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ABSTRACT
When donating money to a (say, charitable) cause, it is pos-
sible to use the contemplated donation as negotiating ma-
terial to induce other parties interested in the charity to
donate more. Such negotiation is usually done in terms of
matching offers, where one party promises to pay a certain
amount if others pay a certain amount. However, in their
current form, matching offers allow for only limited nego-
tiation. For one, it is not immediately clear how multiple
parties can make matching offers at the same time without
creating circular dependencies. Also, it is not immediately
clear how to make a donation conditional on other dona-
tions to multiple charities, when the donator has different
levels of appreciation for the different charities. In both
these cases, the limited expressiveness of matching offers
causes economic loss: it may happen that an arrangement
that would have made all parties (donators as well as char-
ities) better off cannot be expressed in terms of matching
offers and will therefore not occur.

In this paper, we introduce a bidding language for ex-
pressing very general types of matching offers over multiple
charities. We formulate the corresponding clearing prob-
lem (deciding how much each bidder pays, and how much
each charity receives), and show that it is NP-complete to
approximate to any ratio even in very restricted settings.
We give a mixed-integer program formulation of the clear-
ing problem, and show that for concave bids, the program
reduces to a linear program. We then show that the clearing
problem for a subclass of concave bids is at least as hard as
the decision variant of linear programming. Subsequently,
we show that the clearing problem is much easier when bids
are quasilinear—for surplus, the problem decomposes across
charities, and for payment maximization, a greedy approach
is optimal if the bids are concave (although this latter prob-
lem is weakly NP-complete when the bids are not concave).
For the quasilinear setting, we study the mechanism design
question. We show that an ex-post efficient mechanism is
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impossible even with only one charity and a very restricted
class of bids. We also show that there may be benefits to
linking the charities from a mechanism design standpoint.
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1. INTRODUCTION
When money is donated to a charitable (or other) cause

(hereafter referred to as charity), often the donating party
gives unconditionally: a fixed amount is transferred from
the donator to the charity, and none of this transfer is con-
tingent on other events—in particular, it is not contingent
on the amount given by other parties. Indeed, this is cur-
rently often the only way to make a donation, especially for
small donating parties such as private individuals. However,
when multiple parties support the same charity, each of them
would prefer to see the others give more rather than less to
this charity. In such scenarios, it is sensible for a party to
use its contemplated donation as negotiating material to in-
duce the others to give more. This is done by making the
donation conditional on the others’ donations. The follow-
ing example will illustrate this, and show that the donating
parties as well as the charitable cause may simultaneously
benefit from the potential for such negotiation.

Suppose we have two parties, 1 and 2, who are both sup-
porters of charity A. To either of them, it would be worth
$0.75 if A received $1. It follows neither of them will be will-
ing to give unconditionally, because $0.75 < $1. However, if
the two parties draw up a contract that says that they will
each give $0.5, both the parties have an incentive to accept
this contract (rather than have no contract at all): with the
contract, the charity will receive $1 (rather than $0 with-
out a contract), which is worth $0.75 to each party, which
is greater than the $0.5 that that party will have to give.
Effectively, each party has made its donation conditional on
the other party’s donation, leading to larger donations and
greater happiness to all parties involved.



One method that is often used to effect this is to make
a matching offer. Examples of matching offers are: “I will
give x dollars for every dollar donated.”, or “I will give x
dollars if the total collected from other parties exceeds y.”
In our example above, one of the parties can make the offer
“I will donate $0.5 if the other party also donates at least
that much”, and the other party will have an incentive to
indeed donate $0.5, so that the total amount given to the
charity increases by $1. Thus this matching offer implements
the contract suggested above. As a real-world example, the
United States government has authorized a donation of up to
$1 billion to the Global Fund to fight AIDS, TB and Malaria,
under the condition that the American contribution does not
exceed one third of the total—to encourage other countries
to give more [23].

However, there are several severe limitations to the simple
approach of matching offers as just described.

1. It is not clear how two parties can make matching of-
fers where each party’s offer is stated in terms of the
amount that the other pays. (For example, it is not
clear what the outcome should be when both parties
offer to match the other’s donation.) Thus, matching
offers can only be based on payments made by par-
ties that are giving unconditionally (not in terms of a
matching offer)—or at least there can be no circular
dependencies.1

2. Given the current infrastructure for making matching
offers, it is impractical to make a matching offer de-
pend on the amounts given to multiple charities. For
instance, a party may wish to specify that it will pay
$100 given that charity A receives a total of $1000,
but that it will also count donations made to charity
B, at half the rate. (Thus, a total payment of $500 to
charity A combined with a total payment of $1000 to
charity B would be just enough for the party’s offer to
take effect.)

In contrast, in this paper we propose a new approach
where each party can express its relative preferences for dif-
ferent charities, and make its offer conditional on its own
appreciation for the vector of donations made to the dif-
ferent charities. Moreover, the amount the party offers to
donate at different levels of appreciation is allowed to vary
arbitrarily (it does need to be a dollar-for-dollar (or n-dollar-
for-dollar) matching arrangement, or an arrangement where
the party offers a fixed amount provided a given (strike)
total has been exceeded). Finally, there is a clear interpre-
tation of what it means when multiple parties are making
conditional offers that are stated in terms of each other.
Given each combination of (conditional) offers, there is a
(usually) unique solution which determines how much each
party pays, and how much each charity is paid.

However, as we will show, finding this solution (the clear-
ing problem) requires solving a potentially difficult optimiza-
tion problem. A large part of this paper is devoted to study-
ing how difficult this problem is under different assumptions
on the structure of the offers, and providing algorithms for
solving it.

1Typically, larger organizations match offers of private indi-
viduals. For example, the American Red Cross Liberty Dis-
aster Fund maintains a list of businesses that match their
customers’ donations [8].

Towards the end of the paper, we also study the mecha-
nism design problem of motivating the bidders to bid truth-
fully.

In short, expressive negotiation over donations to charities
is a new way in which electronic commerce can help the
world. A web-based implementation of the ideas described
in this paper can facilitate voluntary reallocation of wealth
on a global scale. Aditionally, optimally solving the clearing
problem (and thereby generating the maximum economic
welfare) requires the application of sophisticated algorithms.

2. COMPARISON TO COMBINATORIAL
AUCTIONS AND EXCHANGES

This section discusses the relationship between expressive
charity donation and combinatorial auctions and exchanges.
It can be skipped, but may be of interest to the reader with
a background in combinatorial auctions and exchanges.

In a combinatorial auction, there are m items for sale,
and bidders can place bids on bundles of one or more items.
The auctioneer subsequently labels each bid as winning or
losing, under the constraint that no item can be in more
than one winning bid, to maximize the sum of the values of
the winning bids. (This is known as the clearing problem.)
Variants include combinatorial reverse auctions, where the
auctioneer is seeking to procure a set of items; and combi-
natorial exchanges, where bidders can both buy and and sell
items (even within the same bid). Other extensions include
allowing for side constraints, as well as the specification of
attributes of the items in bids. Combinatorial auctions and
exchanges have recently become a popular research topic [20,
21, 17, 22, 9, 18, 13, 3, 12, 26, 19, 25, 2].

The problems of clearing expressive charity donation mar-
kets and clearing combinatorial auctions or exchanges are
very different in formulation. Nevertheless, there are inter-
esting parallels. One of the main reasons for the interest
in combinatorial auctions and exchanges is that it allows
for expressive bidding. A bidder can express exactly how
much each different allocation is worth to her, and thus the
globally optimal allocation may be chosen by the auction-
eer. Compare this to a bidder having to bid on two different
items in two different (one-item) auctions, without any way
of expressing that (for instance) one item is worthless if the
other item is not won. In this scenario, the bidder may win
the first item but not the second (because there was another
high bid on the second item that she did not anticipate),
leading to economic inefficiency.

Expressive bidding is also one of the main benefits of the
expressive charity donation market. Here, bidders can ex-
press exactly how much they are willing to donate for every
vector of amounts donated to charities. This may allow
bidders to negotiate a complex arrangement of who gives
how much to which charity, which is beneficial to all par-
ties involved; whereas no such arrangement may have been
possible if the bidders had been restricted to using simple
matching offers on individual charities. Again, expressive
bidding is necessary to achieve economic efficiency.

Another parallel is the computational complexity of the
clearing problem. In order to achieve the full economic effi-
ciency allowed by the market’s expressiveness (or even come
close to it), hard computational problems must be solved
in combinatorial auctions and exchanges, as well as in the
charity donation market (as we will see).



3. DEFINITIONS
Throughout this paper, we will refer to the offers that the

donating parties make as bids, and to the donating parties
as bidders. In our bidding framework, a bid will specify,
for each vector of total payments made to the charities, how
much that bidder is willing to contribute. (The contribution
of this bidder is also counted in the vector of payments—
so, the vector of total payments to the charities represents
the amount given by all donating parties, not just the ones
other than this bidder.) The bidding language is expressive
enough that no bidder should have to make more than one
bid. The following definition makes the general form of a
bid in our framework precise.

Definition 1. In a setting with m charities c1, c2, . . . , cm,
a bid by bidder bj is a function vj : Rm → R. The interpre-
tation is that if charity ci receives a total amount of πci , then
bidder j is willing to donate (up to) vj(πc1 , πc2 , . . . , πcm).

We now define possible outcomes in our model, and which
outcomes are valid given the bids that were made.

Definition 2. An outcome is a vector of payments made
by the bidders (πb1 , πb2 , . . . , πbn), and a vector of payments
received by the charities (πc1 , πc2 , . . . , πcm). A valid out-
come is an outcome where

1.
n∑
j=1

πbj ≥
m∑
i=1

πci (at least as much money is collected

as is given away);

2. For all 1 ≤ j ≤ n, πbj ≤ vj(πc1 , πc2 , . . . , πcm) (no
bidder gives more than she is willing to).

Of course, in the end, only one of the valid outcomes can
be chosen. We choose the valid outcome that maximizes the
objective that we have for the donation process.

Definition 3. An objective is a function from the set of
all outcomes to R.2 After all bids have been collected, a valid
outcome will be chosen that maximizes this objective.

One example of an objective is surplus, given by
n∑
j=1

πbj −
m∑
i=1

πci . The surplus could be the profits of a company

managing the expressive donation marketplace; but, alter-
natively, the surplus could be returned to the bidders, or
given to the charities. Another objective is total amount do-

nated, given by
m∑
i=1

πci . (Here, different weights could also

be placed on the different charities.)
Finding the valid outcome that maximizes the objective

is a (nontrivial) computational problem. We will refer to it
as the clearing problem. The formal definition follows.

Definition 4 (DONATION-CLEARING). We are
given a set of n bids over charities c1, c2, . . . , cm. Addition-
ally, we are given an objective function. We are asked to
find an objective-maximizing valid outcome.

How difficult the DONATION-CLEARING problem is de-
pends on the types of bids used and the language in which
they are expressed. This is the topic of the next section.
2In general, the objective function may also depend on the
bids, but the objective functions under consideration in this
paper do not depend on the bids. The techniques presented
in this paper will typically generalize to objectives that take
the bids into account directly.

4. A SIMPLIFIED BIDDING LANGUAGE
Specifying a general bid in our framework (as defined

above) requires being able to specify an arbitrary real-valued
function over Rm. Even if we restricted the possible total
payment made to each charity to the set {0, 1, 2, . . . , s}, this
would still require a bidder to specify (s+1)m values. Thus,
we need a bidding language that will allow the bidders to
at least specify some bids more concisely. We will specify a
bidding language that only represents a subset of all possible
bids, which can be described concisely.3

To introduce our bidding language, we will first describe
the bidding function as a composition of two functions; then
we will outline our assumptions on each of these functions.
First, there is a utility function uj : Rm → R, specifying how
much bidder j appreciates a given vector of total donations
to the charities. (Note that the way we define a bidder’s
utility function, it does not take the payments the bidder
makes into account.) Then, there is a donation willingness
function wj : R → R, which specifies how much bidder j is
willing to pay given her utility for the vector of donations
to the charities. We emphasize that this function does not
need to be linear, so that utilities should not be thought of as
expressible in dollar amounts. (Indeed, when an individual
is donating to a large charity, the reason that the individual
donates only a bounded amount is typically not decreasing
marginal value of the money given to the charity, but rather
that the marginal value of a dollar to the bidder herself
becomes larger as her budget becomes smaller.) So, we have
wj(uj(πc1 , πc2 , . . . , πcm)) = vj(πc1 , πc2 , . . . , πcm), and we
let the bidder describe her functions uj and wj separately.
(She will submit these functions as her bid.)

Our first restriction is that the utility that a bidder de-
rives from money donated to one charity is independent of
the amount donated to another charity. Thus,

uj(πc1 , πc2 , . . . , πcm) =
m∑
i=1

uij(πci). (We observe that this

does not imply that the bid function vj decomposes simi-
larly, because of the nonlinearity of wj .) Furthermore, each
uij must be piecewise linear. An interesting special case

which we will study is when each uij is a line: uij(πci) =

aijπci . This special case is justified in settings where the
scale of the donations by the bidders is small relative to the
amounts the charities receive from other sources, so that the
marginal use of a dollar to the charity is not affected by the
amount given by the bidders.

The only restriction that we place on the payment will-
ingness functions wj is that they are piecewise linear. One
interesting special case is a threshold bid, where wj is a step
function: the bidder will provide t dollars if her utility ex-
ceeds s, and otherwise 0. Another interesting case is when
such a bid is partially acceptable: the bidder will provide t
dollars if her utility exceeds s; but if her utility is u < s, she
is still willing to provide ut

s
dollars.

One might wonder why, if we are given the bidders’ utility
functions, we do not simply maximize the sum of the utili-
ties rather than surplus or total donated. There are several
reasons. First, because affine transformations do not affect
utility functions in a fundamental way, it would be possi-

3Of course, our bidding language can be trivially extended
to allow for fully expressive bids, by also allowing bids from
a fully expressive bidding language, in addition to the bids
in our bidding language.



ble for a bidder to inflate her utility by changing its units,
thereby making her bid more important for utility maxi-
mization purposes. Second, a bidder could simply give a
payment willingness function that is 0 everywhere, and have
her utility be taken into account in deciding on the outcome,
in spite of her not contributing anything.

5. AVOIDING INDIRECT PAYMENTS
In an initial implementation, the approach of having do-

nations made out to a center, and having a center forward
these payments to charities, may not be desirable. Rather, it
may be preferable to have a partially decentralized solution,
where the donating parties write out checks to the charities
directly according to a solution prescribed by the center. In
this scenario, the center merely has to verify that parties are
giving the prescribed amounts. Advantages of this include
that the center can keep its legal status minimal, as well
as that we do not require the donating parties to trust the
center to transfer their donations to the charities (or require
some complicated verification protocol). It is also a step
towards a fully decentralized solution, if this is desirable.

To bring this about, we can still use the approach de-
scribed earlier. After we clear the market in the manner
described before, we know the amount that each donator is
supposed to give, and the amount that each charity is sup-
posed to receive. Then, it is straightforward to give some
specification of who should give how much to which charity,
that is consistent with that clearing. Any greedy algorithm
that increases the cash flow from any bidder who has not
yet paid enough, to any charity that has not yet received
enough, until either the bidder has paid enough or the char-
ity has received enough, will provide such a specification.
(All of this is assuming that

∑
bj

πbj =
∑
ci

πci . In the case

where there is nonzero surplus, that is,
∑
bj

πbj >
∑
ci

πci , we

can distribute this surplus across the bidders by not requir-
ing them to pay the full amount, or across the charities by
giving them more than the solution specifies.)

Nevertheless, with this approach, a bidder may have to
write out a check to a charity that she does not care for at
all. (For example, an environmental activist who was using
the system to increase donations to a wildlife preservation
fund may be required to write a check to a group support-
ing a right-wing political party.) This is likely to lead to
complaints and noncompliance with the clearing. We can
address this issue by letting each bidder specify explicitly
(before the clearing) which charities she would be willing
to make a check out to. These additional constraints, of
course, may change the optimal solution. In general, check-
ing whether a given centralized solution (with zero surplus)
can be accomplished through decentralized payments when
there are such constraints can be modeled as a MAX-FLOW
problem. In the MAX-FLOW instance, there is an edge from
the source node s to each bidder bj , with a capacity of πbj
(as specified in the centralized solution); an edge from each
bidder bj to each charity ci that the bidder is willing to do-
nate money to, with a capacity of∞; and an edge from each
charity ci to the target node t with capacity πci (as specified
in the centralized solution).

In the remainder of this paper, all our hardness results ap-
ply even to the setting where there is no constraint on which
bidders can pay to which charity (that is, even the problem

as it was specified before this section is hard). We also gen-
eralize our clearing algorithms to the partially decentralized
case with constraints.

6. HARDNESS OF CLEARING THE
MARKET

In this section, we will show that the clearing problem is
completely inapproximable, even when every bidder’s utility
function is linear (with slope 0 or 1 in each charity’s pay-
ments), each bidder cares either about at most two charities
or about all charities equally, and each bidder’s payment
willingness function is a step function. We will reduce from
MAX2SAT (given a formula in conjunctive normal form
(where each clause has two literals) and a target number of
satisfied clauses T , does there exist an assignment of truth
values to the variables that makes at least T clauses true?),
which is NP-complete [7].

Theorem 1. There exists a reduction from MAX2SAT
instances to DONATION-CLEARING instances such that
1. If the MAX2SAT instance has no solution, then the
only valid outcome is the zero outcome (no bidder pays any-
thing and no charity receives anything); 2. Otherwise, there
exists a solution with positive surplus. Additionally, the
DONATION-CLEARING instances that we reduce to have
the following properties: 1. Every uij is a line; that is, the
utility that each bidder derives from any charity is linear; 2.
All the uij have slope either 0 or 1; 3. Every bidder either
has at most 2 charities that affect her utility (with slope 1),
or all charities affect her utility (with slope 1); 4. Every bid
is a threshold bid; that is, every bidder’s payment willingness
function wj is a step function.

Proof. The problem is in NP because we can nondeter-
ministically choose the payments to be made and received,
and check the validity and objective value of this outcome.

In the following, we will represent bids as follows:
({(ck, ak)}, s, t) indicates that ukj (πck ) = akπck (this func-
tion is 0 for ck not mentioned in the bid), and wj(uj) = t
for uj ≥ s, wj(uj) = 0 otherwise.

To show NP-hardness, we reduce an arbitrary MAX2SAT
instance, given by a set of clauses K = {k} = {(l1k, l2k)}
over a variable set V together with a target number of sat-
isfied clauses T , to the following DONATION-CLEARING
instance. Let the set of charities be as follows. For every
literal l ∈ L, there is a charity cl. Then, let the set of
bids be as follows. For every variable v, there is a bid bv =
({(c+v, 1), (c−v, 1)}, 2, 1− 1

4|V | ). For every literal l, there is

a bid bl = ({(cl, 1)}, 2, 1). For every clause k = {l1k, l2k} ∈ K,
there is a bid bk = ({(cl1

k
, 1), (cl2

k
, 1)}, 2, 1

8|V ||K| ). Finally,

there is a single bid that values all charities equally: b0 =
({(c1, 1), (c2, 1), . . . , (cm, 1)}, 2|V |+ T

8|V ||K| ,
1
4
+ 1

16|V ||K| ). We

show the two instances are equivalent.
First, suppose there exists a solution to the MAX2SAT

instance. If in this solution, l is true, then let πcl = 2 +
T

8|V |2|K| ; otherwise πcl = 0. Also, the only bids that are

not accepted (meaning the threshold is not met) are the bl
where l is false, and the bk such that both of l1k, l

2
k are false.

First we show that no bidder whose bid is accepted pays
more than she is willing to. For each bv, either c+v or c−v
receives at least 2, so this bidder’s threshold has been met.



For each bl, either l is false and the bid is not accepted, or l
is true, cl receives at least 2, and the threshold has been met.
For each bk, either both of l1k, l

2
k are false and the bid is not

accepted, or at least one of them (say lik) is true (that is, k
is satisfied) and cli

k
receives at least 2, and the threshold has

been met. Finally, because the total amount received by the
charities is 2|V |+ T

8|V ||K| , b0’s threshold has also been met.

The total amount that can be extracted from the accepted
bids is at least |V |(1− 1

4|V | )+|V |+T
1

8|V ||K|+
1
4
+ 1

16|V ||K| ) =

2|V |+ T
8|V ||K| +

1
16|V ||K| > 2|V |+ T

8|V ||K| , so there is positive

surplus. So there exists a solution with positive surplus to
the DONATION-CLEARING instance.

Now suppose there exists a nonzero outcome in the
DONATION-CLEARING instance. First we show that it
is not possible (for any v ∈ V ) that both b+v and b−v are
accepted. For, this would require that πc+v + πc−v ≥ 4.
The bids bv, b+v, b−v cannot contribute more than 3, so
we need another 1 at least. It is easily seen that for any
other v′, accepting any subset of {bv′ , b+v′ , b−v′} would re-
quire that at least as much is given to c+v′ and c−v′ as
can be extracted from these bids, so this cannot help. Fi-
nally, all the other bids combined can contribute at most
|K| 1

8|V ||K| +
1
4

+ 1
16|V ||K| < 1. It follows that we can inter-

pret the outcome in the DONATION-CLEARING instance
as a partial assignment of truth values to variables: v is set
to true if b+v is accepted, and to false if b−v is accepted. All
that is left to show is that this partial assignment satisfies
at least T clauses.

First we show that if a clause bid bk is accepted, then
either bl1

k
or bl2

k
is accepted (and thus either l1k or l2k is set

to true, hence k is satisfied). If bk is accepted, at least one
of cl1

k
and cl2

k
must be receiving at least 1; without loss of

generality, say it is cl1
k
, and say l1k corresponds to variable

v1
k (that is, it is +v1

k or −v1
k). If cl1

k
does not receive at

least 2, bl1
k

is not accepted, and it is easy to check that

the bids bv1
k
, b+v1

k
, b−v1

k
contribute (at least) 1 less than is

paid to c+v1
k

and c+v1
k
. But this is the same situation that

we analyzed before, and we know it is impossible. All that
remains to show is that at least T clause bids are accepted.

We now show that b0 is accepted. Suppose it is not; then
one of the bv must be accepted. (The solution is nonzero by
assumption; if only some bk are accepted, the total payment
from these bids is at most |K| 1

8|V ||K| < 1, which is not

enough for any bid to be accepted; and if one of the bl is
accepted, then the threshold for the corresponding bv is also
reached.) For this v, bv1

k
, b+v1

k
, b−v1

k
contribute (at least)

1
4|V | less than the total payments to c+v and c−v. Again,

the other bv and bl cannot (by themselves) help to close this
gap; and the bk can contribute at most |K| 1

8|V ||K| <
1

4|V | .

It follows that b0 is accepted.
Now, in order for b0 to be accepted, a total of 2|V |+ T

8|V ||K|
must be donated. Because is not possible (for any v ∈ V )
that both b+v and b−v are accepted, it follows that the total
payment by the bv and the bl can be at most 2|V | − 1

4
.

Adding b0’s payment of 1
4

+ 1
16|V ||K| to this, we still need

T− 1
2

8|V ||K| from the bk. But each one of them contributes at

most 1
8|V ||K| , so at least T of them must be accepted.

Corollary 1. Unless P=NP, there is no polynomial-time
algorithm for approximating DONATION-CLEARING (with
either the surplus or the total amount donated as the objec-
tive) within any ratio f(n), where f is a nonzero function of
the size of the instance. This holds even if the DONATION-
CLEARING structures satisfy all the properties given in
Theorem 1.

Proof. Suppose we had such a polynomial time algo-
rithm, and applied it to the DONATION-CLEARING in-
stances that were reduced from MAX2SAT instances in The-
orem 1. It would return a nonzero solution when the
MAX2SAT instance has a solution, and a zero solution oth-
erwise. So we can decide whether arbitrary MAX2SAT in-
stances are satisfiable this way, and it would follow that
P=NP.

(Solving the problem to optimality is NP-complete in many
other (noncomparable or even more restricted) settings as
well—we omit such results because of space constraint.)
This should not be interpreted to mean that our approach is
infeasible. First, as we will show, there are very expressive
families of bids for which the problem is solvable in poly-
nomial time. Second, NP-completeness is often overcome in
practice (especially when the stakes are high). For instance,
even though the problem of clearing combinatorial auctions
is NP-complete [20] (even to approximate [21]), they are
typically solved to optimality in practice.

7. MIXED INTEGER PROGRAMMING
FORMULATION

In this section, we give a mixed integer programming
(MIP) formulation for the general problem. We also discuss
in which special cases this formulation reduces to a linear
programming (LP) formulation. In such cases, the problem
is solvable in polynomial time, because linear programs can
be solved in polynomial time [11].

The variables of the MIP defining the final outcome are
the payments made to the charities, denoted by πci , and
the payments extracted from the bidders, πbj . In the case
where we try to avoid direct payments and let the bidders
pay the charities directly, we add variables πci,bj indicating
how much bj pays to ci, with the constraints that for each
ci, πci ≤

∑
bj

πci,bj ; and for each bj , πbj ≥
∑
ci

πci,bj . Addi-

tionally, there is a constraint πci,bj = 0 whenever bidder bj
is unwilling to pay charity ci. The rest of the MIP can be
phrased in terms of the πci and πbj .

The objectives we have discussed earlier are both linear:

surplus is given by
n∑
j=1

πbj −
m∑
i=1

πci , and total amount do-

nated is given by
m∑
i=1

πci (coefficients can be added to rep-

resent different weights on the different charities in the ob-
jective).

The constraint that the outcome should be valid (no deficit)

is given simply by:
n∑
j=1

πbj ≥
m∑
i=1

πci .

For every bidder, for every charity, we define an additional
utility variable uij indicating the utility that this bidder de-
rives from the payment to this charity. The bidder’s total



utility is given by another variable uj , with the constraint

that uj =
m∑
i=1

uij .

Each uij is given as a function of πci by the (piecewise
linear) function provided by the bidder. In order to repre-
sent this function in the MIP formulation, we will merely
place upper bounding constraints on uij , so that it cannot
exceed the given functions. The MIP solver can then push
the uij variables all the way up to the constraint, in order
to extract as much payment from this bidder as possible.
In the case where the uij are concave, this is easy: if (sl, tl)
and (sl+1, tl+1) are endpoints of a finite linear segment in the

function, we add the constraint that uij ≤ tl+
πci−sl
sl+1−sl

(tl+1−
tl). If the final (infinite) segment starts at (sk, tk) and has
slope d, we add the constraint that uij ≤ tk + d(πci − sk).
Using the fact that the function is concave, for each value of
πci , the tightest upper bound on uij is the one corresponding
to the segment above that value of πci , and therefore these
constraints are sufficient to force the correct value of uij .

When the function is not concave, we require (for the first
time) some binary variables. First, we define another point
on the function: (sk+1, tk+1) = (sk + M, tk + dM), where
d is the slope of the infinite segment and M is any upper
bound on the πcj . This has the effect that we will never be

on the infinite segment again. Now, let xi,jl be an indicator
variable that should be 1 if πci is below the lth segment of
the function, and 0 otherwise. To effect this, first add a

constraint
k∑
l=0

xi,jl = 1. Now, we aim to represent πci as a

weighted average of its two neighboring si,jl . For 0 ≤ l ≤
k + 1, let λi,jl be the weight on si,jl . We add the constraint
k+1∑
l=0

λi,jl = 1. Also, for 0 ≤ l ≤ k + 1, we add the constraint

λi,jl ≤ xl−1+xl (where x−1 and xk+1 are defined to be zero),

so that indeed only the two neighboring si,jl have nonzero

weight. Now we add the constraint πci =
k+1∑
l=0

si,jl λi,jl , and

now the λi,jl must be set correctly. Then, we can set uij =
k+1∑
l=0

ti,jl λi,jl . (This is a standard MIP technique [16].)

Finally, each πbj is bounded by a function of uj by the
(piecewise linear) function provided by the bidder (wj). Rep-
resenting this function is entirely analogous to how we rep-
resented uij as a function of πci . (Again we will need binary
variables only if the function is not concave.)

Because we only use binary variables when either a util-
ity function uij or a payment willingness function wj is not
concave, it follows that if all of these are concave, our MIP
formulation is simply a linear program—which can be solved
in polynomial time. Thus:

Theorem 2. If all functions uij and wj are concave (and
piecewise linear), the DONATION-CLEARING problem can
be solved in polynomial time using linear programming.

Even if some of these functions are not concave, we can
simply replace each such function by the smallest upper
bounding concave function, and use the linear programming
formulation to obtain an upper bound on the objective—
which may be useful in a search formulation of the general
problem.

8. WHY ONE CANNOT DO MUCH
BETTER THAN LINEAR
PROGRAMMING

One may wonder if, for the special cases of the DONATION-
CLEARING problem that can be solved in polynomial time
with linear programming, there exist special purpose algo-
rithms that are much faster than linear programming algo-
rithms. In this section, we show that this is not the case.
We give a reduction from (the decision variant of) the gen-
eral linear programming problem to (the decision variant
of) a special case of the DONATION-CLEARING problem
(which can be solved in polynomial time using linear pro-
gramming). (The decision variant of an optimization prob-
lem asks the binary question: “Can the objective value ex-
ceed o?”) Thus, any special-purpose algorithm for solving
the decision variant of this special case of the DONATION-
CLEARING problem could be used to solve a decision ques-
tion about an arbitrary linear program just as fast. (And
thus, if we are willing to call the algorithm a logarithmic
number of times, we can solve the optimization version of
the linear program.)

We first observe that for linear programming, a decision
question about the objective can simply be phrased as an-
other constraint in the LP (forcing the objective to exceed
the given value); then, the original decision question coin-
cides with asking whether the resulting linear program has
a feasible solution.

Theorem 3. The question of whether an LP (given by a
set of linear constraints4) has a feasible solution can be mod-
eled as a DONATION-CLEARING instance with payment
maximization as the objective, with 2v charities and v + c
bids (where v is the number of variables in the LP, and c is
the number of constraints). In this model, each bid bj has
only linear uij functions, and is a partially acceptable thresh-

old bid (wj(u) = tj for u ≥ sj, otherwise wj(u) =
utj
sj

). The

v bids corresponding to the variables mention only two chari-
ties each; the c bids corresponding to the constraints mention
only two times the number of variables in the corresponding
constraint.

Proof. For every variable xi in the LP, let there be two
charities, c+xi and c−xi . Let H be some number such that
if there is a feasible solution to the LP, there is one in which
every variable has absolute value at most H.

In the following, we will represent bids as follows:
({(ck, ak)}, s, t) indicates that ukj (πck ) = akπck (this func-
tion is 0 for ck not mentioned in the bid), and wj(uj) = t

for uj ≥ s, wj(uj) =
ujt

s
otherwise.

For every variable xi in the LP, let there be a bid bxi =
({(c+xi , 1), (c−xi , 1)}, 2H, 2H − c

v
). For every constraint∑

i

rjixi ≤ sj in the linear program, let there be a bid bj =

({(c−xi , rji )}i:rji>0
∪ {(c+xi ,−rji )}i:rji<0

, (
∑
i

|rji |)H − sj , 1).

Let the target total amount donated be 2vH.
Suppose there is a feasible solution (x∗1, x

∗
2, . . . , x

∗
v) to the

LP. Without loss of generality, we can suppose that |x∗i | ≤ H
for all i. Then, in the DONATION-CLEARING instance,

4These constraints must include bounds on the variables
(including nonnegativity bounds), if any.



for every i, let πc+xi = H + x∗i , and let πc−xi = H − x∗i
(for a total payment of 2H to these two charities). This
allows us to extract the maximum payment from the bids
bxi—a total payment of 2vH − c. Additionally, the utility

of bidder bj is now
∑

i:r
j
i>0

rji (H − x∗i ) +
∑

i:r
j
i<0

−rji (H + x∗i ) =

(
∑
i

|rji |)H −
∑
i

rjix
∗
i ≥ (

∑
i

|rji |)H − sj (where the last in-

equality stems from the fact that constraint j must be sat-
isfied in the LP solution), so it follows we can extract the
maximum payment from all the bidders bj , for a total pay-
ment of c. It follows that we can extract the required 2vH
payment from the bidders, and there exists a solution to
the DONATION-CLEARING instance with a total amount
donated of at least 2vH.

Now suppose there is a solution to the DONATION-
CLEARING instance with a total amount donated of at
least vH. Then the maximum payment must be extracted
from each bidder. From the fact that the maximum payment
must be extracted from each bidder bxi , it follows that for
each i, πc+xi + πc−xi ≥ 2H. Because the maximum ex-
tractable total payment is 2vH, it follows that for each i,
πc+xi + πc−xi = 2H. Let x∗i = πc+xi − H = H − πc−xi .
Then, from the fact that the maximum payment must be
extracted from each bidder bj , it follows that (

∑
i

|rji |)H −

sj ≤
∑

i:r
j
i>0

rjiπc−xi +
∑

i:r
j
i<0

−rjiπc+xi =
∑

i:r
j
i>0

rji (H − x∗i ) +∑
i:r
j
i<0

−rji (H + x∗i ) = (
∑
i

|rji |)H −
∑
i

rjix
∗
i . Equivalently,∑

i

rjix
∗
i ≤ sj . It follows that the x∗i constitute a feasible

solution to the LP.

9. QUASILINEAR BIDS
Another class of bids of interest is the class of quasilinear

bids. In a quasilinear bid, the bidder’s payment willingness
function is linear in utility: that is, wj = uj . (Because the
units of utility are arbitrary, we may as well let them cor-
respond exactly to units of money—so we do not need a
constant multiplier.) In most cases, quasilinearity is an un-
reasonable assumption: for example, usually bidders have a
limited budget for donations, so that the payment willing-
ness will stop increasing in utility after some point (or at
least increase slower in the case of a “softer” budget con-
straint). Nevertheless, quasilinearity may be a reasonable
assumption in the case where the bidders are large organi-
zations with large budgets, and the charities are a few small
projects requiring relatively little money. In this setting,
once a certain small amount has been donated to a charity,
a bidder will derive no more utility from more money be-
ing donated from that charity. Thus, the bidders will never
reach a high enough utility for their budget constraint (even
when it is soft) to take effect, and thus a linear approxi-
mation of their payment willingness function is reasonable.
Another reason for studying the quasilinear setting is that
it is the easiest setting for mechanism design, which we will
discuss shortly. In this section, we will see that the clearing
problem is much easier in the case of quasilinear bids.

First, we address the case where we are trying to maximize
surplus (which is the most natural setting for mechanism de-
sign). The key observation here is that when bids are quasi-
linear, the clearing problem decomposes across charities.

Lemma 1. Suppose all bids are quasilinear, and surplus
is the objective. Then we can clear the market optimally by
clearing the market for each charity individually. That is,
for each bidder bj, let πbj =

∑
ci

πbij
. Then, for each charity

ci, maximize (
∑
bj

πbij
) − πci , under the constraint that for

every bidder bj, πbij
≤ uij(πci).

Proof. The resulting solution is certainly valid: first of
all, at least as much money is collected as is given away,
because

∑
bj

πbj −
∑
ci

πci =
∑
bj

∑
ci

πbij
−
∑
ci

πci =
∑
ci

((
∑
bj

πbij
)−

πci)—and the terms of this summation are the objectives of
the individual optimization problems, each of which can be
set at least to 0 (by setting all the variables are set to 0),
so it follows that the expression is nonnegative. Second, no
bidder bj pays more than she is willing to, because uj−πbj =∑
ci

uij(πci)−
∑
ci

πbij
=
∑
ci

(uij(πci)−πbij )—and the terms of this

summation are nonnegative by the constraints we imposed
on the individual optimization problems.

All that remains to show is that the solution is opti-
mal. Because in an optimal solution, we will extract as
much payment from the bidders as possible given the πci ,
all we need to show is that the πci are set optimally by
this approach. Let π∗ci be the amount paid to charity πci
in some optimal solution. If we change this amount to π′ci
and leave everything else unchanged, this will only affect
the payment that we can extract from the bidders because
of this particular charity, and the difference in surplus will
be
∑
bj

uij(π
′
ci) − u

i
j(π
∗
ci) − π

′
ci + π∗ci . This expression is, of

course, 0 if π′ci = π∗ci . But now notice that this expression
is maximized as a function of π′ci by the decomposed solu-
tion for this charity (the terms without π′ci in them do not
matter, and of course in the decomposed solution we always
set πbij

= uij(πci)). It follows that if we change πci to the

decomposed solution, the change in surplus will be at least
0 (and the solution will still be valid). Thus, we can change
the πci one by one to the decomposed solution without ever
losing any surplus.

Theorem 4. When all bids are quasilinear and surplus
is the objective, DONATION-CLEARING can be done in
linear time.

Proof. By Lemma 1, we can solve the problem sepa-
rately for each charity. For charity ci, this amounts to max-
imizing (

∑
bj

uij(πci)) − πci as a function of πci . Because all

its terms are piecewise linear functions, this whole function
is piecewise linear, and must be maximized at one of the
points where it is nondifferentiable. It follows that we need
only check all the points at which one of the terms is non-
differentiable.

Unfortunately, the decomposing lemma does not hold for
payment maximization.

Proposition 1. When the objective is payment maximiza-
tion, even when bids are quasilinear, the solution obtained
by decomposing the problem across charities is in general not
optimal (even with concave bids).



Proof. Consider a single bidder b1 placing the following
quasilinear bid over two charities c1 and c2: u

1
1(πc1) = 2πci

for 0 ≤ πci ≤ 1, u1
1(πc1) = 2 +

πci−1

4
otherwise; u2

1(πc2) =
πci
2

. The decomposed solution is πc1 = 7
3
, πc2 = 0, for a

total donation of 7
3
. But the solution πc1 = 1, πc2 = 2 is

also valid, for a total donation of 3 > 7
3
.

In fact, when payment maximization is the objective,
DONATION-CLEARING remains (weakly) NP-complete in
general. (In the remainder of the paper, proofs are omitted
because of space constraint.)

Theorem 5. DONATION-CLEARING is (weakly) NP-
complete when payment maximization is the objective, even
when every bid is concerns only one charity (and has a step-
function utility function for this charity), and is quasilinear.

However, when the bids are also concave, a simple greedy
clearing algorithm is optimal.

Theorem 6. Given a DONATION-CLEARING instance
with payment maximization as the objective where all bids
are quasilinear and concave, consider the following algo-
rithm. Start with πci = 0 for all charities. Then, letting

γci =

d
∑
bj

uij(πci )

dπci
(at nondifferentiable points, these deriva-

tives should be taken from the right), increase πc∗i (where
c∗i ∈ arg maxci γci), until either γc∗i is no longer the highest
(in which case, recompute c∗i and start increasing the corre-
sponding payment), or

∑
bj

uj =
∑
ci

πci and γc∗i < 1. Finally,

let πbj = uj.

(A similar greedy algorithm works when the objective is
surplus and the bids are quasilinear and concave, with as
only difference that we stop increasing the payments as soon
as γc∗i < 1.)

10. INCENTIVE COMPATIBILITY
Up to this point, we have not discussed the bidders’ incen-

tives for bidding any particular way. Specifically, the bids
may not truthfully reflect the bidders’ preferences over char-
ities because a bidder may bid strategically, misrepresenting
her preferences in order to obtain a result that is better to
herself. This means the mechanism is not strategy-proof.
(We will show some concrete examples of this shortly.) This
is not too surprising, because the mechanism described so
far is, in a sense, a first-price mechanism, where the mecha-
nism will extract as much payment from a bidder as her bid
allows. Such mechanisms (for example, first-price auctions,
where winners pay the value of their bids) are typically not
strategy-proof: if a bidder reports her true valuation for an
outcome, then if this outcome occurs, the payment the bid-
der will have to make will offset her gains from the outcome
completely. Of course, we could try to change the rules of
the game—which outcome (payment vector to charities) do
we select for which bid vector, and which bidder pays how
much—in order to make bidding truthfully beneficial, and
to make the outcome better with regard to the bidders’ true
preferences. This is the field of mechanism design. In this
section, we will briefly discuss the options that mechanism
design provides for the expressive charity donation problem.

10.1 Strategic bids under the first-price
mechanism

We first point out some reasons for bidders to misreport
their preferences under the first-price mechanism described
in the paper up to this point. First of all, even when there is
only one charity, it may make sense to underbid one’s true
valuation for the charity. For example, suppose a bidder
would like a charity to receive a certain amount x, but does
not care if the charity receives more than that. Additionally,
suppose that the other bids guarantee that the charity will
receive at least x no matter what bid the bidder submits
(and the bidder knows this). Then the bidder is best off not
bidding at all (or submitting a utility for the charity of 0),
to avoid having to make any payment. (This is known in
economics as the free rider problem [14].

With multiple charities, another kind of manipulation may
occur, where the bidder attempts to steer others’ payments
towards her preferred charity. Suppose that there are two
charities, and three bidders. The first bidder bids u1

1(πc1) =
1 if πc1 ≥ 1, u1

1(πc1) = 0 otherwise; u2
1(πc2) = 1 if πc2 ≥ 1,

u2
1(πc2) = 0 otherwise; and w1(u1) = u1 if u1 ≤ 1, w1(u1) =

1+ 1
100

(u1−1) otherwise. The second bidder bids u1
2(πc1) =

1 if πc1 ≥ 1, u1
1(πc1) = 0 otherwise; u2

2(πc2) = 0 (always);
w2(u2) = 1

4
u2 if u2 ≤ 1, w2(u2) = 1

4
+ 1

100
(u2−1) otherwise.

Now, the third bidder’s true preferences are accurately rep-
resented5 by the bid u1

3(πc1) = 1 if πc1 ≥ 1, u1
3(πc1) = 0

otherwise; u2
3(πc2) = 3 if πc2 ≥ 1, u2

3(πc1) = 0 otherwise;
and w3(u3) = 1

3
u3 if u3 ≤ 1, w3(u3) = 1

3
+ 1

100
(u3 − 1) oth-

erwise. Now, it is straightforward to check that, if the third
bidder bids truthfully, regardless of whether the objective is
surplus maximization or total donated, charity 1 will receive
at least 1, and charity 2 will receive less than 1. The same is
true if bidder 3 does not place a bid at all (as in the previous
type of manipulation); hence bidder 2’s utility will be 1 in
this case. But now, if bidder 3 reports u1

3(πc1) = 0 every-
where; u2

3(πc2) = 3 if πc2 ≥ 1, u2
3(πc2) = 0 otherwise (this

part of the bid is truthful); and w3(u3) = 1
3
u3 if u3 ≤ 1,

w3(u3) = 1
3

otherwise; then charity 2 will receive at least

1, and bidder 3 will have to pay at most 1
3
. Because up to

this amount of payment, one unit of money corresponds to
three units of utility to bidder 3, it follows his utility is now
at least 3 − 1 = 2 > 1. We observe that in this case, the
strategic bidder is not only affecting how much the bidders
pay, but also how much the charities receive.

10.2 Mechanism design in the quasilinear
setting

There are four reasons why the mechanism design ap-
proach is likely to be most successful in the setting of quasi-
linear preferences. First, historically, mechanism design has
been been most successful when the quasilinear assumption
could be made. Second, because of this success, some very
general mechanisms have been discovered for the quasilin-
ear setting (for instance, the VCG mechanisms [24, 4, 10],
or the dAGVA mechanism [6, 1]) which we could apply di-
rectly to the expressive charity donation problem. Third, as
we saw in Section 9, the clearing problem is much easier in

5Formally, this means that if the bidder is forced to pay
the full amount that his bid allows for a particular vector of
payments to charities, the bidder is indifferent between this
and not participating in the mechanism at all. (Compare
this to bidding truthfully in a first-price auction.)



this setting, and thus we are less likely to run into computa-
tional trouble for the mechanism design problem. Fourth, as
we will show shortly, the quasilinearity assumption in some
cases allows for decomposing the mechanism design problem
over the charities (as it did for the simple clearing problem).

Moreover, in the quasilinear setting (unlike in the general
setting), it makes sense to pursue social welfare (the sum
of the utilities) as the objective, because now 1) units of
utility correspond directly to units of money, so that we do
not have the problem of the bidders arbitrarily scaling their
utilities; and 2) it is no longer possible to give a payment
willingness function of 0 while still affecting the donations
through a utility function.

Before presenting the decomposition result, we introduce
some terms from game theory. A type is a preference profile
that a bidder can have and can report (thus, a type report
is a bid). Incentive compatibility (IC) means that bidders
are best off reporting their preferences truthfully; either re-
gardless of the others’ types (in dominant strategies), or in
expectation over them (in Bayes-Nash equilibrium). Indi-
vidual rationality (IR) means agents are at least as well off
participating in the mechanism as not participating; either
regardless of the others’ types (ex-post), or in expectation
over them (ex-interim). A mechanism is budget balanced
if there is no flow of money into or out of the system—in
general (ex-post), or in expectation over the type reports
(ex-ante). A mechanism is efficient if it (always) produces
the efficient allocation of wealth to charities.

Theorem 7. Suppose all agents’ preferences are quasilin-
ear. Furthermore, suppose that there exists a single-charity
mechanism M that, for a certain subclass P of (quasilinear)
preferences, under a given solution concept S (implementa-
tion in dominant strategies or Bayes-Nash equilibrium) and
a given notion of individual rationality R (ex post, ex in-
terim, or none), satisfies a certain notion of budget balance
(ex post, ex ante, or none), and is ex-post efficient. Then
there exists such a mechanism for any number of charities.

Two mechanisms that satisfy efficiency (and can in fact be
applied directly to the multiple-charity problem without use
of the previous theorem) are the VCG (which is incentive
compatible in dominant strategies) and dAGVA (which is
incentive compatible only in Bayes-Nash equilibrium) mech-
anisms. Each of them, however, has a drawback that would
probably make it impractical in the setting of donations to
charities. The VCG mechanism is not budget balanced. The
dAGVA mechanism does not satisfy ex-post individual ra-
tionality. In the next subsection, we will investigate if we
can do better in the setting of donations to charities.

10.3 Impossibility of efficiency
In this subsection, we show that even in a very restricted

setting, and with minimal requirements on IC and IR con-
straints, it is impossible to create a mechanism that is effi-
cient.

Theorem 8. There is no mechanism which is ex-post bud-
get balanced, ex-post efficient, and ex-interim individually
rational with Bayes-Nash equilibrium as the solution concept
(even with only one charity, only two quasilinear bidders,
with identical type distributions (uniform over two types,
with either both utility functions being step functions or both
utility functions being concave piecewise linear functions)).

The case of step-functions in this theorem corresponds ex-
actly to the case of a single, fixed-size, nonexcludable public
good (the “public good” being that the charity receives the
desired amount)—for which such an impossibility result is
already known [14]. Many similar results are known, proba-
bly the most famous of which is the Myerson-Satterthwaite
impossibility result, which proves the impossibility of effi-
cient bilateral trade under the same requirements [15].

Theorem 7 indicates that there is no reason to decide on
donations to multiple charities under a single mechanism
(rather than a separate one for each charity), when an ef-
ficient mechanism with the desired properties exists for the
single-charity case. However, because under the require-
ments of Theorem 8, no such mechanism exists, there may
be a benefit to bringing the charities under the same um-
brella. The next proposition shows that this is indeed the
case.

Proposition 2. There exist settings with two charities
where there exists no ex-post budget balanced, ex-post effi-
cient, and ex-interim individually rational mechanism with
Bayes-Nash equilibrium as the solution concept for either
charity alone; but there exists an ex-post budget balanced,
ex-post efficient, and ex-post individually rational mecha-
nism with dominant strategies as the solution concept for
both charities together. (Even when the conditions are the
same as in Theorem 8, apart from the fact that there are
now two charities.)

11. CONCLUSION
We introduced a bidding language for expressing very gen-

eral types of matching offers over multiple charities. We for-
mulated the corresponding clearing problem (deciding how
much each bidder pays, and how much each charity receives),
and showed that it is NP-complete to approximate to any ra-
tio even in very restricted settings. We gave a mixed-integer
program formulation of the clearing problem, and showed
that for concave bids (where utility functions and payment
willingness function are concave), the program reduces to a
linear program and can hence be solved in polynomial time.
We then showed that the clearing problem for a subclass of
concave bids is at least as hard as the decision variant of lin-
ear programming, suggesting that we cannot do much better
than a linear programming implementation for such bids.
Subsequently, we showed that the clearing problem is much
easier when bids are quasilinear (where payment willingness
functions are linear)—for surplus, the problem decomposes
across charities, and for payment maximization, a greedy
approach is optimal if the bids are concave (although this
latter problem is weakly NP-complete when the bids are not
concave). For the quasilinear setting, we studied the mech-
anism design question of making the bidders report their
preferences truthfully rather than strategically. We showed
that an ex-post efficient mechanism is impossible even with
only one charity and a very restricted class of bids. We
also showed that even though the clearing problem decom-
poses over charities in the quasilinear setting, there may be
benefits to linking the charities from a mechanism design
standpoint.

There are many directions for future research. One is to
build a web-based implementation of the (first-price) mech-
anism proposed in this paper. Another is to study the com-
putational scalability of our MIP/LP approach. It is also



important to identify other classes of bids (besides concave
ones) for which the clearing problem is tractable. Much
crucial work remains to be done on the mechanism design
problem. Finally, are there good iterative mechanisms for
charity donation?6
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