
15-780: Graduate AI
Lecture 1. Intro & Logic

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Byron Boots, Sam Ganzfried

1

Admin

2

http://www.cs.cmu.edu/~ggordon/780/
http://www.cs.cmu.edu/~sandholm/cs15-780S09/

3

http://www.cs.cmu.edu/~ggordon/780/
http://www.cs.cmu.edu/~ggordon/780/
http://www.cs.cmu.edu/~sandholm/cs15-780S09/
http://www.cs.cmu.edu/~sandholm/cs15-780S09/

Website highlights

Book: Russell and Norvig. Artificial
Intelligence: A Modern Approach, 2nd ed.
Grading: 4–5 HWs, “mid”term, project
Project: proposal, 2 interim reports, final
report, poster
Office hours

4

Website highlights

Authoritative source for readings, HWs
Please check the website regularly for
readings (for Lec. 1–3, Russell & Norvig
Chapters 7–9)

5

Background

No prerequisites
But, suggest familiarity with at least some
of the following:

Linear algebra
Calculus
Algorithms & data structures
Complexity theory

6

Waitlist, Audits

If you need us to approve something, send
us email

7

Course email list

15780students@…
domain mailman.srv.cs.cmu.edu
To subscribe/unsubscribe:

email 15780students-request@…
word “help” in subject or body

8

Matlab

Should all have access to Matlab via
school computers

Those with access to CS license servers,
please use if possible
Limited number of Andrew licenses

Tutorial TBA soon
HWs: please use C, C++, Java, or Matlab

9

Intro

10

What is AI?

11

What is AI?

Easy part: A

11

What is AI?

Easy part: A
Hard part: I

11

What is AI?

Easy part: A
Hard part: I

Anything we don’t know how to make a
computer do yet

11

What is AI?

Easy part: A
Hard part: I

Anything we don’t know how to make a
computer do yet
Corollary: once we do it, it isn’t AI
anymore :-)

11

Definition by examples

Card games
Poker
Bridge

Board games
Deep Blue
TD-Gammon
Samuels’s checkers player

12

Web search

13

Web search, cont’d

14

Recommender systems

15

from http://www.math.wpi.edu/IQP/BVCalcHist/calctoc.html

Computer algebra systems

16

http://www.math.wpi.edu/IQP/BVCalcHist/calctoc.html
http://www.math.wpi.edu/IQP/BVCalcHist/calctoc.html

Grand Challenge road race

17

Getting from A to B

ITA software (http://beta.itasoftware.com)

18

http://beta.itasoftware.com
http://beta.itasoftware.com

Robocup

19

Kidney exchange

In US, ≥ 50,000/yr get lethal kidney disease

Cure = transplant, but donor must be
compatible (blood type, tissue type, etc.)

Wait list for cadaver kidneys: 2–5 years

Live donors: have 2 kidneys, can survive w/ 1

Illegal to buy/sell, but altruists/friends/family
donate

20

Kidney Exchange

Patient

Donor

Pair 1

Patient

Donor

Pair 2

21

Kidney Exchange

Patient

Donor

Pair 1

Patient

Donor

Pair 2

21

Optimization: cycle cover

Cycle length constraint => extremely hard (NP-complete)
combinatorial optimization problem

National market predicted to have 10,000 patients at any one time

22

Optimization performance

Our algorithm

CPLEX
Sandholm et al.ʼs

23

More examples

Motor skills: riding a bicycle, learning to
walk, playing pool, …
Vision

24

More examples

Valerie and Tank, the
Roboceptionists
Social skills: attending
a party, giving
directions, …

25

http://www.post-gazette.com/pg/04050/274887.stm
http://www.post-gazette.com/pg/04050/274887.stm

More examples

Natural language
Speech recognition

26

Common threads

Finding the needle in the haystack
Search
Optimization
Summation / integration

Set the problem up well (so that we can
apply a standard algorithm)

27

Common threads

Managing uncertainty
chance outcomes (e.g., dice)
sensor uncertainty (“hidden state”)
opponents

The more different types of uncertainty, the
harder the problem (and the slower the
solution)

28

Classic AI

No uncertainty, pure search
Mathematica
deterministic planning
Sudoku

This is the topic of Part I of the course

http://www.cs.ualberta.ca/~aixplore/search/IDA/Applet/SearchApplet.html

29

http://www.cs.ualberta.ca/~aixplore/search/IDA/Applet/SearchApplet.html
http://www.cs.ualberta.ca/~aixplore/search/IDA/Applet/SearchApplet.html

Classic AI

No uncertainty, pure search
Mathematica
deterministic planning
Sudoku

This is the topic of Part I of the course

http://www.cs.ualberta.ca/~aixplore/search/IDA/Applet/SearchApplet.html

29

http://www.cs.ualberta.ca/~aixplore/search/IDA/Applet/SearchApplet.html
http://www.cs.ualberta.ca/~aixplore/search/IDA/Applet/SearchApplet.html

Outcome uncertainty

In backgammon, don’t know ahead of time
what the dice will show
When driving down a corridor, wheel
slippage causes unexpected deviations
Open a door, find out what’s behind it
MDPs (later)

30

Sensor uncertainty

For given set of immediate measurements,
multiple world states may be possible
Image of a handwritten digit → 0, 1, …, 9

Image of room → person locations,
identities
Laser rangefinder scan of a corridor →
map, robot location

31

Sensor uncertainty example

32

Opponents cause uncertainty

In chess, must guess what opponent will
do; cannot directly control him/her
Alternating moves (game trees)

not really uncertain (Part I)
Simultaneous or hidden moves: game
theory (later)

33

Other agents cause uncertainty

In many AI problems, there are other
agents who aren’t (necessarily) opponents

Ignore them & pretend part of Nature
Assume they’re opponents (pessimistic)
Learn to cope with what they do
Try to convince them to cooperate
(paradoxically, this is the hardest case)

More later
34

Logic

35

Why logic?

Search: for problems like Sudoku, can
write compact description of rules
Reasoning: figure out consequences of the
knowledge we’ve given our agent
… and, logical inference is a special case
of probabilistic inference

36

Propositional logic

Constants: T or F
Variables: x, y (values T or F)
Connectives: ∧, ∨, ¬

Can get by w/ just NAND
Sometimes also add others:
⊕, ⇒, ⇔, …

George Boole
1815–1864

37

Propositional logic

Build up expressions like ¬x ⇒ y

Precedence: ¬, ∧, ∨, ⇒

Terminology: variable or constant with or
w/o negation = literal
Whole thing = formula or sentence

38

Expressive variable names

Rather than variable names like x, y, may
use names like “rains” or “happy(John)”
For now, “happy(John)” is just a string
with no internal structure

there is no “John”
happy(John) ⇒ ¬happy(Jack) means
the same as x ⇒ ¬y

39

But what does it mean?

A formula defines a mapping
(assignment to variables) ↦ {T, F}

Assignment to variables = model
For example, formula ¬x yields mapping:

x ¬x

T F

F T
40

Questions about models and
sentences

How many models make a sentence true?
A sentence is satisfiable if it is True in
some model
If not satisfiable, it is a contradiction
(False in every model)
A sentence is valid if it is True in every
model (called a tautology)

41

How is the variable X set in {some, all}
true models?
This is the most frequent question an agent
would ask: given my assumptions, can I
conclude X? Can I rule X out?

Questions about models and
sentences

42

More truth tables

x y x ∧ y

T T T

T F F

F T F

F F F

x y x ∨ y

T T T

T F T

F T T

F F F

43

Truth table for implication

(a ⇒ b) is logically equivalent
to (¬a ∨ b)

If a is True, b must be True too

If a False, no requirement on b

E.g., “if I go to the movie I will
have popcorn”: if no movie,
may or may not have popcorn

a b a ⇒ b

T T T

T F F

F T T

F F T

44

Complex formulas

To evaluate a bigger formula
(x ∨ y) ∧ (x ∨ ¬y) when x = F, y = F

Build a parse tree
Fill in variables at
leaves using model
Work upwards using
truth tables for
connectives

45

Another example

(x ∨ y) ⇒ z x = F, y = T, z = F

46

Example

47

3-coloring

48

http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html

Sudoku

49

http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html
http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html

Minesweeper
“Minesweeper” CSP

V = { v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 }, D = { B (bomb) , S (space) }

C = { (v1,v2) : { (B , S) , (S,B) } ,(v1,v2,v3) : { (B,S,S) , (S,B,S) , (S,S,B)},...}

0 0

0 0

0 0

1

1

1

211

v1

v2

v3

v4

v5v6v7v8

v1

v2

v3

v4

v5
v6

v7

v8

The Waltz algorithm

One of the earliest examples of a computation posed as a CSP.

The Waltz algorithm is for interpreting line drawings of solid
polyhedra.

Adjacent intersections impose constraints on each other. Use CSP
to find a unique set of labelings. Important step to
“understanding” the image.

Look at all intersections.

What kind of intersection could this
be? A concave intersection of three

faces? Or an external convex inter
section?

Waltz Alg. on simple scenes

Assume all objects:

• Have no shadows or cracks
• Three-faced vertices
• “General position”: no junctions change with small

movements of the eye.

Then each line on image is one of the following:

• Boundary line (edge of an object) (<) with right hand of
arrow denoting “solid” and left hand denoting “space”

• Interior convex edge (+)
• Interior concave edge (-)

+

++
+

 18 legal kinds of junctions

Given a representation of the diagram, label each junction in one of the above manners.

The junctions must be labelled so that lines are labelled consistently at both ends.

Can you formulate that as a CSP? FUN FACT : Constra int Propagat ion a lways works perfec t ly .

+

+

+

++

+

+

+

++

-

-
--

--

-

-
--

-

-

image courtesy Andrew Moore
50

Propositional planning

init: have(cake)
goal: have(cake), eaten(cake)
eat(cake):

 pre: have(cake)

 eff: -have(cake), eaten(cake)
bake(cake):

 pre: -have(cake)

 eff: have(cake)

51

Scheduling (e.g., of factory production)
Facility location
Circuit layout
Multi-robot planning

Important issue: handling uncertainty

Other important logic problems

52

Working with
formulas

53

Truth tables get big fast

x y z (x ∨ y) ⇒ z
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

54

Truth tables get big fast

x y z a (x ∨ y ∨ a) ⇒ z
T T T T
T T F T
T F T T
T F F T
F T T T
F T F T
F F T T
F F F T
T T T F
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

55

Definitions

Two sentences are equivalent, A ≡ B, if
they have same truth value in every model

(rains ⇒ pours) ≡ (¬rains ∨ pours)

reflexive, transitive, commutative
Simplifying = transforming a formula into
a shorter*, equivalent formula

56

Transformation rules
210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β, γ are arbitrary formulas

210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

57

More rules

210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β are arbitrary formulas

58

Still more rules…

… can be derived from truth tables
For example:

(a ∨ ¬a) ≡ True

(True ∨ a) ≡ True

(False ∧ a) ≡ False

59

Example

(a ∨ ¬b) ∧ (a ∨ ¬c) ∧ (¬(b ∨ c) ∨ ¬a)

60

Normal
Forms

61

Normal forms

A normal form is a standard way of
writing a formula
E.g., conjunctive normal form (CNF)

conjunction of disjunctions of literals
(x ∨ y ∨ ¬z) ∧ (x ∨ ¬y) ∧ (z)

Each disjunct called a clause
Any formula can be transformed into CNF
w/o changing meaning

62

CNF cont’d

Often used for storage of knowledge database
called knowledge base or KB

Can add new clauses as we find them out
Each clause in KB is separately true (if KB is)

happy(John) ∧
(¬happy(Bill) ∨ happy(Sue)) ∧
man(Socrates) ∧
(¬man(Socrates) ∨ mortal(Socrates))

63

Another normal form: DNF

DNF = disjunctive normal form =
disjunction of conjunctions of literals
Doesn’t compose the way CNF does: can’t
just add new conjuncts w/o changing
meaning of KB
Example:

(rains ∨ ¬pours) ∧ fishing
≡

(rains ∧ fishing) ∨ (¬pours ∧ fishing)
64

Transforming to CNF or DNF

Naive algorithm:
replace all connectives with ∧∨¬

move negations inward using De
Morgan’s laws and double-negation
repeatedly distribute over ∧ over ∨ for
DNF (∨ over ∧ for CNF)

65

Example

Put the following formula in CNF

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)

66

Example

Now try DNF

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)

67

Discussion

Problem with naive algorithm: it’s
exponential! (Space, time, size of result.)
Each use of distributivity can almost
double the size of a subformula

68

A smarter transformation

Can we avoid exponential blowup in
CNF?
Yes, if we’re willing to introduce new
variables
G. Tseitin. On the complexity of
derivation in propositional calculus.
Studies in Constrained Mathematics and
Mathematical Logic, 1968.

69

Tseitin example

Put the following formula in CNF:
(a ∧ b) ∨ ((c ∨ d) ∧ e)

Parse tree:

70

Tseitin transformation

Introduce temporary variables
x = (a ∧ b)

y = (c ∨ d)

z = (y ∧ e)

71

Tseitin transformation

To ensure x = (a ∧ b), want

x ⇒ (a ∧ b)

(a ∧ b) ⇒ x

72

Tseitin transformation

x ⇒ (a ∧ b)

(¬x ∨ (a ∧ b))

(¬x ∨ a) ∧ (¬x ∨ b)

73

Tseitin transformation

(a ∧ b) ⇒ x

(¬(a ∧ b) ∨ x)

(¬a ∨ ¬b ∨ x)

74

Tseitin transformation

To ensure y = (c ∨ d), want

y ⇒ (c ∨ d)

(c ∨ d) ⇒ y

75

Tseitin transformation

y ⇒ (c ∨ d)

(¬y ∨ c ∨ d)

(c ∨ d) ⇒ y
((¬c ∧ ¬d) ∨ y)

(¬c ∨ y) ∧ (¬d ∨ y)

76

Tseitin transformation

Finally, z = (y ∧ e)

z ⇒ (y ∧ e) ≡ (¬z ∨ y) ∧ (¬z ∨ e)

(y ∧ e) ⇒ z ≡ (¬y ∨ ¬e ∨ z)

77

Tseitin end result

(a ∧ b) ∨ ((c ∨ d) ∧ e) ≡

(¬x ∨ a) ∧ (¬x ∨ b) ∧ (¬a ∨ ¬b ∨ x) ∧

(¬y ∨ c ∨ d) ∧ (¬c ∨ y) ∧ (¬d ∨ y) ∧
(¬z ∨ y) ∧ (¬z ∨ e) ∧ (¬y ∨ ¬e ∨ z) ∧

(x ∨ z)

78

Proofs

79

Entailment

Sentence A entails sentence B, A ⊨ B, if B
is True in every model where A is

same as saying that (A ⇒ B) is valid

80

Proof tree

A tree with a formula at each node
At each internal node, children ⊨ parent

Leaves: assumptions or premises
Root: consequence
If we believe assumptions, we should also
believe consequence

81

Proof tree example

82

Proof by contradiction

Assume opposite of what we want to
prove, show it leads to a contradiction
Suppose we want to show KB ⊨ S

Write KB’ for (KB ∧ ¬S)

Build a proof tree with
assumptions drawn from clauses of KB’
conclusion = F
so, (KB ∧ ¬S) ⊨ F (contradiction)

83

Proof by contradiction

84

Proof by contradiction

85

Inference
rules

86

Inference rule

To make a proof tree, we need to be able to
figure out new formulas entailed by KB
Method for finding entailed formulas =
inference rule
We’ve implicitly been using one already

87

Modus ponens

Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal
Quantifier-free version:
man(Socrates) ∧

(man(Socrates) ⇒ mortal(Socrates))

d
(a ∧ b ∧ c ⇒ d) a b c

88

Another inference rule

Modus tollens
If it’s raining the grass is wet; the grass is
not wet, so it’s not raining

¬a
(a ⇒ b) ¬b

89

One more…

(a ∨ b ∨ c) (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e

Resolution
Combines two sentences that contain a
literal and its negation
Not as commonly known as modus
ponens / tollens

90

Resolution example

Modus ponens / tollens are special cases
Modus tollens:
(¬raining ∨ grass-wet) ∧ ¬grass-wet ⊨
¬raining

91

Resolution

Simple proof by case analysis
Consider separately cases where we
assign c = True and c = False

(a ∨ b ∨ c) (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e

92

Resolution

Case c = True
(a ∨ b ∨ T) ∧ (F ∨ d ∨ e)

= (T) ∧ (d ∨ e)

= (d ∨ e)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

93

Resolution

Case c = False
(a ∨ b ∨ F) ∧ (T ∨ d ∨ e)

= (a ∨ b) ∧ (T)

= (a ∨ b)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

94

Resolution

Since c must be True or False, conclude
(d ∨ e) ∨ (a ∨ b)

as desired

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

95

Soundness and completeness

An inference procedure is sound if it can
only conclude things entailed by KB

common sense; haven’t discussed
anything unsound

A procedure is complete if it can conclude
everything entailed by KB

96

Completeness

Modus ponens by itself is incomplete
Resolution is complete for propositional
logic

not obvious—famous theorem

97

Variations

Horn clause inference (faster)
Ways of handling uncertainty (slower)
CSPs (sometimes more convenient)
Quantifiers / first-order logic

98

Horn clauses

Horn clause: (a ∧ b ∧ c ⇒ d)

Equivalently, (¬a ∨ ¬b ∨ ¬c ∨ d)

Disjunction of literals, at most one of
which is positive
Positive literal = head, rest = body

99

Use of Horn clauses

People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) ∧ happy(Mary) ⇒
happy(Sue)

No negative literals in above formula;
again, easier to think about

100

Why are Horn clauses important

Modus ponens alone is complete
So is modus tollens alone
Inference in a KB of propositional Horn
clauses is linear

101

Forward chaining

Look for a clause with all body literals
satisfied
Add its head to KB (modus ponens)
Repeat
See RN for more details

102

Handling uncertainty

Fuzzy logic / certainty factors
simple, but don’t scale

Nonmonotonic logic
also doesn’t scale

Probabilities
may or may not scale—more later
Dempster-Shafer (interval probability)

103

Certainty factors

KB assigns a certainty factor in [0, 1] to
each proposition
Interpret as “degree of belief”
When applying an inference rule, certainty
factor for consequent is a function of
certainty factors for antecedents (e.g.,
minimum)

104

Problems w/ certainty factors

Hard to separate a large KB into mostly-
independent chunks that interact only
through a well-defined interface
Certainty factors are not probabilities
(i.e., do not obey Bayes’ Rule)

105

Nonmonotonic logic

Suppose we believe all birds can fly
Might add a set of sentences to KB

bird(Polly) ⇒ flies(Polly)

bird(Tweety) ⇒ flies(Tweety)

bird(Tux) ⇒ flies(Tux)
bird(John) ⇒ flies(John)

…
106

Nonmonotonic logic

Fails if there are penguins in the KB
Fix: instead, add

bird(Polly) ∧ ¬ab(Polly) ⇒ flies(Polly)

bird(Tux) ∧ ¬ab(Tux) ⇒ flies(Tux)

…
ab(Tux) is an “abnormality predicate”
Need separate abi(x) for each type of rule

107

Nonmonotonic logic

Now set as few abnormality predicates as
possible
Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions
If we assert ¬flies(Tux), must now assume
ab(Tux) to maintain consistency
Can’t prove flies(Tux) any more, but can
still prove flies(Polly)

108

Nonmonotonic logic

Works well as long as we don’t have to
choose between big sets of abnormalities

is it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?
even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but …

109

