching name
- Two variables in different scopes can have same name—they are still different vars

Scoping examples

- $\circ (\forall x. happy(x)) \lor (\exists x. \neg happy(x))$
 - Either everyone's happy, or someone's unhappy
- $\circ \ \forall x. (raining \land outside(x) \Rightarrow (\exists x. wet(x)))$
 - The x who is outside may not be the one who is wet

Quantifier nesting

- English sentence "everybody loves somebody" is ambiguous
- Translates to logical sentences
 - $\circ \forall x. \exists y. loves(x, y)$
 - \circ $\exists y. \forall x. loves(x, y)$

Reasoning in FOL

Entailment, etc.

- As before, entailment, unsatisfiability, validity, equivalence, etc. refer to all possible models
- But now, can't determine by enumerating models
 - since there could be infinitely many

Equivalences

- All transformation rules for propositional logic still hold
- In addition, there is a "De Morgan's Law" for moving negations through quantifiers

$$\neg \forall x. S \equiv \exists x. \neg S$$

$$\neg \exists x. S \equiv \forall x. \neg S$$

And, rules for getting rid of quantifiers

Generalizing CNF

- ∘ $Eliminate \Rightarrow$, move ¬ in w/ De Morgan
 - ∘ |but ¬ moves through quantifiers too|
- | Get rid of quantifiers (see below)
- Distribute AV, or use Tseitin

Do we really need \exists ?

- $\circ \exists x. happy(x)$
- happy(happy_person())

- $\circ \forall y. \exists x. loves(y, x)$
- $\circ \forall y. loves(y, loved_one(y))$

Skolemization

Called Skolemization

 (after Thoraf Albert
 Skolem)

Thoraf Albert Skolem 1887–1963

 Eliminate ∃ using function of arguments of all enclosing ∀ quantifiers

Do we really need \forall ?

Getting rid of quantifiers

- Standardize apart (avoid name collisions)
- Skolemize
- Drop ∀ (free variables implicitly universally quantified)
- Terminology: still called "free" even though quantification is implicit

For example

- $\circ \ \forall x. man(x) \Rightarrow mortal(x)$
 - \circ $(\neg man(x) \lor mortal(x))$
- $\circ \ \forall x. (honest(x) \Rightarrow happy(Diogenes))$
 - \circ ($\neg honest(y) \lor happy(Diogenes)$)
- $\circ \forall y. \exists x. loves(y, x)$
 - $\circ loves(z, f(z))$

Exercise

 $\circ (\forall x. honest(x)) \Rightarrow happy(Diogenes)$

Proofs

Proofs

- Proofs by contradiction work as before:
 - \circ add $\neg S$ to KB
 - put in CNF
 - run resolution
 - if we get an empty clause, we've proven
 S by contradiction
- But, CNF and resolution have changed

Generalizing resolution

- *Propositional:* $(\neg a \lor b) \land a \vDash b$
- FOL:

```
(\neg man(x) \lor mortal(x)) \land man(Socrates)
```

- $\models mortal(Socrates)$
- \circ Difference: had to substitute x = Socrates

Unification

- Two FOL sentences unify with each other
 if there is a way to set their variables so
 that they are identical
- man(x), man(Socrates) unify using the substitution x = Socrates

Unification examples

- loves(x, x), loves(John, y) unify using x = y = John
- loves(x, x), loves(John, Mary) can't unify
- loves(uncle(x), y), loves(z, aunt(z)):

Unification examples

- loves(x, x), loves(John, y) unify using x = y = John
- loves(x, x), loves(John, Mary) can't unify
- loves(uncle(x), y), loves(z, aunt(z)):
 - \circ z = uncle(x), y = aunt(uncle(x))
 - loves(uncle(x), aunt(uncle(x)))

Most general unifier

- May be many substitutions that unify two formulas
- MGU is unique (up to renaming)
- Simple, fast algorithm for finding MGU (see RN)

First-order resolution

- \circ Given clauses (a \lor b \lor c), (\neg c' \lor d \lor e)
- And a variable substitution V
- If c: V and c': V are the same
- Then we can conclude
- \circ $(a \lor b \lor d \lor e) : V$

First-order factoring

- When removing redundant literals, we have the option of unifying them first
- \circ Given clause (a \lor b \lor c), substitution V
- If a: V and b: V are the same
- Then we can conclude $(a \lor c) : V$

Completeness

- First-order resolution (together with firstorder factoring) is sound and complete for FOL
- Famous theorem

Completeness

Proof strategy

 We'll show FOL completeness by reducing to propositional completeness

Propositionalization

- Given a FOL KB in clause form
- And a set of terms U (for universe)
- We can propositionalize KB under U by substituting elements of U for free variables in all combinations

Propositionalization example

- \circ $(\neg man(x) \lor mortal(x))$
- mortal(Socrates)
- favorite_drink(Socrates) = hemlock
- drinks(x, favorite_drink(x))

 \circ $U = \{Socrates, hemlock, Fred\}$

Propositionalization example

- (¬man(Socrates) ∨ mortal(Socrates))
 (¬man(Fred) ∨ mortal(Fred))
 (¬man(hemlock) ∨ mortal(hemlock))
- drinks(Socrates, favorite_drink(Socrates))
 drinks(hemlock, favorite_drink(hemlock))
 drinks(Fred, favorite_drink(Fred))
- mortal(Socrates) \(\) favorite_drink(Socrates) = hemlock

Choosing a universe

- To check a FOL KB, propositionalize it using some universe U
- Which universe?

Herbrand Universe

- **Herbrand universe** H of formula S:
 - start with all objects mentioned in S
 - or synthetic object X if none mentioned
 - apply all functions mentioned in S to all combinations of objects in H, add to H
 - repeat

Herbrand Universe

- E.g., loves(uncle(John), Mary)
- H = {John, Mary, uncle(John), uncle(Mary), uncle(uncle(John)), uncle(uncle(Mary)), ...}

Herbrand's theorem

- If a FOL KB in clause form is unsatisfiable
- And H is its Herbrand universe
- Then the propositionalized KB is unsatisfiable for some **finite** $U \subseteq H$

Significance

This is one half of the equivalence we want: unsatisfiable FOL KB ⇒ unsatisfiable propositional KB

Converse of Herbrand

- A. J. Robinson proved "lifting lemma"
- Write PKB for a propositionalization of KB (under some universe)
- Any resolution proof in PKB corresponds to a resolution proof in KB
- ...and, if PKB is unsatisfiable, there is a proof of F (by prop. completeness); so, lifting it shows KB unsatisfiable

Proofs w/ Herbrand & Robinson

- So, FOL KB is unsatisfiable if and only if there is a subset of Herbrand universe making PKB unsatisfiable
- If we have a way to find proofs in propositional logic, we have a way to find them in FOL

Proofs w/ Herbrand & Robinson

- To prove S, put $KB \land \neg S$ in CNF: KB'
- Build subsets of Herbrand universe in increasing order of size: $U_1, U_2, ...$
- \circ Propositionalize KB' w/ U_i , look for proof
- If U_i unsatisfiable, use lifting to get a contradiction in KB'
- \circ If U_i satisfiable, move on to U_{i+1}

Making it faster

- Restrict semantics so we only need to check one finite propositional KB
- Unique names: objects with different names are different (John ≠ Mary)
- **Domain closure**: objects without names given in KB don't exist
- Restrictions also make entailment, validity feasible

Why FOL

What's so special about FOL

- Existence of a sound, complete inference procedure
- Additions to FOL break this procedure
 - although sometimes there's a replacement

Equality

• **Paramodulation** is sound and complete for FOL+equals (see RN)

Second order logic

- SOL adds quantification over predicates
- E.g., principle of mathematical induction:

$$\bullet \quad \forall P. P(0) \land (\forall x. P(x) \Rightarrow P(S(x)))$$

$$\Rightarrow \forall x. P(x)$$

• There is no sound and complete inference procedure for SOL (Gödel's famous incompleteness theorem)

Others

- Temporal logics ("P(x) will be true at some time in the future")
- Modal logics ("John knows P(x)")
- First-class functions (lambda operator, application)

0 ...