
15-780: Graduate AI
Lecture 2. Proofs & FOL

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Byron Boots, Sam Ganzfried

1

Admin

2

Audits

http://www.cmu.edu/hub/forms/ESG-AUDIT.pdf

3

Matlab tutorial

When is good?

4

Review

5

What is AI?

Lots of examples: poker, driving robots,
RoboCup
Things that are easy for us to do, but no
obvious algorithm
Search / optimization / summation
Handling uncertainty

6

Propositional logic

Syntax
variables, constants, operators
literals, clauses, sentences

Semantics (model ↦ {T, F})

Truth tables, how to evaluate formulas
Satisfiable, valid, contradiction

7

Propositional logic

Manipulating formulas (e.g., de Morgan)
Normal forms (e.g., CNF)
Tseitin transformation to CNF
How to translate informally-specified
problems into logic (e.g., 3-coloring)

8

Compositional
Semantics

9

Semantics

Recall: meaning of a formula is a function
models ↦ {T, F}

Why this choice? So that meanings are
compositional
Write [α] for meaning of formula α
[α ∧ β](M) = f(M) = [α](M) ∧ [β](M)

Similarly for ∨, ¬, etc.

10

Structural induction

Why are compositional semantics useful?
Can prove properties of FOL formulas by
induction on their parse trees
Prove property P holds for all atoms
Then show that P(α), P(β) imply P(α∧β),
P(α∨β), P(¬α) for arbitrary formulas α, β

11

Proofs

12

Entailment

Sentence A entails sentence B, A ⊨ B, if B
is True in every model where A is

same as saying that (A ⇒ B) is valid

13

Proof tree

A tree with a formula at each node
At each internal node, children ⊨ parent

Leaves: assumptions or premises
Root: consequence
If we believe assumptions, we should also
believe consequence

14

Proof tree example

15

Proof tree example

16

Proof tree example

17

Proof by contradiction

Assume opposite of what we want to
prove, show it leads to a contradiction
Suppose we want to show KB ⊨ S

Write KB’ for (KB ∧ ¬S)

Build a proof tree with
assumptions drawn from clauses of KB’
conclusion = F
so, (KB ∧ ¬S) ⊨ F (contradiction)

18

Proof by contradiction

19

Proof by contradiction

20

Inference
rules

21

Inference rule

To make a proof tree, we need to be able to
figure out new formulas entailed by KB
Method for finding entailed formulas =
inference rule
We’ve implicitly been using one already

22

Modus ponens

Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal
Quantifier-free version:
man(Socrates) ∧

(man(Socrates) ⇒ mortal(Socrates))

d
(a ∧ b ∧ c ⇒ d) a b c

23

Another inference rule

Modus tollens
If it’s raining the grass is wet; the grass is
not wet, so it’s not raining

¬a
(a ⇒ b) ¬b

24

One more…

(a ∨ b ∨ c) (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e

Resolution
Combines two sentences that contain a
literal and its negation
Not as commonly known as modus
ponens / tollens

25

Resolution example

Modus ponens / tollens are special cases
Modus tollens:
(¬raining ∨ grass-wet) ∧ ¬grass-wet ⊨
¬raining

26

Resolution

Simple proof by case analysis
Consider separately cases where we
assign c = True and c = False

(a ∨ b ∨ c) (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e

27

Resolution case analysis

28

Soundness and completeness

An inference procedure is sound if it can
only conclude things entailed by KB

common sense; haven’t discussed
anything unsound

A procedure is complete if it can conclude
everything entailed by KB

29

Completeness

Modus ponens by itself is incomplete
Resolution is complete for propositional
logic

not obvious—famous theorem due to
Robinson
caveat: also need factoring, removal of
redundant literals (a ∨ b ∨ a) ⊨ (a ∨ b)

30

Variations

Horn clause inference (faster)
Ways of handling uncertainty (slower)
CSPs (sometimes more convenient)
Quantifiers / first-order logic

31

Horn clauses

Horn clause: (a ∧ b ∧ c ⇒ d)

Equivalently, (¬a ∨ ¬b ∨ ¬c ∨ d)

Disjunction of literals, at most one of
which is positive
Positive literal = head, rest = body

32

Use of Horn clauses

People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) ∧ happy(Mary) ⇒
happy(Sue)

No negative literals in above formula;
again, easier to think about

33

Why are Horn clauses important

Modus ponens alone is complete
So is modus tollens alone
Inference in a KB of propositional Horn
clauses is linear

e.g., by forward chaining

34

Forward chaining

Look for a clause with all body literals
satisfied
Add its head to KB (modus ponens)
Repeat
See RN for more details

35

Handling uncertainty

Fuzzy logic / certainty factors
simple, but don’t scale

Nonmonotonic logic
also doesn’t scale

Probabilities
may or may not scale—more later
Dempster-Shafer (interval probability)

36

Certainty factors

KB assigns a certainty factor in [0, 1] to
each proposition
Interpret as “degree of belief”
When applying an inference rule, certainty
factor for consequent is a function of
certainty factors for antecedents (e.g.,
minimum)

37

Problems w/ certainty factors

Famously difficult to debug a KB with
certainty factors, because…
it’s hard to separate a large KB into
mostly-independent chunks that interact
only through a well-defined interface,
because…
certainty factors are not probabilities (i.e.,
do not obey Bayes’ Rule)

38

Nonmonotonic logic

Suppose we believe all birds can fly
Might add a set of sentences to KB

bird(Polly) ⇒ flies(Polly)

bird(Tweety) ⇒ flies(Tweety)

bird(Tux) ⇒ flies(Tux)
bird(John) ⇒ flies(John)

…
39

Nonmonotonic logic

Fails if there are penguins in the KB
Fix: instead, add

bird(Polly) ∧ ¬ab(Polly) ⇒ flies(Polly)

bird(Tux) ∧ ¬ab(Tux) ⇒ flies(Tux)

…
ab(Tux) is an “abnormality predicate”
Need separate abi(x) for each type of rule

40

Nonmonotonic logic

Now set as few abnormality predicates as
possible
Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions
If we assert ¬flies(Tux), must now assume
ab(Tux) to maintain consistency
Can’t prove flies(Tux) any more, but can
still prove flies(Polly)

41

Nonmonotonic logic

Works well as long as we don’t have to
choose between big sets of abnormalities

is it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?
even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but …

42

First-order
logic

43

First-order logic

So far we’ve been using opaque
vars like rains or happy(John)
Limits us to statements like “it’s raining” or
“if John is happy then Mary is happy”
Can’t say “all men are mortal” or “if John
is happy then someone else is happy too”

Bertrand Russell
1872-1970

44

Predicates and objects

Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects
Object = an object in the world
Predicate = boolean-valued function of
objects
Zero-argument predicate x() plays same
role that Boolean variable x did before

45

Distinguished predicates

We will assume three distinguished
predicates with fixed meanings:

True / T, False / F
Equal(x, y)

We will also write (x = y) and (x ≠ y)

46

Equality satisfies usual axioms

Reflexive, transitive, symmetric
Substituting equal objects doesn’t change
value of expression

(John = Jonathan) ∧ loves(Mary, John)
⇒ loves(Mary, Jonathan)

47

Functions

Functions map zero or more objects to
another object

e.g., professor(15-780), last-common-
ancestor(John, Mary)

Zero-argument function is the same as an
object—John v. John()

48

The nil object

Functions are untyped: must have a value
for any set of arguments
Typically add a nil object to use as value
when other answers don’t make sense

49

Types of values

Expressions in propositional logic could
only have Boolean (T/F) values
Now we have two types of expressions:
object and Boolean

done(slides(15-780)) ⇒
happy(professor(15-780))

Functions convert objects to objects;
predicates convert objects to Booleans;
connectives convert Booleans to Booleans

50

Definitions

Term = expression referring to an object
John
left-leg-of(father-of(president-of(USA)))

Atom = predicate applied to objects
happy(John)
raining
at(robot, Wean-5409, 11AM-Wed)

51

Definitions

Literal = possibly-negated atom
happy(John), ¬happy(John)

Sentence = literals joined by connectives
like ∧∨¬⇒

raining
done(slides(780)) ⇒ happy(professor)

52

Semantics

Models are now much more complicated
List of objects (finite or countable)
Table of function values for each
function mentioned in formula
Table of predicate values for each
predicate mentioned in formula

Meaning of sentence: model ↦ {T, F}

Meaning of term: model ↦ object
53

For example

54

KB describing example

alive(cat)
ear-of(cat) = ear
in(cat, box) ∧ in(ear, box)

¬in(box, cat) ∧ ¬in(cat, nil) …

ear-of(box) = ear-of(ear) = ear-of(nil) = nil
cat ≠ box ∧ cat ≠ ear ∧ cat ≠ nil …

55

Aside: avoiding verbosity

Closed-world assumption: literals not
assigned a value in KB are false

avoid stating ¬in(box, cat), etc.
Unique names assumption: objects with
separate names are separate

avoid box ≠ cat, cat ≠ ear, …

56

Aside: typed variables

KB also illustrates need for data types
Don’t want to have to specify ear-of(box)
or ¬in(cat, nil)

Could design a type system
argument of happy() is of type animate

Function instances which disobey type
rules have value nil

57

Model of example

Objects: C, B, E, N
Assignments:

cat: C, box: B, ear: E, nil: N
ear-of(C): E, ear-of(B): N, ear-of(E): N,
ear-of(N): N

Predicate values:
in(C, B), ¬in(C, C), ¬in(C, N), …

58

Failed model

Objects: C, E, N
Fails because there’s no way to satisfy
inequality constraints with only 3 objects

59

Another possible model

Objects: C, B, E, N, X
Extra object X could have arbitrary
properties since it’s not mentioned in KB
E.g., X could be its own ear

60

An embarrassment of models

In general, can be infinitely many models
unless KB limits number somehow

Job of KB is to rule out models that don’t
match our idea of the world
Saw how to rule out CEN model
Can we rule out CBENX model?

61

Getting rid of extra objects

Can use quantifiers to rule out CBENX
model:
∀x. x = cat ∨ x = box ∨ x = ear ∨ x = nil

Called a domain closure assumption

62

Quantifiers

Want “all men are mortal,” or closure
Add quantifiers and object variables
∀x. man(x) ⇒ mortal(x)

¬∃x. lunch(x) ∧ free(x)

∀: no matter how we fill in object
variables, formula is still true
∃: there is some way to fill in object
variables to make formula true

63

Variables

Build atoms from variables x, y, … as well as
constants John, Fred, …

man(x), loves(John, z), mortal(brother(y))
Build formulas from these atoms

man(x) ⇒ mortal(brother(x))

New syntactic construct: term or formula w/
free variables

64

New syntax ⇒ new semantics

New part of model: interpretation
Maps variables to model objects

x: C, y: N
Meaning of a term or formula: look up its
free variables in the interpretation, then
continue as before
alive(ear(x)) ↦ alive(ear(C)) ↦ alive(E) ↦ T

65

Working with interpretations

Write (M / x: obj) for the model which is
just like M except that variable x is
interpreted as the object obj
M / x: obj is a refinement of M

66

Binding

Adding quantifier for x is called binding x
In (∀x. likes(x, y)), x is bound, y is free

Can add quantifiers and apply logical
operations like ∧∨¬ in any order

But must eventually wind up with ground
formula (no free variables)

67

Semantics of ∀

A sentence (∀x. S) is true in M if S is true
in (M / x: obj) for all objects obj in M

68

Example

M has objects (A, B, C) and predicate
happy(x) which is true for A, B, C
Sentence ∀x. happy(x) is satisfied in M

since happy(A) is satisfied in M/x:A,
happy(B) in M/x:B, happy(C) in M:x/C

69

Semantics of ∃

A sentence (∃x. S) is true in M if there is
some object obj in M such that S is true in
model (M / x: obj)

70

Example

M has objects (A, B, C) and predicate
happy(A) = happy(B) = True
happy(C) = False

Sentence ∃x. happy(x) is satisfied in M

Since happy(x) is satisfied in, e.g., M/x:B

71

Scoping rules

Portion of formula where quantifier
applies = scope
Variable is bound by innermost enclosing
scope with matching name
Two variables in different scopes can have
same name—they are still different vars

72

Scoping examples

(∀x. happy(x)) ∨ (∃x. ¬happy(x))

Either everyone’s happy, or someone’s
unhappy

∀x. (raining ∧ outside(x) ⇒ (∃x. wet(x)))

The x who is outside may not be the one
who is wet

73

Quantifier nesting

English sentence “everybody loves
somebody” is ambiguous
Translates to logical sentences
∀x. ∃y. loves(x, y)

∃y. ∀x. loves(x, y)

74

Reasoning
in FOL

75

Entailment, etc.

As before, entailment, unsatisfiability,
validity, equivalence, etc. refer to all
possible models
But now, can’t determine by enumerating
models

since there could be infinitely many

76

Equivalences

All transformation rules for propositional
logic still hold
In addition, there is a “De Morgan’s Law”
for moving negations through quantifiers

¬∀x. S ≡ ∃x. ¬S

¬∃x. S ≡ ∀x. ¬S

And, rules for getting rid of quantifiers

77

Generalizing CNF

Eliminate ⇒, move ¬ in w/ De Morgan

but ¬ moves through quantifiers too

Get rid of quantifiers (see below)
Distribute ∧∨, or use Tseitin

78

Do we really need ∃?

∃x. happy(x)

happy(happy_person())

∀y. ∃x. loves(y, x)

∀y. loves(y, loved_one(y))

79

Skolemization

Called Skolemization
(after Thoraf Albert
Skolem) Thoraf Albert Skolem

1887–1963

Eliminate ∃ by substituting a function of
arguments of all enclosing ∀ quantifiers

Make sure to use a new name!

80

Do we really need ∀?

∀x. happy(x) ∧ ∀y. takes(y, CS780)

happy(x) ∧ takes(y, CS780)

81

Getting rid of quantifiers

Standardize apart (avoid name collisions)
Skolemize
Drop ∀ (free variables implicitly
universally quantified)
Terminology: still called “free” even
though quantification is implicit

82

For example

∀x. man(x) ⇒ mortal(x)

(¬man(x) ∨ mortal(x))

∀x. (honest(x) ⇒ happy(Diogenes))
(¬honest(y) ∨ happy(Diogenes))

∀y. ∃x. loves(y, x)

loves(z, f(z))

83

Exercise

(∀x. honest(x)) ⇒ happy(Diogenes)

84

Exercise

85

