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What 1s Al?
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o Lots of examples: poker, driving robots,
RoboCup

o Things that are easy for us to do, but no
obvious algorithm

o Search / optimization /| summation

o Handling uncertainty



Propositional logic
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o Syntax
o variables, constants, operators

o literals, clauses, sentences

o Semantics (model - {T, F})

o Truth tables, how to evaluate formulas

o Satisfiable, valid, contradiction



Propositional logic
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o Manipulating formulas (e.g., de Morgan)
o Normal forms (e.g., CNF)
o Tseitin transformation to CNF

o How to translate informally-specified
problems into logic (e.g., 3-coloring)
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Proofs



Entailment

o Sentence A entails sentence B,A= B, if B
is True in every model where A is

o same as saying that (A = B) is valid



Proof tree
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o A tree with a formula at each node

o At each internal node, children = parent
o Leaves: assumptions or premises

o Root: consequence

o If we believe assumptions, we should also
believe consequence
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Proof tree example
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Proof by contradiction
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o Assume opposite of what we want to
prove, show it leads to a contradiction

o Suppose we want to show KB &= §

o Write KB’ for (KB A —S)

o Build a proof tree with
o assumptions drawn from clauses of KB’
o conclusion = F

o 5o, (KB A =S) = F (contradiction)
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Proof by contradiction
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Proof by contradiction
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Inference rule
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o 1o make a proof tree, we need to be able to
figure out new formulas entailed by KB

o Method for finding entailed formulas =
inference rule

o We’ve implicitly been using one already
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Modus ponens
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(anbAac=d) a b c

d

o Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal

o Quantifier-free version:
man(Socrates) A

(man(Socrates) = mortal(Socrates))
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Another inference rule
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(a=b) —b
—d

o Modus tollens

o Ifit’s raining the grass is wet; the grass is
not wet, so it's not raining
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One more...
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(avbvce) (cvdve)

avbvdyve

o Resolution

o Combines two sentences that contain a
literal and its negation

o Not as commonly known as modus
ponens / tollens
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Resolution example
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o Modus ponens / tollens are special cases
o Modus tollens:

(—raining v grass-wet) A ~grass-wet =
—raining
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Resolution
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(avbvce) (cvdve)

avbvdyve

o Simple proof by case analysis

o Consider separately cases where we
assign ¢ = True and ¢ = False
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Resolution

(avbvc)n(-cvdve)

o Case c = True

(avbvT)n(Fvdve)
=(T)A(dve)
=(dv e)
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Resolution

(avbvc)n(-cvdve)

o Case c = False

(avbv F)an(Tvdve)
=(avb)n(T)
=(av b)

23



Resolution

(avbvc)n(-cvdve)

o Since ¢ must be True or False, conclude
(dve)v(avb)

as desired
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Soundness and completeness
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o An inference procedure is sound if it can
only conclude things entailed by KB

o common sense; haven't discussed
anything unsound

o A procedure is complete if it can conclude
everything entailed by KB
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Completeness
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o Modus ponens by itself is incomplete

o Resolution is complete for propositional
logic

o not obvious—famous theorem due to
Robinson

o caveat: also need factoring, removal of
redundant literals (av b v a) = (a v b)
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Variations
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o Horn clause inference (faster)
o Ways of handling uncertainty (slower)
o CSPs (sometimes more convenient)

o Quantifiers / first-order logic
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Horn clauses
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o Horn clause: (a A b A c=d)
o Equivalently, (—a v =b v —~c Vv d)

o Disjunction of literals, at most one of
which is positive

o Positive literal = head, rest = body
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Use of Horn clauses
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o People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) A happy(Mary) =
happy(Sue)

o No negative literals in above formula,
again, easier to think about
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Why are Horn clauses important
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o Modus ponens alone is complete
o So is modus tollens alone

o Inference in a KB of propositional Horn
clauses is linear

o e.g., by forward chaining

30



Forward chaining
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o Look for a clause with all body literals
satisfied

o Add its head to KB (modus ponens)
o Repeat
o See RN for more details
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Handling uncertainty
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o Fuzzy logic / certainty factors
o simple, but don’t scale
o Nonmonotonic logic
o also doesn’t scale
o Probabilities
o may or may not scale—more later

o Dempster-Shafer (interval probability)
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Certainty factors
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o KB assigns a certainty factor in [0, 1] to
each proposition

o Interpret as “degree of belief”

o When applying an inference rule, certainty
factor for consequent is a function of
certainty factors for antecedents (e.g.,
minimum)
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Problems w/ certainty factors
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o Famously difficult to debug a KB with
certainty factors, because. ..

o it’s hard to separate a large KB into
mostly-independent chunks that interact
only through a well-defined interface,
because...

o certainty factors are not probabilities (i.e.,
do not obey Bayes’ Rule)
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Nonmonotonic logic
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o Suppose we believe all birds can fly

o Might add a set of sentences to KB
bird(Polly) = flies(Polly)
bird(Tweety) = flies(Tweety)
bird(Tux) = flies(Tux)
bird(John) = flies(John)
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Nonmonotonic logic
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o Fails if there are penguins in the KB

o Fix: instead, add
bird(Polly) A —mab(Polly) = flies(Polly)
bird(Tux) n —ab(Tux) = flies(Tux)

o ab(Tux) is an “abnormality predicate”

o Need separate abi(x) for each type of rule

36



Nonmonotonic logic
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o Now set as few abnormality predicates as
possible

o Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions

o If we assert —flies(Tux), must now assume
ab(Tux) to maintain consistency

o Can'’t prove flies(Tux) any more, but can
still prove flies(Polly)
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Nonmonotonic logic
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o Works well as long as we don’t have to
choose between big sets of abnormalities

o 18 it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?

o even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but ...

38
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First-order logic
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Bertrand Russell
1872-1970

o So far we’ve been using opaque
vars like rains or happy(John)

o Limits us to statements like “it’s raining” or
“if John is happy then Mary is happy”

o Can’t say “all men are mortal” or “if John
is happy then someone else is happy too”

40



Predicates and objects
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o Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects

o Object = an object in the world

o Predicate = boolean-valued function of
objects

o ZLero-argument predicate x() plays same
role that Boolean variable x did before

41



Distinguished predicates
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o We will assume three distinguished
predicates with fixed meanings:

o True/ T, False / F
o Equal(x,y)

o We will also write (x = y) and (x Z )

42



Equality satisfies usual axioms

WWMHMC'.{% M St A T e SNt s - Pel gy 10 0 et - .- - - - , “

o Reflexive, transitive, symmetric

o Substituting equal objects doesn’t change
value of expression

(John = Jonathan) A loves(Mary, John)
= loves(Mary, Jonathan)
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Functions
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o Functions map zero or more objects to
another object

o e.g., professor(15-780), last-common-
ancestor(John, Mary)

o Zero-argument function is the same as an
object—John v. John()
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The nil object
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o Functions are untyped: must have a value
for any set of arguments

o Typically add a nil object to use as value
when other answers don’t make sense
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Types of values
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o Expressions in propositional logic could
only have Boolean (T/F) values

o Now we have two types of expressions:
object and Boolean

o done(slides(15-780)) =
happy(professor(15-780))

o Functions convert objects to objects;
predicates convert objects to Booleans;
connectives convert Booleans to Booleans
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Definitions
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o Term = expression referring to an object

o John

o left-leg-of(father-of(president-of(USA)))
o Atom = predicate applied to objects

o happy(John)

o raining

o at(robot, Wean-5409, 11AM-Wed)

47



Definitions
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o Literal = possibly-negated atom
o happy(John), —happy(John)

o Sentence = literals joined by connectives
like A\V—=

o raining

o done(slides(780)) = happy(professor)

48



Semantics
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o Models are now much more complicated
o List of objects (finite or countable)

o Table of function values for each
function mentioned in formula

o Table of predicate values for each
predicate mentioned in formula

o Meaning of sentence: model - {T, F}

o Meaning of term: model — object

49



For example
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KB descrlbmg example
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o alive(cat)

o ear-of(cat) = ear

o in(cat, box) A in(ear, box)

o =in(box, cat) A —in(cat, nil) ...

o ear-of(box) = ear-of(ear) = ear-of(nil) = nil

o cat # box A cat # ear A cat # nil ...
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Aside: avoiding verbosity
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o Closed-world assumption: literals not
assigned a value in KB are false

o avoid stating —in(box, cat), etc.

o Unique names assumption: objects with
separate names are separate

o avoid box # cat, cat # ear, ...

APPSR
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Aside: typed variables
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o KB also illustrates need for data types

o Don’t want to have to specify ear-of(box)
or —in(cat, nil)

o Could design a type system
o argument of happy() is of type animate

o Function instances which disobey type
rules have value nil
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Model of example
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o Objects: C,B, E, N
o Assignments:
o cat: C, box: B, ear: E, nil: N

o ear-of(C): E, ear-of(B): N, ear-of(E): N,
ear-of(N): N

o Predicate values:

o in(C, B), =in(C, C), =in(C, N), ...
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Failed model

o Objects: C, E, N

o Fails because there’s no way to satisfy
inequality constraints with only 3 objects
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Another possible model
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o Objects: C,B, E, N, X

o Extra object X could have arbitrary
properties since it’s not mentioned in KB

o E.g., X could be its own ear

56



An embarrassment of models
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o In general, can be infinitely many models
o unless KB limits number somehow

o Job of KB is to rule out models that don't
match our idea of the world

o Saw how to rule out CEN model
o Can we rule out CBENX model?

57



Getting rid of extra Ob]@CtS
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o Can use quantifiers to rule out CBENX
model.:

Vx.x=catvx=boxVv x=ear v x = nil

o Called a domain closure assumption

58



Quantifiers
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o Want “all men are mortal,” or closure
o Add quantifiers and object variables

o Vx.man(x) = mortal(x)

o = dx. lunch(x) A free(x)

o V. no matter how we fill in object
variables, formula is still true

o d: there is some way to fill in object
variables to make formula true

59



Variables
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o Build atoms from variables x, vy, ... as well as
constants John, Fred, ...

o man(x), loves(John, z), mortal(brother(y))
o Build formulas from these atoms

o man(x) = mortal(brother(x))

o New syntactic construct: term or formula w/
free variables

60



New syntax = new semantics
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o New part of model: interpretation
o Maps variables to model objects
o x:C, y. N

o Meaning of a term or formula: look up its
free variables in the interpretation, then
continue as before

o alive(ear(x)) » alive(ear(C)) - alive(E) » T

61



Working with interpretations
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o Write (M / x: obj) for the model which is
just like M except that variable x is
interpreted as the object obj

o M/ x:objis a refinement of M
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Binding
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o Adding quantifier for x is called binding x
o In (Vx.likes(x,y)), x is bound, y is free

o Can add quantifiers and apply logical
operations like AV = in any order

o But must wind up with ground formula (no
free variables)
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Semantics of V

o A sentence (Nx.S) is true in M if S is true
in (M / x: obj) for all objects obj in M
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Example
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o M has objects (A, B, C) and predicate
happy(x) which is true for A, B, C

o Sentence N x. happy(x) is satisfied in M

o since happy(A) is satisfied in M/x:A,
happy(B) in M/x:B, happy(C) in M:x/C

65



Semantics of 3

o A sentence (dx.S) is true in M if there is

some object obj in M such that S is true in
model (M / x: obj)
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Example
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o M has objects (A, B, C) and predicate
o happy(A) = happy(B) = True
o happy(C) = False
o Sentence dx. happy(x) is satisfied in M
o Since happy(x) is satisfied in, e.g., M/x:B
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Scoping rules
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o Portion of formula where quantifier
applies = scope

o Variable is bound by innermost enclosing
scope with matching name

o Two variables in different scopes can have
same name—they are still different vars
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Scoping examples

PERBONELIRR A A Ly Tt S BT P B DAY A Tty S % LT AL IR b s PN S st e e PR, 10,0 A i Py e e T R

o (Vx. happy(x)) v (Ax. —happy(x))

o Either everyone’s happy, or someone’s
unhappy

o Vx.(raining A outside(x) = (dx. wet(x)))

o The x who is outside may not be the one
who is wet

69



Quantifier nesting
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o English sentence “everybody loves
somebody” is ambiguous

o Translates to logical sentences
o Vx.dy. loves(x, y)
o dy. Vx. loves(x, y)

70
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Entailment, etc.
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o As before, entailment, unsatisfiability,
validity, equivalence, etc. refer to all
possible models

o But now, can’t determine by enumerating
models

o since there could be infinitely many

72



Equivalences
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o All transformation rules for propositional
logic still hold

o In addition, there is a “De Morgan’s Law”
for moving negations through quantifiers

-Vx.S = dx. =S
-dx.S = Vx. -5

o And, rules for getting rid of quantifiers

73



Generalizing CNF
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o Eliminate =, move -~ in w/ De Morgan

o |but = moves through quantifiers too

o |Get rid of quantifiers (see below)

o Distribute nv, or use Tseitin
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Do we really need 3?

o dx. happy(x)
o happy(happy_person())

o Vy.dx. loves(y, x)
o Vy.loves(y, loved_one(y))
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Skolemization
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o Called Skolemization
(after Thoraf Albert

Skolem ) | Thoraf Albert olem
1887-1963

o Eliminate 3 using function of arguments of all
enclosing Y quantifiers
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Do we really need V?

- - - '-'--._,!a-”.-
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Getting rid of quant1ﬁers

PSP TLIRE A, Ao Tt G Prrr o AT PANT STt 5 0 e AL R s e SVt R SPSOBCSPE-TIP S

o Standardize apart (avoid name collisions)
o Skolemize

o Drop Y (free variables implicitly
universally quantified)

o Terminology: still called “free” even
though quantification is implicit
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For example
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o Vx.man(x) = mortal(x)
o (—mman(x) v mortal(x))
o Vx. (honest(x) = happy(Diogenes))
o (—honest(y) v happy(Diogenes))
o Vy.dx. loves(y, x)

o loves(z, f(z))
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Exercise

o (Vx. honest(x)) = happy(Diogenes)
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Proofs
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Proofs
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o Proofs by contradiction work as before:
o add -~S to KB
o putin CNF
o run resolution

o If we get an empty clause, we’ve proven
S by contradiction

o But, CNF and resolution have changed
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Generalizing resolution
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o Propositional: (~av b) nak= b

o FOL:
(mman(x) v mortal(x)) A man(Socrates)
= mortal(Socrates)

o Difference: had to substitute x = Socrates
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Unification
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o Two FOL sentences unify with each other
if there is a way to set their variables so
that they are identical

o man(x), man(Socrates) unify using the
substitution x = Socrates
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Unification examples
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o loves(x, x), loves(John, y) unify using
x=y=John

o loves(x, x), loves(John, Mary) can’t unify

o loves(uncle(x), y), loves(z, aunt(z)):
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Unification examples
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o loves(x, x), loves(John, y) unify using
x=y=John

o loves(x, x), loves(John, Mary) can’t unify
o loves(uncle(x), y), loves(z, aunt(z)):
o 7z = uncle(x),y = aunt(uncle(x))

o loves(uncle(x), aunt(uncle(x)))
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Most general unifier
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o May be many substitutions that unify two
formulas

o MGU is unique (up to renaming)

o Simple, fast algorithm for finding MGU
(see RN)
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First-order resolution
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o Given clauses (av bv c), (=c’vdve)
o And a variable substitution V
o If c : Vandc’:V are the same

o Then we can conclude

o (avbvdve):V
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First-order factoring
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o When removing redundant literals, we
have the option of unifying them first

o Given clause (a v b v c), substitution V
o Ifa :Vandb :V are the same

o Then we can conclude (av c):V
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Completeness

o First-order resolution (together with first-

order factoring) is sound and complete for
FOL

o Famous theorem
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Proof strategy

o We’ll show FOL completeness by reducing
to propositional completeness
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Propositionalization
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o Given a FOL KB in clause form
o And a set of terms U (for universe)

o We can propositionalize KB under U by
substituting elements of U for free
variables in all combinations
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o

o

o

o

Propositionalization example
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(=man(x) v mortal(x))
mortal(Socrates)

favorite_drink(Socrates) = hemlock

drinks(x, favorite_drink(x))

U = {Socrates, hemlock, Fred}
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Propositionalization example
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o (—man(Socrates) v mortal(Socrates))
(—man(Fred) v mortal(Fred))
(—man(hemlock) v mortal(hemlock))

o drinks(Socrates, favorite_drink(Socrates))

drinks(hemlock, favorite_drink(hemlock))
drinks(Fred, favorite_drink(Fred))

o mortal(Socrates) A
favorite_drink(Socrates) = hemlock
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Choosing a universe

o 1o check a FOL KB, propositionalize it
using some universe U

o Which universe?

- " - -'._,qa”
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Herbrand Universe
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o Herbrand universe H of formula S:

o

o

o

start with all objects mentioned in S
or synthetic object X if none mentioned

apply all functions mentioned in S to all
combinations of objects in H, add to H

repeat
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Herbrand Universe
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o E.g., loves(uncle(John), Mary)

o H ={John, Mary, uncle(John),
uncle(Mary), uncle(uncle(John)),
uncle(uncle(Mary)), ...}

- " - -'._10”
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Herbrand’s theorem
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o If a FOL KB in clause form is unsatisfiable
o And H is its Herbrand universe

o Then the propositionalized KB is
unsatisfiable for some finite U C H
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Significance

o This is one half of the equivalence we
want: unsatisfiable FOL KB =

unsatisfiable propositional KB
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Converse of Herbrand
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o A.J. Robinson proved “lifting lemma’”

o Write PKB for a propositionalization of
KB (under some universe)

o Any resolution proof in PKB corresponds
to a resolution proof in KB

o ...and, if PKB is unsatisfiable, there is a
proof of F (by prop. completeness); so,
lifting it shows KB unsatisfiable

101



Proofs w/ Herbrand & Robinson

APPSR
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o So, FOL KB is unsatisfiable if and only if
there is a subset of Herbrand universe

making PKB unsatisfiable

o If we have a way to find proofs in
propositional logic, we have a way to find
them in FOL
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Proofs w/ Herbrand & Robinson

PRSI A A i Ty A

o
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APPSR

To prove S, put KB A =S in CNF: KB’

Build subsets of Herbrand universe in
increasing order of size: Uy, U, ...

Propositionalize KB’ w/ Ui, look for proof

If Ui unsatisfiable, use lifting to get a
contradiction in KB’

If U; satisfiable, move on to Ui
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Making 1t faster
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o Restrict semantics so we only need to
check one finite propositional KB

o Unique names: objects with different
names are different (John = Mary)

o Domain closure: objects without names
given in KB don't exist

o Restrictions also make entailment, validity

feasible
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Why FOL
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What’s so spemal about FOL
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APPSR

o Existence of a sound, complete inference
procedure

o Additions to FOL break this procedure

o although sometimes there’s a
replacement
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o Paramodulation is sound and complete
for FOL+equals (see RN)
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Second order logic
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o SOL adds quantification over predicates

o E.g., principle of mathematical induction:

o YP. P(0) A (Vx. P(x) = P(S(x)))
= Vx. P(x)

o There is no sound and complete inference
procedure for SOL (Gddel’s famous
incompleteness theorem)
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Others
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o Temporal logics (“P(x) will be true at
some time in the future”)

o Modal logics (“John knows P(x)”)

o First-class functions (lambda operator,
application)
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