15-780: Graduate Al
Lecture 2. Pmofs & F OL

AT T T b A A, Tt GRS P o DA A Ity S L LI e SVt BNty

Geoff Gordon (this lecture)

Tuomas Sandholm
TAs Byron Boots, Sam Ganzfried

Rl e e e Rt Lan et PRI = RSN =N

Admin

Audits

i |l,m" o ._‘- ; . o - " '.""“#'ﬂm*ﬂf#pu.-&“iiih e ke TP Jrrr—— o - _f 2 ' _'m’

o http://lwww.cmu.edu/hub/forms/ESG-AUDIT pdf

- Enrollment Services - The HUB
Carnegie Mellon
ENROLLMENT SERVICES 5000 Forbes Avenue

Pittsburgh, PA 15213-3890
Phone: 412-268-8186

Fax: 412-268-8084

Email: thehub@andrew.cmu.edu
hitp:fvweww.cmu.eduhub

Course Audit Approval Form

STUDENT INFORMATION

Student ID Number:

Student Name: — — —

College: Department:

Semester: FALL SPRING SUMMER-1 SUMMER-2 SUMMER-AIl YEAR 20
Circle One

COURSE INFORMATION

' | i e T e T

Review

What 1s Al?

mwm""“ ;—'ﬁmﬂqﬂt!lﬂ.-h‘ibih-.dihiql- M“-a _.:u“mw

o Lots of examples: poker, driving robots,
RoboCup

o Things that are easy for us to do, but no
obvious algorithm

o Search / optimization /| summation

o Handling uncertainty

Propositional logic

i Ilrmn. . o - l..{,’ﬁﬁ'ﬁﬂ"ﬂ*mﬁ!‘u--hﬁbiﬁ e ke TP e o -y

o Syntax
o variables, constants, operators

o literals, clauses, sentences

o Semantics (model - {T, F})

o Truth tables, how to evaluate formulas

o Satisfiable, valid, contradiction

Propositional logic

i Ilrmn. - ._‘- o - l..{,’ﬁﬁ'ﬁﬂ"ﬂ*mﬁ!‘u--hﬁbiﬁ e ke TP e o -y

o Manipulating formulas (e.g., de Morgan)
o Normal forms (e.g., CNF)
o Tseitin transformation to CNF

o How to translate informally-specified
problems into logic (e.g., 3-coloring)

mwm""“ ;—'ﬁmﬂqﬂt!lﬂ.-h‘ibih-.dihiql- M“-a _.:u“mw

Proofs

Entailment

o Sentence A entails sentence B,A= B, if B
is True in every model where A is

o same as saying that (A = B) is valid

Proof tree

Rl e e e Rt Lan et PRI = RSN =N

o A tree with a formula at each node

o At each internal node, children = parent
o Leaves: assumptions or premises

o Root: consequence

o If we believe assumptions, we should also
believe consequence

10

Proof tree example

SRR B, it G AT Promenie AT Sty o9 e o R o S5Vt s A PTNR o e

i

[QwAS -*‘:5 o2

?bu\rs A OAKS Ae. = f'u_.’?"b

11

Proof by contradiction

mmmﬁ - o Ty e P Bt e ¥ty g R e T] - . .' - = ' . “

o Assume opposite of what we want to
prove, show it leads to a contradiction

o Suppose we want to show KB &= §

o Write KB’ for (KB A —S)

o Build a proof tree with
o assumptions drawn from clauses of KB’
o conclusion = F

o 5o, (KB A =S) = F (contradiction)

12

Proof by contradiction

SRR B, it G AT Promenie AT Sty o9 e o R o S5Vt s A PTNR o e

ks
kS

QNS =) oD

13

Proof by contradiction

PSP TIRE S i, Tt A “.“.“{iﬁi—'““"‘ﬂm!ﬂu--*‘i*‘umqlfﬂﬁa." S - e e L

kS

QNS =) oD \; WU\/S \

?bwr‘iygubk"bf l—-—/rU‘S

CAaNS / |

ONKSA A2 =
_//

—/ r._n*vb

14

PRI B A Tt AT P b DAV e L et L banie . PRSPPI = B SRR T

Inference
rules

Inference rule

e T L tanie . PRSI Eo SRR S

o 1o make a proof tree, we need to be able to
figure out new formulas entailed by KB

o Method for finding entailed formulas =
inference rule

o We’ve implicitly been using one already

16

Modus ponens

Rl e e e Rt Lan et PRI = RSN =N

(anbAac=d) a b c

d

o Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal

o Quantifier-free version:
man(Socrates) A

(man(Socrates) = mortal(Socrates))

17

Another inference rule

WWW,H;%;.-nmwmgpu..u*i-nmun,.;;_ma 4 e o arnai s .- B STl
(a=b) —b
—d

o Modus tollens

o Ifit’s raining the grass is wet; the grass is
not wet, so it's not raining

18

One more...

mwm""“ ;—'ﬁmﬂqﬂt!lﬂ.-h‘ibih-.dihiql- M“-a _.:u“mw

(avbvce) (cvdve)

avbvdyve

o Resolution

o Combines two sentences that contain a
literal and its negation

o Not as commonly known as modus
ponens / tollens

19

Resolution example

- " - -'._,qa”

o Modus ponens / tollens are special cases
o Modus tollens:

(—raining v grass-wet) A ~grass-wet =
—raining

20

Resolution

WWW“‘% o e et SR v e SNt s m%*ﬁﬂamﬂw

(avbvce) (cvdve)

avbvdyve

o Simple proof by case analysis

o Consider separately cases where we
assign ¢ = True and ¢ = False

21

Resolution

(avbvc)n(-cvdve)

o Case c = True

(avbvT)n(Fvdve)
=(T)A(dve)
=(dv e)

22

Resolution

(avbvc)n(-cvdve)

o Case c = False

(avbv F)an(Tvdve)
=(avb)n(T)
=(av b)

23

Resolution

(avbvc)n(-cvdve)

o Since ¢ must be True or False, conclude
(dve)v(avb)

as desired

24

Soundness and completeness

PR TR I i Tt A Prrme o AN S St 1 T I I e e N st e b A B PTNR 13 0 1 i TP Bl i I

o An inference procedure is sound if it can
only conclude things entailed by KB

o common sense; haven't discussed
anything unsound

o A procedure is complete if it can conclude
everything entailed by KB

25

Completeness

mmmﬁ - o Ty e P Bt e ¥ty g R e T] - . .' - = ' . “

o Modus ponens by itself is incomplete

o Resolution is complete for propositional
logic

o not obvious—famous theorem due to
Robinson

o caveat: also need factoring, removal of
redundant literals (av b v a) = (a v b)

26

Variations

e T L s i e L P S

o Horn clause inference (faster)
o Ways of handling uncertainty (slower)
o CSPs (sometimes more convenient)

o Quantifiers / first-order logic

27

Horn clauses

PERBONELIRR A A Ly Tt S BT P B DAY A Tty S % LT AL IR b s PN S st e e PR, 10,0 A i Py e e T R

o Horn clause: (a A b A c=d)
o Equivalently, (—a v =b v —~c Vv d)

o Disjunction of literals, at most one of
which is positive

o Positive literal = head, rest = body

28

Use of Horn clauses

WWMHMC'.{% M St A T e SNt s - Pel gy 10 0 et - .- - - - , “

o People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) A happy(Mary) =
happy(Sue)

o No negative literals in above formula,
again, easier to think about

29

Why are Horn clauses important

PR TR I i Tt A Prrme o AN S St 1 T I I e e N st e b A B PTNR 13 0 1 i TP Bl i I

o Modus ponens alone is complete
o So is modus tollens alone

o Inference in a KB of propositional Horn
clauses is linear

o e.g., by forward chaining

30

Forward chaining

evernthas - - Pt a A Sty S W S S S e SR Rt e gy 1 A et -y

o Look for a clause with all body literals
satisfied

o Add its head to KB (modus ponens)
o Repeat
o See RN for more details

31

Handling uncertainty

. - AR ii—'ﬂ“""“ﬂ'ﬂt!‘“"*"‘i"*ﬁ "“"""-"L""“"R R -

o Fuzzy logic / certainty factors
o simple, but don’t scale
o Nonmonotonic logic
o also doesn’t scale
o Probabilities
o may or may not scale—more later

o Dempster-Shafer (interval probability)

32

Certainty factors

Rl e e e Rt Lan et PRI = RSN =N

o KB assigns a certainty factor in [0, 1] to
each proposition

o Interpret as “degree of belief”

o When applying an inference rule, certainty
factor for consequent is a function of
certainty factors for antecedents (e.g.,
minimum)

33

Problems w/ certainty factors

WWMHMC'.{% M St A T e SNt s - Pel gy 10 0 et - .- - - - , “

o Famously difficult to debug a KB with
certainty factors, because. ..

o it’s hard to separate a large KB into
mostly-independent chunks that interact
only through a well-defined interface,
because...

o certainty factors are not probabilities (i.e.,
do not obey Bayes’ Rule)

34

Nonmonotonic logic

- I ;—-nm~mg!.u.-h*ilbin‘__ﬂhpg,.-M&-&W‘*““ L - S APE JENT Yy e

o Suppose we believe all birds can fly

o Might add a set of sentences to KB
bird(Polly) = flies(Polly)
bird(Tweety) = flies(Tweety)
bird(Tux) = flies(Tux)
bird(John) = flies(John)

35

Nonmonotonic logic

WWMHMC'.{% M St A T e SNt s - Pel gy 10 0 et - .- - - - , “

o Fails if there are penguins in the KB

o Fix: instead, add
bird(Polly) A —mab(Polly) = flies(Polly)
bird(Tux) n —ab(Tux) = flies(Tux)

o ab(Tux) is an “abnormality predicate”

o Need separate abi(x) for each type of rule

36

Nonmonotonic logic

mmmﬁ - I #‘""ﬁH‘q*mﬂ!‘ﬂ"hﬁ,imih‘ql_ A “‘M‘l:““) - .. - . . - “

o Now set as few abnormality predicates as
possible

o Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions

o If we assert —flies(Tux), must now assume
ab(Tux) to maintain consistency

o Can'’t prove flies(Tux) any more, but can
still prove flies(Polly)

37

Nonmonotonic logic

WWMHMC'.{% M St A T e SNt s - Pel gy 10 0 et - .- - - - , “

o Works well as long as we don’t have to
choose between big sets of abnormalities

o 18 it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?

o even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but ...

38

PRI B A Tt AT P b DAV e L et L banie . PRSPPI = B SRR T

First-order
logic

First-order logic

PP TN o M Ly Tt G P Pl AN A5y S 2 Lt IR b SNt 6 A NTNR 4

Bertrand Russell
1872-1970

o So far we’ve been using opaque
vars like rains or happy(John)

o Limits us to statements like “it’s raining” or
“if John is happy then Mary is happy”

o Can’t say “all men are mortal” or “if John
is happy then someone else is happy too”

40

Predicates and objects

mmwmm",‘:% i -, 4. 3 TR L SO P 4 e o arnai s .- B - el

o Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects

o Object = an object in the world

o Predicate = boolean-valued function of
objects

o ZLero-argument predicate x() plays same
role that Boolean variable x did before

41

Distinguished predicates

i Ilrmn. - ._‘- o - l..{,’ﬁﬁ'ﬁﬂ"ﬂ*mﬁ!‘u--hﬁbiﬁ e ke TP e o -y

o We will assume three distinguished
predicates with fixed meanings:

o True/ T, False / F
o Equal(x,y)

o We will also write (x = y) and (x Z)

42

Equality satisfies usual axioms

WWMHMC'.{% M St A T e SNt s - Pel gy 10 0 et - .- - - - , “

o Reflexive, transitive, symmetric

o Substituting equal objects doesn’t change
value of expression

(John = Jonathan) A loves(Mary, John)
= loves(Mary, Jonathan)

43

Functions

mwm""“ ;—'ﬁmﬂqﬂt!lﬂ.-h‘ibih-.dihiql- M“-a _.:u“mw

o Functions map zero or more objects to
another object

o e.g., professor(15-780), last-common-
ancestor(John, Mary)

o Zero-argument function is the same as an
object—John v. John()

44

The nil object

mwm""“ ;—'ﬁmﬂqﬂt!lﬂ.-h‘ibih-.dihiql- M“-a _.:u“mw

o Functions are untyped: must have a value
for any set of arguments

o Typically add a nil object to use as value
when other answers don’t make sense

45

Types of values

i Lo IPRSTRRURISIE P S A 4

o Expressions in propositional logic could
only have Boolean (T/F) values

o Now we have two types of expressions:
object and Boolean

o done(slides(15-780)) =
happy(professor(15-780))

o Functions convert objects to objects;
predicates convert objects to Booleans;
connectives convert Booleans to Booleans

46

Definitions

mwm""“ ;—'ﬁmﬂqﬂt!lﬂ.-h‘ibih-.dihiql- M“-a _.:u“mw

o Term = expression referring to an object

o John

o left-leg-of(father-of(president-of(USA)))
o Atom = predicate applied to objects

o happy(John)

o raining

o at(robot, Wean-5409, 11AM-Wed)

47

Definitions

s T e i i Lutianin” PP S50 WECRPRri TS

o Literal = possibly-negated atom
o happy(John), —happy(John)

o Sentence = literals joined by connectives
like A\V—=

o raining

o done(slides(780)) = happy(professor)

48

Semantics

e | - 0 o - A Tty i P L o N wa o S e ke TP e o -

o Models are now much more complicated
o List of objects (finite or countable)

o Table of function values for each
function mentioned in formula

o Table of predicate values for each
predicate mentioned in formula

o Meaning of sentence: model - {T, F}

o Meaning of term: model — object

49

For example

B T v gty | M by o Bl gl TR
h m L3 g MWWf.Q% - b T g L TR PR e) ”
= . h‘| L0 ; ’ : .r 3 i -

\ et <

KB descrlbmg example

PSP s L, Tt T P St DA STty S I Bt IR e e SN it A o PRy e s AP

o alive(cat)

o ear-of(cat) = ear

o in(cat, box) A in(ear, box)

o =in(box, cat) A —in(cat, nil) ...

o ear-of(box) = ear-of(ear) = ear-of(nil) = nil

o cat # box A cat # ear A cat # nil ...

51

Aside: avoiding verbosity

PEBONELIRR A A Ly Tt S BT P B DAY b Tty S 0 LT AL IR b s PN S st ek A BANR i ki -

o Closed-world assumption: literals not
assigned a value in KB are false

o avoid stating —in(box, cat), etc.

o Unique names assumption: objects with
separate names are separate

o avoid box # cat, cat # ear, ...

APPSR

52

Aside: typed variables

mmmﬁ P AN Tty o W S D R e e Rt s L S aniny P,

- " - :._‘an

o KB also illustrates need for data types

o Don’t want to have to specify ear-of(box)
or —in(cat, nil)

o Could design a type system
o argument of happy() is of type animate

o Function instances which disobey type
rules have value nil

53

Model of example

PR TR I i Tt A Prrme o AN S St 1 T I I e e N st e b A B PTNR 13 0 1 i TP Bl i I

o Objects: C,B, E, N
o Assignments:
o cat: C, box: B, ear: E, nil: N

o ear-of(C): E, ear-of(B): N, ear-of(E): N,
ear-of(N): N

o Predicate values:

o in(C, B), =in(C, C), =in(C, N), ...

54

Failed model

o Objects: C, E, N

o Fails because there’s no way to satisfy
inequality constraints with only 3 objects

55

Another possible model

= - - -'.-!an

e | . o - l..{,,.—,;—'ﬁ“ﬂ'ﬂt!au--h“ilbbn e ke TP S

o Objects: C,B, E, N, X

o Extra object X could have arbitrary
properties since it’s not mentioned in KB

o E.g., X could be its own ear

56

An embarrassment of models

PEBONELIRR A A Ly Tt S BT P B DAY b Tty S 0 LT AL IR b s PN S st ek A BANR i ki -

o In general, can be infinitely many models
o unless KB limits number somehow

o Job of KB is to rule out models that don't
match our idea of the world

o Saw how to rule out CEN model
o Can we rule out CBENX model?

57

Getting rid of extra Ob]@CtS

PO TINE b o Ly Tt GBS Prmerai DA A5y 5= 0 Lt Ky 5V b e e PR o e s T

o Can use quantifiers to rule out CBENX
model.:

Vx.x=catvx=boxVv x=ear v x = nil

o Called a domain closure assumption

58

Quantifiers

HRIIOTEN e A A St AT it et i e PRNESEIRIIEE L £ S M it

o Want “all men are mortal,” or closure
o Add quantifiers and object variables

o Vx.man(x) = mortal(x)

o = dx. lunch(x) A free(x)

o V. no matter how we fill in object
variables, formula is still true

o d: there is some way to fill in object
variables to make formula true

59

Variables

Rl e e e Rt Lan et PRI = RSN =N

o Build atoms from variables x, vy, ... as well as
constants John, Fred, ...

o man(x), loves(John, z), mortal(brother(y))
o Build formulas from these atoms

o man(x) = mortal(brother(x))

o New syntactic construct: term or formula w/
free variables

60

New syntax = new semantics

mmmﬁ - o Ty e P Bt e ¥ty g R e T] - . .' - = ' . “

o New part of model: interpretation
o Maps variables to model objects
o x:C, y. N

o Meaning of a term or formula: look up its
free variables in the interpretation, then
continue as before

o alive(ear(x)) » alive(ear(C)) - alive(E) » T

61

Working with interpretations

Pl . ey ra DY 4 A Ty I SRS IR A e N st men e Ay, A et - W Arn T N

o Write (M / x: obj) for the model which is
just like M except that variable x is
interpreted as the object obj

o M/ x:objis a refinement of M

62

Binding

mmwmm",‘:% i -, 4. 3 TR L SO P 4 e o arnai s .- B - el

o Adding quantifier for x is called binding x
o In (Vx.likes(x,y)), x is bound, y is free

o Can add quantifiers and apply logical
operations like AV = in any order

o But must wind up with ground formula (no
free variables)

63

Semantics of V

o A sentence (Nx.S) is true in M if S is true
in (M / x: obj) for all objects obj in M

64

Example

e T L tanie . PRSI Eo SRR S

o M has objects (A, B, C) and predicate
happy(x) which is true for A, B, C

o Sentence N x. happy(x) is satisfied in M

o since happy(A) is satisfied in M/x:A,
happy(B) in M/x:B, happy(C) in M:x/C

65

Semantics of 3

o A sentence (dx.S) is true in M if there is

some object obj in M such that S is true in
model (M / x: obj)

66

Example

e T L s i e L P S

o M has objects (A, B, C) and predicate
o happy(A) = happy(B) = True
o happy(C) = False
o Sentence dx. happy(x) is satisfied in M
o Since happy(x) is satisfied in, e.g., M/x:B

67

Scoping rules

PR TR I i Tt A Prrme o AN S St 1 T I I e e N st e b A B PTNR 13 0 1 i TP Bl i I

o Portion of formula where quantifier
applies = scope

o Variable is bound by innermost enclosing
scope with matching name

o Two variables in different scopes can have
same name—they are still different vars

68

Scoping examples

PERBONELIRR A A Ly Tt S BT P B DAY A Tty S % LT AL IR b s PN S st e e PR, 10,0 A i Py e e T R

o (Vx. happy(x)) v (Ax. —happy(x))

o Either everyone’s happy, or someone’s
unhappy

o Vx.(raining A outside(x) = (dx. wet(x)))

o The x who is outside may not be the one
who is wet

69

Quantifier nesting

evernthas - - Pt a A Sty S W S S S e SR Rt e gy 1 A et -y

o English sentence “everybody loves
somebody” is ambiguous

o Translates to logical sentences
o Vx.dy. loves(x, y)
o dy. Vx. loves(x, y)

70

PRI B A Tt AT P b DAV e L et L banie . PRSPPI = B SRR T

Reasonmg
in FOL

Entailment, etc.

mm'.*.’“ i e Lt it o vy g S St g Bl gy P - .

o As before, entailment, unsatisfiability,
validity, equivalence, etc. refer to all
possible models

o But now, can’t determine by enumerating
models

o since there could be infinitely many

72

Equivalences

mmmﬁ - o Ty e P Bt e ¥ty g R e T] - . .' - = ' . “

o All transformation rules for propositional
logic still hold

o In addition, there is a “De Morgan’s Law”
for moving negations through quantifiers

-Vx.S = dx. =S
-dx.S = Vx. -5

o And, rules for getting rid of quantifiers

73

Generalizing CNF

srvernsh Sk o STt A Tt o W SR R v o S e gy 1 A et -

o Eliminate =, move -~ in w/ De Morgan

o |but = moves through quantifiers too

o |Get rid of quantifiers (see below)

o Distribute nv, or use Tseitin

74

Do we really need 3?

o dx. happy(x)
o happy(happy_person())

o Vy.dx. loves(y, x)
o Vy.loves(y, loved_one(y))

75

Skolemization

PO IREA B sn Tt AT e T DANT A A Tt 1IN LTSGR R s e S st - o

o Called Skolemization
(after Thoraf Albert

Skolem) | Thoraf Albert olem
1887-1963

o Eliminate 3 using function of arguments of all
enclosing Y quantifiers

76

Do we really need V?

- - - '-'--._,!a-”.-

77

Getting rid of quant1ﬁers

PSP TLIRE A, Ao Tt G Prrr o AT PANT STt 5 0 e AL R s e SVt R SPSOBCSPE-TIP S

o Standardize apart (avoid name collisions)
o Skolemize

o Drop Y (free variables implicitly
universally quantified)

o Terminology: still called “free” even
though quantification is implicit

78

For example

WWW“‘% o e et SR v e SNt s m%*ﬁﬂamﬂw

o Vx.man(x) = mortal(x)
o (—mman(x) v mortal(x))
o Vx. (honest(x) = happy(Diogenes))
o (—honest(y) v happy(Diogenes))
o Vy.dx. loves(y, x)

o loves(z, f(z))

79

Exercise

o (Vx. honest(x)) = happy(Diogenes)

80

PSR A : N S
. A Tt g B oy AT A Tty S W AS AL I fvm S Lt
- R 50,4 i AR Sl i T

Proofs

81

Proofs

oA T #qﬁmﬂqmt!.ﬂ..hﬁbﬁn -q‘*“.-’_ma R . - . » -, .“

o Proofs by contradiction work as before:
o add -~S to KB
o putin CNF
o run resolution

o If we get an empty clause, we’ve proven
S by contradiction

o But, CNF and resolution have changed

82

Generalizing resolution

PR TR I i Tt A Prrme o AN S St 1 T I I e e N st e b A B PTNR 13 0 1 i TP Bl i I

o Propositional: (~av b) nak= b

o FOL:
(mman(x) v mortal(x)) A man(Socrates)
= mortal(Socrates)

o Difference: had to substitute x = Socrates

83

Unification

PSR O i Tt GBS P AT DA ATt S 20 L S I A e SV o it ek A B PINRR 10 0 1w IO Bl i

o Two FOL sentences unify with each other
if there is a way to set their variables so
that they are identical

o man(x), man(Socrates) unify using the
substitution x = Socrates

84

Unification examples

WWWuﬁlﬂ o e et SR v e SNt s i PR -

o loves(x, x), loves(John, y) unify using
x=y=John

o loves(x, x), loves(John, Mary) can’t unify

o loves(uncle(x), y), loves(z, aunt(z)):

85

Unification examples

i Ilrmn. - ._‘- o - l..{,’ﬁﬁ'ﬁﬂ"ﬂ*mﬁ!‘u--hﬁbiﬁ e ke TP e o -y

o loves(x, x), loves(John, y) unify using
x=y=John

o loves(x, x), loves(John, Mary) can’t unify
o loves(uncle(x), y), loves(z, aunt(z)):
o 7z = uncle(x),y = aunt(uncle(x))

o loves(uncle(x), aunt(uncle(x)))

86

Most general unifier

i Ilrmn. - ._‘- o - l..{,’ﬁﬁ'ﬁﬂ"ﬂ*mﬁ!‘u--hﬁbiﬁ e ke TP e o -y

o May be many substitutions that unify two
formulas

o MGU is unique (up to renaming)

o Simple, fast algorithm for finding MGU
(see RN)

87

First-order resolution

WWWuﬁlﬂ o e et SR v e SNt s i PR -

o Given clauses (av bv c), (=c’vdve)
o And a variable substitution V
o If c : Vandc’:V are the same

o Then we can conclude

o (avbvdve):V

88

First-order factoring

i Ilrmn. . o - l..{,’ﬁﬁ'ﬁﬂ"ﬂ*mﬁ!‘u--hﬁbiﬁ e ke TP e o -y

o When removing redundant literals, we
have the option of unifying them first

o Given clause (a v b v c), substitution V
o Ifa :Vandb :V are the same

o Then we can conclude (av c):V

89

Completeness

o First-order resolution (together with first-

order factoring) is sound and complete for
FOL

o Famous theorem

90

' | i e T e T

Completeness

Proof strategy

o We’ll show FOL completeness by reducing
to propositional completeness

92

Propositionalization

WWMHMC'.{% M St A T e SNt s - Pel gy 10 0 et - .- - - - , “

o Given a FOL KB in clause form
o And a set of terms U (for universe)

o We can propositionalize KB under U by
substituting elements of U for free
variables in all combinations

93

o

o

o

o

Propositionalization example

.Wﬁ‘"*"“ i e Lt it o vy g S St g Bl gy P - .

(=man(x) v mortal(x))
mortal(Socrates)

favorite_drink(Socrates) = hemlock

drinks(x, favorite_drink(x))

U = {Socrates, hemlock, Fred}

94

Propositionalization example

MWM - o Ty e P Bt e ¥ty g R e T] - . .' - = ' . “

o (—man(Socrates) v mortal(Socrates))
(—man(Fred) v mortal(Fred))
(—man(hemlock) v mortal(hemlock))

o drinks(Socrates, favorite_drink(Socrates))

drinks(hemlock, favorite_drink(hemlock))
drinks(Fred, favorite_drink(Fred))

o mortal(Socrates) A
favorite_drink(Socrates) = hemlock

95

Choosing a universe

o 1o check a FOL KB, propositionalize it
using some universe U

o Which universe?

- " - -'._,qa”

96

Herbrand Universe

WWMHMC'.{% M St A T e SNt s - Pel gy 10 0 et - .- - - - , “

o Herbrand universe H of formula S:

o

o

o

start with all objects mentioned in S
or synthetic object X if none mentioned

apply all functions mentioned in S to all
combinations of objects in H, add to H

repeat

97

Herbrand Universe

PSSR IR s i, Tt g AT Prmmmaot AT DAV SR Tty 53 LS L S e S stk A PR ey

o E.g., loves(uncle(John), Mary)

o H ={John, Mary, uncle(John),
uncle(Mary), uncle(uncle(John)),
uncle(uncle(Mary)), ...}

- " - -'._10”

98

Herbrand’s theorem

PR TR I i Tt A Prrme o AN S St 1 T I I e e N st e b A B PTNR 13 0 1 i TP Bl i I

o If a FOL KB in clause form is unsatisfiable
o And H is its Herbrand universe

o Then the propositionalized KB is
unsatisfiable for some finite U C H

99

Significance

o This is one half of the equivalence we
want: unsatisfiable FOL KB =

unsatisfiable propositional KB

100

Converse of Herbrand

WWMHMC'.{% M St A T e SNt s - Pel gy 10 0 et - .- - - - , “

o A.J. Robinson proved “lifting lemma’”

o Write PKB for a propositionalization of
KB (under some universe)

o Any resolution proof in PKB corresponds
to a resolution proof in KB

o ...and, if PKB is unsatisfiable, there is a
proof of F (by prop. completeness); so,
lifting it shows KB unsatisfiable

101

Proofs w/ Herbrand & Robinson

APPSR

g L e i i Landania . PP

o So, FOL KB is unsatisfiable if and only if
there is a subset of Herbrand universe

making PKB unsatisfiable

o If we have a way to find proofs in
propositional logic, we have a way to find
them in FOL

102

Proofs w/ Herbrand & Robinson

PRSI A A i Ty A

o

o

T e e - L 3 I L TR e ——_—

APPSR

To prove S, put KB A =S in CNF: KB’

Build subsets of Herbrand universe in
increasing order of size: Uy, U, ...

Propositionalize KB’ w/ Ui, look for proof

If Ui unsatisfiable, use lifting to get a
contradiction in KB’

If U; satisfiable, move on to Ui

103

Making 1t faster

OIS LI B Tt Jr S P P DAST ATty S L L s s S5Vt B PTNCR 1 i Al R

o Restrict semantics so we only need to
check one finite propositional KB

o Unique names: objects with different
names are different (John = Mary)

o Domain closure: objects without names
given in KB don't exist

o Restrictions also make entailment, validity

feasible

104

Rl e e e Rt Lan et PRI = RSN =N

Why FOL

105

What’s so spemal about FOL

PO E IR B U, Tt S AT Prrmer B ST DA T AR St 5= Lt e a e S Vi st e AT g

APPSR

o Existence of a sound, complete inference
procedure

o Additions to FOL break this procedure

o although sometimes there’s a
replacement

106

o Paramodulation is sound and complete
for FOL+equals (see RN)

107

Second order logic

mmmﬁ - o Ty e P Bt e ¥ty g R e T] - . .' - = ' . “

o SOL adds quantification over predicates

o E.g., principle of mathematical induction:

o YP. P(0) A (Vx. P(x) = P(S(x)))
= Vx. P(x)

o There is no sound and complete inference
procedure for SOL (Gddel’s famous
incompleteness theorem)

108

Others

WWW“‘% o e et SR v e SNt s m%*ﬁﬂamﬂw

o Temporal logics (“P(x) will be true at
some time in the future”)

o Modal logics (“John knows P(x)”)

o First-class functions (lambda operator,
application)

109

