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Abstract

A fast-growing body of research in the AI
and machine learning communities addresses
learning in games, where there are multi-
ple learners with different interests. This re-
search adds to more established research on
learning in games conducted in economics. In
part because of a clash of fields, there are
widely varying requirements on learning al-
gorithms in this domain. The goal of this
paper is to demonstrate how communication
complexity can be used as a lower bound on
the required learning time or cost. Because
this lower bound does not assume any re-
quirements on the learning algorithm, it is
universal, applying under any set of require-
ments on the learning algorithm.

We characterize exactly the communication
complexity of various solution concepts from
game theory, namely Nash equilibrium, it-
erated dominant strategies (both strict and
weak), and backwards induction. This gives
the tighest lower bounds on learning in games
that can be obtained with this method.

1. Background

The study of multiagent systems in AI is increas-
ingly concerned with settings where the agents are self-
interested. Because in such settings, one agent’s opti-
mal action depends on the actions other agents take,
there is no longer a straightforward notion of when the
agent is acting optimally. Game theory is concerned
with the study of such settings (or games). It provides
formalizations of games, such as a game in normal (or
matrix) form (where players choose actions simulta-
neously), or a game in extensive form (where players
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may choose actions sequentially). It also provides solu-
tion concepts, which, given a game, specify which out-
comes are sensible. Examples for normal form games
are Nash equilibrium (every player should be playing
optimally given what the other players are playing);
dominance (when one strategy always performs bet-
ter than another, the latter should not be played);
and iterated dominance (where dominated strategies
are sequentially deleted from the game). Examples for
extensive form games include all solution concepts for
normal form games, and others such as backwards in-
duction (solving the game by working backwards from
the last actions in the game). Especially the com-
plexity of constructing Nash equilibria has recently
received a lot of attention in the AI and CS the-
ory communities (for example, (Kearns et al., 2001;
Papadimitriou, 2001; Leyton-Brown & Tennenholtz,
2003; Blum et al., 2003; Littman & Stone, 2003));
some computational research has also been done on
iterated dominance (Gilboa et al., 1993).

It is not always possible for the players to immedi-
ately play according to a solution concept: often the
players need to learn how to play, and will only eventu-
ally converge to a solution. There are various reasons
why learning may be necessary: the players may not
know all of the payoffs (or other variables) in the game;
the players may not be sophisticated enough to com-
pute the solution concept; or multiple outcomes may
be consistent with the solution concept, and the play-
ers need to coordinate. (In this paper, we will focus
on the most common variant of the first case, where
each player only knows her own payoffs.) Often, con-
straints are imposed on the learning algorithm. One
type of constraint is that of rationality: a player should
try to maximize her own payoffs. The rationality con-
straint (when present) takes different (nonequivalent)
forms, such as requiring convergence to a best response
when playing against a stationary player (Singh et al.,
2000; Bowling & Veloso, 2002; Conitzer & Sandholm,
2003), or regret minimization in the limit (Hannan,
1957; Freund & Schapire, 1999). Sometimes the ra-
tionality constraint is “soft”, in the sense that algo-



rithms that recommend actions that seem to be in
the player’s best interest are preferred. Another type
of constraint that is always soft is that of simplic-
ity. Of course simpler algorithms are always preferred,
but this is especially so in learning in games; and to
economists, who are trying to model human behavior,
in particular.1 Computer scientists usually honor this
constraint, but there are some exceptions (Conitzer
& Sandholm, 2003). The reinforcement learning ap-
proach to learning in games (Tan, 1993; Littman, 1994;
Hu & Wellman, 1998; Singh et al., 2000; Bowling &
Veloso, 2002; Wang & Sandholm, 2002; Greenwald &
Hall, 2003; Stimpson & Goodrich, 2003) arguably sat-
isfies both properties of rationality and simplicity.

2. Our approach

In this paper, we study the following question. Two
players are playing some game (in either normal (ma-
trix) or extensive form). Each player knows its own
payoff for every outcome of the game, but not the op-
ponent’s. The players are considering some solution
concept (such as Nash equilibrium). How much do the
players need to communicate to find a solution (if it
exists)?

In general, the players may not want to communicate
their payoffs truthfully, because this may cause the
other player to choose an action in the game that is
disadvantageous to the communicating player. If this
is the case, a successful communication may not even
be feasible. In this paper, we assume that the play-
ers are completely cooperative in their communication.
That is, they are solely concerned with computing a
solution and take no heed of whether this solution is
advantageous to them.

Moreover, it may be the case that communication is
restricted. For example, it may be the case that com-
munication can only take place through playing the
game, by observing the other player’s actions (as is
usually the case in learning in games). It is possible to
implement any communication protocol in this model,
by setting up an encoding scheme, encoding bits to be
communicated as actions taken in the game. Never-
theless, the players may be reluctant to follow such a
protocol, because it may force them to play actions
in the game that are highly disadvantageous to them-
selves while the learning is taking place. In this paper,
we do not directly address this, and simply look for
the lowest communication complexity in terms of bits.

In spite of these simplifications, there are at least two
1For an overview of the work in learning in games in

economics, see (Fudenberg & Levine, 1998).

reasons why the question studied in this paper is im-
portant. The first is straightforward:

1. The communication may in fact not be between
the actual players of the game, but rather between
two other parties (each of which is an expert on one
of the players in the game). If the only interest of
these parties is to predict the outcome of the game
(according to the solution concept under study), so
that they will be completely cooperative; and the cost
of their communication is the number of bits sent; then
our model is accurate.

The second reason is (in our opinion) more interesting:

2. The communication necessary to compute the solu-
tion is a lower bound on the communication that takes
place in any learning algorithm that is guaranteed to
converge to this solution concept. (This is assuming
that in the learning algorithm, the players also do not
have access to each other’s payoffs.) Combining this
with an upper bound on the communication in a sin-
gle round of the game, we obtain a lower bound on the
(worst-case) number of rounds before convergence. For
instance, if in an n×n matrix game, the solution con-
cept requires the communication of Ω(f(n)) bits in the
worst case (in our cooperative model), then Ω( f(n)

log(n) )
rounds are required in the worst case to converge to the
solution concept. This is because each round, the only
communication a player receives from the other player
is which action she chose,2 which is a communication
of at most log(n) bits (or 2 log(n) bits counting both
players’ communication). Given how different the (ra-
tionality, simplicity, and other) requirements placed on
algorithms in learning in games are, this is arguably
the only truly universal lower bound on learning algo-
rithms’ worst-case time to convergence.

If the learning cost is not measured in number of
rounds (but rather, for instance, in payoffs lost), our
technique can sometimes still be used to get a lower
bound on the cost. For instance, if there is a minimum
cost m incurred in every round before convergence, we
get a lower bound on cost of Ω(mf(n)

log(n) ). Also, if certain
actions in the game are excessively costly, the learning
algorithm should avoid them altogether. Thus, if there
are only n′ < n reasonable (not excessively costly) ac-
tions for each player to take, then the lower bound on
the number of rounds increases to Ω( f(n)

log(n′) ) (and the

previous lower bound on cost increases to Ω(mf(n)
log(n′) )).

2In some models of learning in games, not even this
is revealed! Of course this can only cause the number of
rounds required to go up.



3. Communication complexity

We first review some elementary communication com-
plexity. In this paper, we focus on the two-party model
introduced by Yao (Yao, 1979). We follow the presen-
tation in (Kushilevitz & Nisan, 1997).

In Yao’s two-party communication model, one party
holds input x, and the other holds input y. They
seek to compute a binary function f(x, y). The parties
alternatingly3 send bits, according to some protocol.
Once the protocol terminates, it should return a value
for f(x, y) based on the communicated bits.

Definition 1 In a deterministic protocol, the next bit
sent is a function only of the bits sent so far and the
sender’s input. D(f) is the worst-case number of bits
sent in the best correct deterministic protocol for com-
puting f . In a nondeterministic protocol, the commu-
nicated bits may additionally depend on nondetermin-
istic choices. For z ∈ {0, 1}, a nondeterministic pro-
tocol for z is correct if it always returns 1 − z when
f(x, y) = 1 − z, and for any x, y with f(x, y) = z, it
returns z for at least one sequence of nondeterministic
choices. Nz(f) is the worst-case number of bits sent
in the best correct nondeterministic protocol for z.

Because any correct deterministic protocol is also a
correct nondeterministic protocol, we have for any
function f , and for any z, that D(f) ≥ Nz(f). To
prove lower bounds on communication complexity,
there are numerous techniques (Kushilevitz & Nisan,
1997). However, for the purposes of this paper, we will
only need one: that of a fooling set. This technique ac-
tually proves lower bounds even on nondeterministic
communication complexity (and thus also on random-
ized communication complexity).

Definition 2 A fooling set for value z is a set of
input pairs {(x1, y1), (x2, y2), . . . , (xm, ym)} such that
for any i, f(xi, yi) = z, but for any i 6= j, either
f(xi, yj) 6= z or f(xj , yi) 6= z.

Theorem 1 (Known) If z has a fooling set of size
m, then Nz(f) ≥ log(m).

4. Normal form games

For the larger part of this paper, we will be concerned
with arguably the simplest formalization of games:
normal form (also known as matrix) games.

Definition 3 In a 2-player n× n normal form game,
each player i has a set of (pure) strategies N =

3The requirement that the bits must be alternatingly
sent increases the communication by at most a factor 2.

{1, 2, . . . , n}, and a utility (or payoff) function ui :
N ×N → IR. (We will refer to the players as row (r)
and column (c).)

In the problems below, the players seek to compute
a binary function of the game (for instance, whether
it has a pure-strategy Nash equilibrium). Each player
knows only her own payoff function. That is, the play-
ers’ payoff functions correspond to the x and y inputs.

4.1. Nash equilibrium

We first study perhaps the best-known solution con-
cept: Nash equilibrium.

Definition 4 A 2-player game has a (pure-strategy)
Nash equilibrium if there exist i, j ∈ N such that for
any i′, ur(i, j) ≥ ur(i′, j) and for any j′, uc(i, j) ≥
uc(i, j′).

We now define the binary function we seek to compute.

Definition 5 The function Na returns 1 if the game
has a pure-strategy Nash equilibrium.

We first give a simple upper bound on the determinis-
tic communication complexity of Na.

Theorem 2 D(Na) is O(n2).

Proof: In the protocol, each player communicates, for
every entry of the payoff matrix, whether her strategy
corresponding to that entry is a best response to the
other player’s strategy corresponding to that entry—
that is, whether she would deviate from that entry.
(So, each player communicates one bit per entry.) The
game has a pure-strategy equilibrium if and only if for
some entry, neither player would deviate from it.

We now show a matching lower bound on the nonde-
terministic communication complexity of Na.

Theorem 3 N0(Na) is Ω(n2), even if all payoffs are
either 0 or 1.

Proof: We will exhibit a fooling set of size Θ(2(n2)).
Consider the set S of all n×n matrix games where ev-
ery entry’s payoff vector is either (0, 1) or (1, 0)—there
are 2(n2) such games. Among these, consider the sub-
set S′ that have no row consisting only of (1, 0)s and no
column consisting only of (0, 1)s. |S′| is still Θ(2(n2)),
for the following reason. Suppose we randomly choose
a game from S. The probability of any particular row
having only (1, 0)s (or any particular column having
only (0, 1)s) is 2−n. It follows that the probability of



at least one row having only (1, 0)s or at least one col-
umn having only (0, 1)s, is at most 2n · 2−n, which is
negligible. So only a negligible fraction of the games
in S are not in S′. None of the games in S′ have a
pure-strategy Nash equilibrium, for the following rea-
son. For any entry in the matrix, one of the players
receives 0. If it is the row player, there is another en-
try in the same column giving her a payoff of 1, and
she will want to switch to that entry. If it is the col-
umn player, there is another entry in the same row
giving her a payoff of 1, and she will want to switch to
that entry. Now consider two games s1, s2 ∈ S′ with
s1 6= s2. The games must disagree on at least one en-
try; say (without loss of generality) that the entry is
(1, 0) for s1 and (0, 1) for s2. Then, if we let s12 be the
game that has the row player’s payoffs of s1 and the
column player’s payoffs of s2, the entry under discus-
sion is (1, 1) in s12. Because a payoff greater than 1
never occurs in s12, this entry is a pure-strategy Nash
equilibrium.

To give an example of how this translates into a bound
on learning in games, we can conclude that every mul-
tiagent learning algorithm that converges to a pure-
strategy Nash equilibrium (if one exists) has a worst-
case convergence time of Ω( n2

log(n) ) rounds (given that
the players do not know each other’s payoffs).

Communicating the best response function in Theo-
rem 2 is hard because it is set-valued—there can be
multiple best responses to a strategy. Next, we in-
vestigate what happens if at least one of the players
always has a unique best response. Let U be the sub-
set of games where the column player has a unique
best response against every (pure) strategy for the row
player, and let Na|U be the restriction of Na to such
games.

Theorem 4 D(Na|U ) is O(n log(n)).

Proof: In the protocol, the column player communi-
cates her (unique!) best response to each of the row
player’s pure strategies (a communication of log(n) per
strategy). After this, the row player can determine if
a pure strategy Nash equilibrium exists (if and only if
for one of the row player’s pure strategies i, i is a best
response to the column player’s best reponse to i), and
can communicate this to the column player.

Theorem 5 N0(Na|U ) is Ω(n log(n)), even if all pay-
offs are either 0 or 1.

Proof: We will exhibit a fooling set of size n!. This
will prove the theorem, because n log(n) is Θ(log(n!)).

For every permutation π : N → N , consider the fol-
lowing game. When the row player plays i and the
column player plays j, the row player gets a utility of
1 if π(i) 6= j, and 0 otherwise; the column player gets
a utility of 0 if π(i) 6= j, and 1 otherwise. Because
this is a zero-sum game, and because for each player,
against any opponent strategy, there is a strategy that
wins against this opponent strategy, there is no pure-
strategy equilibrium. All that remains to show is that
if we mix the payoffs of two of these games, that is, we
define the row player’s payoffs according to π1, and the
column player’s payoffs according to π2 6= π1, there is
a pure-strategy Nash equilibrium. Let i be such that
π1(i) 6= π2(i). Then the strategy pair (i, π2(i)) gives
the row player utility 1 (because π1(i) 6= π2(i)), and
the column player utility 1 also. Because 1 is the high-
est utility in the game, this is a Nash equilibrium.

Interestingly, slight adaptations of all the proofs in
this subsection also work for Stackelberg equilibrium,
where the row player moves first. (Here the compu-
tational question is defined as “Should the row player
play her first action?”) Thus, Stackelberg equilibrium
has the same communication complexity in each case.
We omit the proofs because of space constraint.

4.2. Iterated dominance

We now move on to the notions of dominance and it-
erated dominance. The idea is that if one strategy al-
ways performs better than another, we may eliminate
the latter from consideration.

Definition 6 In a 2-player game, one strategy is said
to strictly dominate another strategy for a player if the
former gives a strictly higher payoff against any oppo-
nent strategy. One strategy is said to weakly dominate
another strategy if the former gives at least as high
a payoff against any opponent strategy, and a strictly
higher payoff against at least one opponent strategy.

Sometimes, mixed strategies (probability distributions
over pure strategies) are allowed to dominate other
strategies. A mixed strategy’s payoff against an oppo-
nent strategy is simply its expected payoff.

It is rarely the case that one strategy dominates all
others. However, once we eliminate a strategy from
consideration, new dominances may appear. This se-
quential process of eliminating strategies is known as
iterated dominance.

Definition 7 With iterated dominance, dominated
strategies are sequentially removed from the game.
(Here, removing strategies may lead to new dominance



relations.) A game is said to be solvable by iterated
dominance if there is a sequence of eliminations that
eliminates all but one strategy for each player.

While the definition of iterated dominance is concep-
tually the same for both strict and weak dominance,
the concept technically differs significantly depending
on which form of dominance is used. Iterated strict
dominance is known to be path-independent: that is,
eventually the same strategies will remain regardless
of the order in which strategies are eliminated. Iter-
ated weak dominance, on the other hand, is known to
be path-dependent: which strategies eventually remain
depends on the elimination order. In fact, determining
whether a game is solvable by iterated weak dominance
is NP-complete (Gilboa et al., 1993).

We first study iterated strict dominance.

Definition 8 The function isd returns 1 if the game
can be solved using iterated strict dominance.

Theorem 6 D(isd) is O(n log(n)), whether or not
elimination by mixed strategies is allowed.

Proof: In the protocol, the players alternatingly com-
municate one of their dominated strategies, which the
players then consider removed from the game; or com-
municate that no such strategy exists. (We observe
that this requires the communication of O(log(n))
bits.) The protocol stops once both players suc-
cessively communicate that they have no dominated
strategy. We observe that each player can get at most
2n turns in this protocol. Hence the number of bits
communicated is O(n log(n)).

Theorem 7 N1(isd) is Ω(n log(n)), even if all pay-
offs are either 0 or 1, whether or not elimination by
mixed strategies is allowed.

Proof: We will exhibit a fooling set of size n!. This
will prove the theorem, because n log(n) is Θ(log(n!)).
For every permutation π : N → N , consider the follow-
ing game. The row player’s payoff when the row player
plays i and the column player plays j is 0 if π(i) ≤ j,
and 1 otherwise—unless π(i) = n, in which case the
row player’s payoff is always 1. The column player’s
payoff when the row player plays i and the column
player plays j is 0 if j < π(i), and 1 otherwise. (We ob-
serve that there is a weak dominance relation between
any pair of strategies by the same player, and thus al-
lowing for dominance by mixed strategies cannot help
us—we may as well take the most weakly dominant
strategy in the support. So, we can restrict atten-
tion to elimination by pure strategies in the rest of the

proof.) Because the row player always gets a payoff of
1 playing π−1(n), and the column player always gets
a payoff of 1 playing n, we can eliminate any strat-
egy that always gets a player a payoff of 0 against the
opponent’s remaining strategies. Thus, the row player
can eliminate π−1(1); then the column player can elim-
inate 1; then the row player can eliminate π−1(2); then
the column player can eliminate 2; etc., until all but
π−1(n) for the row player and n for the column player
have been eliminated. So every one of these games
can be solved by iterated strict dominance. All that
remains to show is that if we mix the payoffs, that is,
we define the row player’s payoffs according to π1, and
the column player’s payoffs according to π2 6= π1, the
game is not solvable by iterated strict dominance. Let
k be the lowest number such that π−1

1 (k) 6= π−1
2 (k)

(we observe that k ≤ n − 1). Because iterated strict
dominance is path-independent, we may assume that
we start eliminating strategies as before for as long
as possible. Thus, we will have eliminated strategies
π−1

1 (1) = π−1
2 (1), π−1

1 (2) = π−1
2 (2), . . . , π−1

1 (k − 1) =
π−1

2 (k − 1), π−1
1 (k) for the row player, and strategies

1, 2, . . . , k− 1 for the column player. However, at this
point, π−1

2 (k) for the row player will not have been
eliminated, so playing k (or any other remaining strat-
egy) will get the column player 1 against π−1

2 (k), and
can thus not be eliminated. Similarly, any remaining
strategy will get the row player 1 against k, and can
thus not be eliminated. Because k ≤ n − 1, the game
cannot be solved by iterated strict dominance.

We now move on to iterated weak dominance.

Definition 9 The function iwd returns 1 if the game
can be solved using iterated weak dominance.

We first give an upper bound on the nondeterministic
communication complexity.

Theorem 8 N1(iwd) is O(n log(n)), whether or not
elimination by mixed strategies is allowed.

Proof: As in Theorem 6, the players alternatingly
communicate an eliminated strategy (they nondeter-
ministically choose one from the weakly dominated
strategies at that point), and return 1 if they reach
a solution. Because iterated weak dominance is path-
dependent, whether a solution is reached depends on
the nondeterministic choices made; but if the game is
solvable, then at least for some sequence of nondeter-
ministic choices, they will reach a solution.

Assuming P6=NP, any deterministic communication
protocol for determining whether a game is solvable by



iterated weak dominance must either have an exponen-
tial communication complexity, or require exponen-
tial computation per communication step by the play-
ers. (Because otherwise, we would have a polynomial-
time algorithm for determining whether a game is
solvable by iterated weak dominance, which is NP-
complete (Gilboa et al., 1993).) We can avoid this by
restricting attention to the following subset of games,
where path-dependence is partially assumed away. Let
I be the subset of games where either no solution by it-
erated weak dominance exists, or any elimination path
will lead to a solution; and let iwd|I be the restriction
of iwd to such games.

Theorem 9 D(iwd|I) is O(n log(n)), whether or not
elimination by mixed strategies is allowed.

Proof: Because (by assumption) any elimination path
will do, the approach in Theorem 6 is applicable.

The following theorem shows that this is the best we
can do even with the restriction to the set I (and also
that the nondeterministic algorithm given before is the
best we can do).

Theorem 10 N1(iwd|I) is Ω(n log(n)), even if all
payoffs are either 0 or 1, whether or not elimination
by mixed strategies is allowed.

Proof: We first observe that when all the payoffs are 0
or 1, allowing for weak dominance by mixed strategies
does not allow us to perform any more eliminations.
(If mixed strategy σ weakly dominates pure strategy
σ′, then all the pure strategies in the support of σ
must get a payoff of 1 against any strategy that σ′

gets a payoff of 1 against. Moreover, at least one pure
strategy in the support must receive a strictly better
payoff than σ′ against at least one opponent strategy.
But then this pure strategy also weakly dominates σ′.)
Thus, we can restrict attention to elimination by pure
strategies in the rest of this proof.

For even n (n = 2l), we will exhibit a fooling set
of size (n2 − 1)!. This will prove the theorem, be-
cause n log(n) is Θ(log((n2 −1)!)). (Note that n

2 log(n2 )
is Θ(n log(n).) For every permutation π : L → L
with π(l) = l, consider the following game. When
the row player plays i and the column player plays
j, both players receive 0 when j > l (half of the
row player’s strategies are dummy strategies). Oth-
erwise, the row player receives a payoff of 1 when-
ever j ∈ {π(i), π(i) − 1, l + π(i) − 1, π(i) − 2}, and
0 otherwise. The column player receives a payoff of 1
whenever j ∈ {π(i), l+ π(i)}, and 0 otherwise—unless
j = n = 2l, in which case the column player always

receives 0 (another dummy strategy).

In each of these games, both players can first eliminate
the dummy strategies; then, the row player can elimi-
nate π−1(1) using π−1(2); then the column player can
eliminate 1 and l+1 using (for example) l; then the row
player can eliminate π−1(2) using π−1(3); then the col-
umn player can eliminate 2 and l+2 using l; etc., until
only π−1(l) = l is left for the row player, and only l is
left for the column player. So every one of these games
can be solved by iterated weak dominance. Moreover,
any sequence of eliminations will arrive at this solu-
tion, for the following reasons. π−1(l) (= l) for the
row player and l for the column player are the unique
best responses to each other and hence cannot be elimi-
nated. Thus, eventually all the dummy strategies must
be deleted. For the same reason, whenever π−1(t) has
been deleted, l + t and t must eventually be deleted.
Furthermore, l+ t must survive for the column player
as long as π−1(t) survives for the row player, because
l + t and t are the only best responses to π−1(t), and
neither can dominate the other. Finally, for the row
player, π−1(t+ 1) cannot be eliminated before π−1(t),
because as long as π−1(t) survives, l + t must survive
for the column player, and π−1(t + 1) is the unique
best response to l + t. Thus, for the smallest t < l
such that π−1(t) survives, eventually l + t − 1, t − 1,
and t − 2 must be eliminated for the column player,
and then eventually π−1(t+ 1) must eliminate π−1(t)
(because it performs better against l+ t, which cannot
yet have been eliminated). So any elimination path
will lead to the solution.

All that remains to show is that if we mix the payoffs,
that is, we define the row player’s payoffs according
to π1 and the column player’s payoffs according to
π2 6= π1, the game is not solvable by iterated weak
dominance. Suppose there is a solution by iterated
weak dominance. Because the strategies labeled l are
unique best responses against each other (regardless of
the permutations), neither can ever be eliminated, so
they must constitute the solution.

We first claim that the row player’s non-dummy strate-
gies, and the column player’s non-dummy strategies of
the form l+k, must be alternatingly eliminated. That
is, two non-dummy row player strategies cannot be
eliminated without a non-dummy column player strat-
egy of the form l+k being eliminated somewhere inbe-
tween, and two non-dummy column player strategies
of the form l+ k cannot be eliminated without a non-
dummy row player strategy being eliminated some-
where inbetween. Moreover, each non-dummy row
player strategy that is eliminated must be the best re-
sponse to the last non-dummy column player strategy



of the form l+ k that was eliminated (with the excep-
tion of π−1

1 (1)); and vice versa, each non-dummy col-
umn player strategy of the form l+k that is eliminated
must be the best response to the last non-dummy row
player strategy that was eliminated. This is so because
each non-dummy row player strategy (besides π−1

1 (1))
is the unique best response against some non-dummy
column player strategy of the form l + k; and each
non-dummy column player strategy of the form l + k
is the almost unique best response against some non-
dummy row player strategy. (“Almost” because k is
also a best response, but k can never eliminate l + k
because it always performs identically.) Thus the only
way of eliminating these strategies is to first eliminate
π−1

1 (1) for the row player, then the best response to
that strategy among the column player strategies of
the form l+k, then the best response to that strategy,
etc. (Other strategies are eliminated inbetween this.)

Now, we claim that in the solution, the non-dummy
column player strategies of the form l + k must be
eliminated in the order l + 1, l + 2, . . . , 2l − 1. For
suppose not: then let l + k be the first eliminated
strategy such that l + k − 1 ≥ l + 1 has not yet been
eliminated. (We note that k ≥ 2.) By the above, the
next non-dummy row player strategy to be eliminated
should be π−1

1 (k + 1). However, l + k − 1 and l +
k + 1 have not yet been eliminated,4 and thus, k −
1 and k + 1 cannot be eliminated before π−1

1 (k + 1)
(because if k − 1 (or k + 1) could be eliminated, then
l+ k− 1 (or l+ k+ 1) could also be eliminated at this
point, contradicting the alternation in the elimination
proven above). But π−1

1 (k + 1) is the only strategy
that gets the row player a utility of 1 against both of
k − 1 and k + 1, so it cannot be eliminated. Thus the
elimination cannot proceed. This proves the claim.
But if this is the elimination order, it follows that 1 =
π2(π−1

1 (1)) (because l + 1 is the best reponse against
π−1

1 (1)), 2 = π2(π−1
1 (2)) (because l + 2 is the best

response against π−1
1 (2), which is the best response

against 1), etc. Thus the permutations must be the
same, as was to be shown.

5. Extensive form games

For the (short) remainder of this paper, we will focus
on a different formalization of games: extensive form
games—games that can be represented in tree form.

Definition 10 A 2-player (full information) exten-
sive form game is given by a tree with n nodes (one
of which is the root), a specification of which player

4If l+k+1 = 2l, it may have been eliminated, but k+1
will still be there in this case, too.

moves at each node, and a payoff from IR for each
player at every leaf.

5.1. Backwards induction

The simplest solution concept for games in extensive
form is that of backwards induction, where the best ac-
tion to take is determined at every node, starting from
the bottom nodes and working upwards. To make the
“best” action uniquely defined, we will restrict atten-
tion to the subset of extensive form games E in which
no player gets the same payoff at two different leaves.

Definition 11 In the backwards induction solution,
each node is labeled with one of its children, indicating
which action the player at this node should take; under
the constraint that for each player, each of her actions
should give her the maximal payoff given the actions
specified lower in the tree.

Definition 12 The function b|E returns 1 if in the
backwards induction solution, player 1 chooses her left-
most action at the root.

Theorem 11 D(b|E) is O(n).

Proof: For each choice node in the tree that is not
followed by another choice node (that is, the bottom
choice nodes), the corresponding player communicates
which action she would take at this choice node. As
a result, now both players know their valuations for
the bottom choice nodes. Thus, in the next stage,
for each choice node in the tree that is followed by at
most one more choice node (that is, the “second-to-
bottom” choice nodes), the corresponding player can
communicate which action she would take here. We
can continue this process until the players know which
action player 1 takes at the root. The communication
can be achieved by labeling each edge in the tree as
either 0 (for not taken) or 1 (for taken), in the bottom-
to-top order just described.

Theorem 12 N1(b|E) is Ω(n). (Even when the tree
has depth 2.)

Proof: Omitted because of space constraint.

6. Conclusions and future research

In learning in games, there are widely varying re-
quirements on learning algorithms. We demonstrated
how communication complexity can be used as a lower
bound on the required learning time or cost. Because
this lower bound does not assume any requirements on



the learning algorithm, it is universal, applying under
any set of requirements on the learning algorithm.

We characterized exactly the communication complex-
ity of various solution concepts from game theory, giv-
ing the tighest lower bounds on learning these concepts
that can be obtained with this method. We showed
that the communication complexity of finding a pure-
strategy Nash equilibrium in an n × n game is Θ(n2)
(but only Θ(n log(n)) when one of the players always
has a unique best response to any strategy); the com-
munication complexity of iterated strict dominance
is Θ(n log(n)) (whether or not dominance by mixed
strategies is allowed); the communication complexity
of iterated weak dominance (for games in which solv-
ability is path-independent) is Θ(n log(n)) (whether or
not dominance by mixed strategies is allowed); and the
communication complexity of backwards induction in
a tree with n nodes is Θ(n). (Interestingly, the size
of the payoffs is not a factor in any of these complex-
ities.) In each case, we showed the lower bound holds
even for nondeterministic communication, and gave a
deterministic protocol that achieved the bound.

There are various directions for future research. Can
the lower bounds presented in this paper be achieved
by learning algorithms with additional desirable prop-
erties? (The most important such property would be
some measure of rationality: the player should attempt
to do reasonably well in the game even when still learn-
ing. Also, we may wish to add the following constraint:
a player should not be able to make the solution that
the players eventually converge to more advantageous
to herself, by not following the learning algorithm.) If
this is not possible, what are minimal restrictions on
the learning algorithm that will allow us to strengthen
our lower bounds and close the gap? (For instance, is
there a weak rationality criterion that all sensible no-
tions of rationality should satisfy, and that strength-
ens the lower bound significantly?) This would consti-
tute a new branch of communication complexity the-
ory, where communication is nontrivially constrained.

Another interesting direction for future research is to
investigate whether learning algorithms can do better
than the bounds presented in this paper on specific
distributions of games (perhaps drawn from the real
world). After all, the lower bounds presented in this
paper are worst-case results. We also did not study
the communication complexity of computing a mixed-
strategy Nash equilibrium. (We do observe that be-
cause a mixed-strategy Nash equilibrium always ex-
ists, the existence question is trivial in this case.) Yet
another possibility is to study solution concepts such
as Nash equilibrium for the repeated game rather than

for the one-shot game. Finally, one can study whether
and how things change if we impose computational
constraints on the agents.
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