
15-780: Graduate AI
Lecture 1. Intro & Logic

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Byron Boots, Sam Ganzfried

Admin

http://www.cs.cmu.edu/~ggordon/780/
http://www.cs.cmu.edu/~sandholm/cs15-780S09/

Website highlights

Book: Russell and Norvig. Artificial
Intelligence: A Modern Approach, 2nd ed.
Grading: 4–5 HWs, “mid”term, project
Project: proposal, 2 interim reports, final
report, poster
Office hours

Website highlights

Authoritative source for readings, HWs
Please check the website regularly for
readings (for Lec. 1–3, Russell & Norvig
Chapters 7–9)

Background

No prerequisites
But, suggest familiarity with at least some
of the following:

Linear algebra
Calculus
Algorithms & data structures
Complexity theory

Waitlist, Audits

If you need us to approve something, send
us email

Course email list

15780students@…
domain cs.cmu.edu
To subscribe/unsubscribe:

email 15780students-request@…
word “help” in subject or body

Matlab

Should all have access to Matlab via
school computers

Those with access to CS license servers,
please use if possible
Limited number of Andrew licenses

Tutorial TBA soon
HWs: please use C, C++, Java, or Matlab

Intro

What is AI?

Easy part: A
Hard part: I

Anything we don’t know how to make a
computer do yet
Corollary: once we do it, it isn’t AI
anymore :-)

Definition by examples

Card games
Poker
Bridge

Board games
Deep Blue
TD-Gammon
Samuels’s checkers player

Web search

Web search, cont’d

Recommender systems

from http://www.math.wpi.edu/IQP/BVCalcHist/calctoc.html

Computer algebra systems

Grand Challenge road race

Getting from A to B

ITA software (http://beta.itasoftware.com)

Robocup

Kidney exchange

In US, ≥ 50,000/yr get lethal kidney disease

Cure = transplant, but donor must be
compatible (blood type, tissue type, etc.)

Wait list for cadaver kidneys: 2–5 years

Live donors: have 2 kidneys, can survive w/ 1

Illegal to buy/sell, but altruists/friends/family
donate

Kidney Exchange

Patient

Donor

Pair 1

Patient

Donor

Pair 2

Optimization: cycle cover

Cycle length constraint => extremely hard (NP-complete)
combinatorial optimization problem

National market predicted to have 10,000 patients at any one time

Optimization performance

Our algorithm

CPLEX
Sandholm et al.ʼs

More examples

Motor skills: riding a bicycle, learning to
walk, playing pool, …
Vision

More examples

Valerie and Tank, the
Roboceptionists
Social skills: attending
a party, giving
directions, …

More examples

Natural language
Speech recognition

Common threads

Finding the needle in the haystack
Search
Optimization
Summation / integration

Set the problem up well (so that we can
apply a standard algorithm)

Common threads

Managing uncertainty
chance outcomes (e.g., dice)
sensor uncertainty (“hidden state”)
opponents

The more different types of uncertainty, the
harder the problem (and the slower the
solution)

Classic AI

No uncertainty, pure search
Mathematica
deterministic planning
Sudoku

This is the topic of Part I of the course

http://www.cs.ualberta.ca/~aixplore/search/IDA/Applet/SearchApplet.html

Outcome uncertainty

In backgammon, don’t know ahead of time
what the dice will show
When driving down a corridor, wheel
slippage causes unexpected deviations
Open a door, find out what’s behind it
MDPs (later)

Sensor uncertainty

For given set of immediate measurements,
multiple world states may be possible
Image of a handwritten digit → 0, 1, …, 9

Image of room → person locations,
identities
Laser rangefinder scan of a corridor →
map, robot location

Sensor uncertainty example

Opponents cause uncertainty

In chess, must guess what opponent will
do; cannot directly control him/her
Alternating moves (game trees)

not really uncertain (Part I)
Simultaneous or hidden moves: game
theory (later)

Other agents cause uncertainty

In many AI problems, there are other
agents who aren’t (necessarily) opponents

Ignore them & pretend part of Nature
Assume they’re opponents (pessimistic)
Learn to cope with what they do
Try to convince them to cooperate
(paradoxically, this is the hardest case)

More later

Logic

Why logic?

Search: for problems like Sudoku, can
write compact description of rules
Reasoning: figure out consequences of the
knowledge we’ve given our agent
… and, logical inference is a special case
of probabilistic inference

Propositional logic

Constants: T or F
Variables: x, y (values T or F)
Connectives: ∧, ∨, ¬

Can get by w/ just NAND
Sometimes also add others:
⊕, ⇒, ⇔, …

George Boole
1815–1864

Propositional logic

Build up expressions like ¬x ⇒ y

Precedence: ¬, ∧, ∨, ⇒

Terminology: variable or constant with or
w/o negation = literal
Whole thing = formula or sentence

Expressive variable names

Rather than variable names like x, y, may
use names like “rains” or “happy(John)”
For now, “happy(John)” is just a string
with no internal structure

there is no “John”
happy(John) ⇒ ¬happy(Jack) means
the same as x ⇒ ¬y

But what does it mean?

A formula defines a mapping
(assignment to variables) ↦ {T, F}

Assignment to variables = model
For example, formula ¬x yields mapping:

x ¬x

T F

F T

Questions about models and
sentences

How many models make a sentence true?
A sentence is satisfiable if it is True in
some model
If not satisfiable, it is a contradiction
(False in every model)
A sentence is valid if it is True in every
model (called a tautology)

How is the variable X set in {some, all}
true models?
This is the most frequent question an agent
would ask: given my assumptions, can I
conclude X? Can I rule X out?

Questions about models and
sentences

More truth tables

x y x ∧ y

T T T

T F F

F T F

F F F

x y x ∨ y

T T T

T F T

F T T

F F F

Truth table for implication

(a ⇒ b) is logically equivalent
to (¬a ∨ b)

If a is True, b must be True too

If a False, no requirement on b

E.g., “if I go to the movie I will
have popcorn”: if no movie,
may or may not have popcorn

a b a ⇒ b

T T T

T F F

F T T

F F T

Complex formulas

To evaluate a bigger formula
(x ∨ y) ∧ (x ∨ ¬y) when x = F, y = F

Build a parse tree
Fill in variables at
leaves using model
Work upwards using
truth tables for
connectives

Example

(x ∨ y) ∧ (x ∨ ¬y) when x = F, y = F

Another example

(x ∨ y) ⇒ z x = F, y = T, z = F

Example

3-coloring

http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html

Sudoku

Minesweeper
“Minesweeper” CSP

V = { v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 }, D = { B (bomb) , S (space) }

C = { (v1,v2) : { (B , S) , (S,B) } ,(v1,v2,v3) : { (B,S,S) , (S,B,S) , (S,S,B)},...}

0 0

0 0

0 0

1

1

1

211

v1

v2

v3

v4

v5v6v7v8

v1

v2

v3

v4

v5
v6

v7

v8

The Waltz algorithm

One of the earliest examples of a computation posed as a CSP.

The Waltz algorithm is for interpreting line drawings of solid
polyhedra.

Adjacent intersections impose constraints on each other. Use CSP
to find a unique set of labelings. Important step to
“understanding” the image.

Look at all intersections.

What kind of intersection could this
be? A concave intersection of three

faces? Or an external convex inter
section?

Waltz Alg. on simple scenes

Assume all objects:

• Have no shadows or cracks
• Three-faced vertices
• “General position”: no junctions change with small

movements of the eye.

Then each line on image is one of the following:

• Boundary line (edge of an object) (<) with right hand of
arrow denoting “solid” and left hand denoting “space”

• Interior convex edge (+)
• Interior concave edge (-)

+

++
+

 18 legal kinds of junctions

Given a representation of the diagram, label each junction in one of the above manners.

The junctions must be labelled so that lines are labelled consistently at both ends.

Can you formulate that as a CSP? FUN FACT : Constra int Propagat ion a lways works perfec t ly .

+

+

+

++

+

+

+

++

-

-
--

--

-

-
--

-

-

image courtesy Andrew Moore

Propositional planning

init: have(cake)
goal: have(cake), eaten(cake)
eat(cake):

 pre: have(cake)

 eff: -have(cake), eaten(cake)
bake(cake):

 pre: -have(cake)

 eff: have(cake)

Scheduling (e.g., of factory production)
Facility location
Circuit layout
Multi-robot planning

Important issue: handling uncertainty

Other important logic problems

Working with
formulas

Truth tables get big fast

x y z (x ∨ y) ⇒ z
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

Truth tables get big fast

x y z a (x ∨ y ∨ a) ⇒ z
T T T T
T T F T
T F T T
T F F T
F T T T
F T F T
F F T T
F F F T
T T T F
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

Definitions

Two sentences are equivalent, A ≡ B, if
they have same truth value in every model

(rains ⇒ pours) ≡ (¬rains ∨ pours)

reflexive, transitive, commutative
Simplifying = transforming a formula into
a shorter*, equivalent formula

Transformation rules
210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β, γ are arbitrary formulas

210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

More rules

210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β are arbitrary formulas

Still more rules…

… can be derived from truth tables
For example:

(a ∨ ¬a) ≡ True

(True ∨ a) ≡ True

(False ∧ a) ≡ False

Example

(a ∨ ¬b) ∧ (a ∨ ¬c) ∧ (¬(b ∨ c) ∨ ¬a)

Normal
Forms

Normal forms

A normal form is a standard way of
writing a formula
E.g., conjunctive normal form (CNF)

conjunction of disjunctions of literals
(x ∨ y ∨ ¬z) ∧ (x ∨ ¬y) ∧ (z)

Each disjunct called a clause
Any formula can be transformed into CNF
w/o changing meaning

CNF cont’d

Often used for storage of knowledge database
called knowledge base or KB

Can add new clauses as we find them out
Each clause in KB is separately true (if KB is)

happy(John) ∧
(¬happy(Bill) ∨ happy(Sue)) ∧
man(Socrates) ∧
(¬man(Socrates) ∨ mortal(Socrates))

Another normal form: DNF

DNF = disjunctive normal form =
disjunction of conjunctions of literals
Doesn’t compose the way CNF does: can’t
just add new conjuncts w/o changing
meaning of KB
Example:

(rains ∨ ¬pours) ∧ fishing
≡

(rains ∧ fishing) ∨ (¬pours ∧ fishing)

Transforming to CNF or DNF

Naive algorithm:
replace all connectives with ∧∨¬

move negations inward using De
Morgan’s laws and double-negation
repeatedly distribute over ∧ over ∨ for
DNF (∨ over ∧ for CNF)

Example

Put the following formula in CNF

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)

Example

Now try DNF

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)

Discussion

Problem with naive algorithm: it’s
exponential! (Space, time, size of result.)
Each use of distributivity can almost
double the size of a subformula

A smarter transformation

Can we avoid exponential blowup in
CNF?
Yes, if we’re willing to introduce new
variables
G. Tseitin. On the complexity of
derivation in propositional calculus.
Studies in Constrained Mathematics and
Mathematical Logic, 1968.

Tseitin example

Put the following formula in CNF:
(a ∧ b) ∨ ((c ∨ d) ∧ e)

Parse tree:

Tseitin transformation

Introduce temporary variables
x = (a ∧ b)

y = (c ∨ d)

z = (y ∧ e)

Tseitin transformation

To ensure x = (a ∧ b), want

x ⇒ (a ∧ b)

(a ∧ b) ⇒ x

Tseitin transformation

x ⇒ (a ∧ b)

(¬x ∨ (a ∧ b))

(¬x ∨ a) ∧ (¬x ∨ b)

Tseitin transformation

(a ∧ b) ⇒ x

(¬(a ∧ b) ∨ x)

(¬a ∨ ¬b ∨ x)

Tseitin transformation

To ensure y = (c ∨ d), want

y ⇒ (c ∨ d)

(c ∨ d) ⇒ y

Tseitin transformation

y ⇒ (c ∨ d)

(¬y ∨ c ∨ d)

(c ∨ d) ⇒ y
((¬c ∧ ¬d) ∨ y)

(¬c ∨ y) ∧ (¬d ∨ y)

Tseitin transformation

Finally, z = (y ∧ e)

z ⇒ (y ∧ e) ≡ (¬z ∨ y) ∧ (¬z ∨ e)

(y ∧ e) ⇒ z ≡ (¬y ∨ ¬e ∨ z)

Tseitin end result

(a ∧ b) ∨ ((c ∨ d) ∧ e) ≡

(¬x ∨ a) ∧ (¬x ∨ b) ∧ (¬a ∨ ¬b ∨ x) ∧

(¬y ∨ c ∨ d) ∧ (¬c ∨ y) ∧ (¬d ∨ y) ∧
(¬z ∨ y) ∧ (¬z ∨ e) ∧ (¬y ∨ ¬e ∨ z) ∧

(x ∨ z)

