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ABSTRACT

The use of auction mechanisms like the GSP in online adiregtis
can lead to loss of both efficiency and revenue when advestise
have rich preferences: even simple forms of expressiveliless
budget constraints can lead to suboptimal outcomes. Tlsidelta
to the recognition of the value of (sequential and/or stetibjpop-
timization in ad allocation. Unfortunately, natural forations of
such optimization problems fall prey thannel explosionSpecif-
ically, available ad inventory must be partitioned into sets, or
channels of indistinguishable supplyeach channel containing in-
ventory that is interchangeable from the perspectiveamhactive
advertiser. The number of such channels grows expongntrall
the number of features of interest. We propose a means for aut
matically abstracting these channels, grouping togethanmels
so that irrelevant distinctions are ignored. Our approdzsed
on LP/MIP column and constraint generation, dramaticatjuces
the number of distinct channels over which ads are allocalters
rendering optimization computationally feasible at piGaitscales.
Our algorithms also allow revenue/efficiency to be sacrificea
principled fashion by ignoring potentially relevant ditiions, but
retaining the most important distinctions, ignoring orthpse that
have low impact on solution quality. This allows tradeofisbie
made between tractability and solution quality. Numer&gleri-
ments demonstrate the computational practicality of opragch
as well as the quality of the abstractions generated.

1 Introduction

Online advertising has radically changed both the natuedwér-
tising and the technology used to support the developmehtan
ployment of ad campaigns. While ad targeting and campaign de
sign is inherently complex, the variety of online advertisiser-
vices has only increased this complexity. In particulag &fil-
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ity to target ads t@pecific individualdased on detailed, personal-
ized online information—information that is simply not dable in
broadcast media—presents compelling opportunities arden-
dous technical challenges for ad delivery. For instance,di+
velopment of sophisticated matching and bidding algorittfor
sponsored search, such as position auctions usingeheralized
second price (GSPnechanism, can be viewed as a response to
such opportunities [8, 17].

In contrast to sponsored search, the sellinparfiner adgaka.
display ad$is still largely approached through manual negotiation.
There are some exceptions to this, with online exchangelsaior
ner ads established by companies like Right Media (now fart o
Yahoo!) and DoubleClick (now part of Google); however, thes
exchanges largely deal with lower-value, “remnant” inggpton
web sites. Premium display advertising space (e.g., skds the
top, or “above the fold,” of high traffic, high profile websseis
sold almost exclusively by non-automated means. The pyinea-
son for this is a perception that auction/market mechanansot
be made to work for the types of campaign-level expressagne
required for display ads (e.g., as required by brand acheze)

Campaign-level expressiveness is addressed explicifhing],
where a variety of expressiveness forms are outlined (tinebedle
impression targets, smoothness of delivery, temporal esezing,
complements and substitutes, and many others). Althoygtiste
cated bidding strategies [5, 9, 15] for some limited formexyres-
sive preferences (e.g., long-term budgets) can help éxdreater
value from an inexpressive auction, arbitrarily large ficgfncies
can nevertheless arise [3]. Allowing richer languages irictvh
advertisers can express their campaign preferencesliginather
than forcing them into standard per-event bidding modslsiti-
cal to admitting the automated matching and selling of baads.
But a key bottleneck remains: the use of expressive biddéag r
quiresoptimizationto match ad supply with advertisers’ demand.
The richer the expressiveness forms, the more complex ttie op
mization. For example, in [6], a stochastic optimizationdmlofor
rich, campaign-level expressiveness forms. However, eviém
very limited forms of expressiveness—as simple as per&sgon
value/pricing with budget constraints and bid expiratidhat op-

1This parallels the situation in sourcing, where advancesddel-
ing and optimization have led to the adoption of expressigdibg
(and expressive bid-taking) for what had previously beedelyi
viewed as “too valuable” to leave to auction mechanisms.[16]
The expressive auction mechanisms are now used also flr stri
ing strategic long-term contracts on the most valuablespzirthe
sourcing spend.



timization is critical to extracting full value from one’slanven-
tory [14, 1]. Indeed, using simple myopic mechanisms likePGS
can lead to significant loss in efficiency and revenue.

In this paper, we tackle one of the greatest impedimentseo th
use of optimization in ad auctions, namely, thatbannel explo-
sion A key advantage advertisers have in online settings is the
ability to segment the target audience using an enormoustyar
of features: both static features (like user demographicl) dy-
namic features such as context (e.g., current browsingrijgb-
cation) or historical data (e.g., past purchases, actigity). This
means that the number of features over which ad allocatiost mu
occur is extremely large. And the number of spediitchannels
to which ads can be assigned—i.e., the number of distinttifea
instantiations—grows exponentially in the number of feasu Any
optimization model must (usually quite explicitly) assiggvertis-
ers to explicit channels over time. Both simple linear pamgming
(LP) models that use only budget constraints [1] and sophistd
mixed-integer (MIP) models [6, 14] use variables of the fOtgn
to denote the allocation of some amount of the supply of chlann
j to advertiseri.?2 These models simply cannot scale directly to
problems involving more than a few thousand channels (ery.,
the order of 10-15 (Boolean) channel features).

The remainder of the paper is organized as follows. We briefly
discuss the need for campaign-level expressiveness, iaption,
and channel abstraction in Sec. 2. We present the basic@d all
cation model in Sec. 3 and define our notion of abstract channe
precisely in Sec. 4, along with its impact on optimizatiorecS5
develops a novel and computationally effective column ggtien
technique to generate useful abstractions, and providgdriead
results demonstrating that near-optimal allocations carddter-
mined using very few channels. We extend the approach in6Sec.
with an iterative constraint generation algorithm to aditecbids to
abstract channels that is sensitive to distinctions tretbstracted
away. Empirical results demonstrate significant improvetnie
value when “IP expressiveness” (i.e., requiring binaryalaes) is
involved. Sec. 7 addresses possible refinements of ouritpa®s
and key issues inimplementation and deployment, such aseiat
resentation and uncertainty in supply. We conclude witlgested
directions for future research in Sec. 8.

2 Expressive Advertising and Optimization

We consider the problem faced by an ad network selling and ser
ing banner ads over a variety of web sites. Ads are serdisd (
patched to specific locations on web pages as the pages are served

We address the channel explosion problem through the use ofby members of the network. Dispatch decisions can be based on

channel abstractionIntuitively, an abstract channel is any aggre-
gation of these “concrete” channels (i.e., feature ins#inhs) into
a single abstract channel for the purposes of optimizatibaor-
ing allocation optimization, ads are assigned to abstriaahigels
rather than concrete channéleence with appropriate abstraction,
we can obtain exponential reduction in the number of channel
thus rendering optimization practical. Furthermore, al\wkbsen
abstraction will often provide very little sacrifice of rewe or
efficiency (often even providing an optimal, lossless audion).
Such abstractions should be derived by considering thg@iadainon

a variety offeaturesor impression attributes: features of the web
page (e.g., page identity, page category, predicted dexpbigr
profile of users, page content, etc.), features of the dsmrailable
(e.g., demographic properties such as gender, income lgset
graphic location), and transient contextual features (day-part,
browsing history, past purchases, etc.).

In typical ad auctions, advertisers bid for ad slots saitigfgpe-
cific features. Advertisers that match the features of theeatiad
slot are often allocated using GSP (more so for sponsoragisea
that banner ads). Expressiveness is typically non-seigliand re-

value (e.g., efficiency or revenue) as opposed to clustering based stricted toper-item biddinge.g., a bid price is offered per-impression

on purely, say, statistical properties of the features istjon.

We propose a suite of techniques for automatically genwayati
abstractions and for optimization using a set of abstraahicals.
Our first algorithm uses a form afolumn generatiorio generate
an abstraction: starting with a crude abstraction, we grthylve-
fine the abstraction by introducing distinctions that haaximal
impact on objective value. Unlike standard column genenative
must determine whichollectionof columns to add (and remove).
We develop novel scoring techniques to do just this. We aéso d
velop a hewconstraint generatioralgorithm for optimizing an ad
allocation MIP using a specific set of abstract channels,(#ngse
generated by our column generation algorithm). This methed
crementally refines the allocation of bids to abstract celnby
posting constraints to ensure advertisers are assigngdedalant
ad slots. This method will converge, in principle, to an i
solution given enough time. However, we also discuss how the
technique can be cut short with an approximate solution,hemd
it can be used to suggest further channel refinement for pagpof
tractability.

2For example, in [1], each distinct keyword/query is a ch&nne
and bids (or more precisely, slates of bids) are allocateeath
query. Tractability is achieved by focusing on only the fdwu-
sand highest-volume queries. The MIP model of [6] uses as-
signment variables for losslessly “abstracted” channeissisting

of (bid,attribute)-intersections, and is limited to a telaly small
number of channels.

3As we discuss belovdispatchof ads assigned to an abstract chan-
nel will generally be sensitive to the actual channel, orfeédture
instantiation, in question.

or per-click), time eligibility conditions, and simple bget con-
straints (often linking multiple bids/items, e.g., [13]).

Even in such a simple setting, the need for optimization @an b
acute. Consider the following example, adapted from [6]:

There are two sitegl and B. Bidderb; bids $1 per
thousand impressions ad and $0.50 onB, with a
budget of $55K. Biddeb, bids $0.50 per thousand im-
pressions o, with a budget of $45K. Suppose sup-
ply on A is 5 times that ofB for the first 50K units, but

is then exhausted (onl has supply from then on). In
a typical per-item auctior; will win all of A’s and
B'’s supply until its budget is exhausted. Specifically,
b1 would win 50K impressions oft andb, would win
nothing. Total revenue is $55K. The optimal allocation
would collect revenue of $100K by selling 50K units
of A to b, and 110K units ofB to b .

Optimization is also critical when one considesiatesof ads
(multiple advertisers shown on a single web page) [1].

The need for richer expressiveness in ad auctions is evident
pecially campaign-level expressiveness for banner adss point

4Structured (tree-based) languages have been proposepeitir s
fying item prices over ad features [11]. These do not extefpdes-
siveness beyond per-item, but allow compact, natural §pation
of a set of item prices that can be exploited in optimization.

5A similar need for campaign-level expressiveness is cleathier
media as well, e.g., in TV advertising [4]. Our techniqueplgp
directly to such problems, though the channel explosioblpra is
somewhat mitigated by the inability (or at least, currenvilling-
ness) to segment individual impressions by very fine-gthiea-
tures. The technology and willingness to monitor viewingite



was emphasized in [14], where various forms of expressgsgene
are described, along with aptimize-and-dispatchrchitecture in
which: (a) optimization is used to allocate ads over timeaiase
level of time granularity; and (b) dispatcherassigns ads in real
time to specific page impressions using parameters detedniy
the optimizer. Further forms on campaign-level expressigs are
detailed in [6], where algorithms for the online, approxienao-
lution of the Markov decision procesgduced by the allocation
model are developed. Specifically, given uncertain supiplyhe
form of web page hits) and demand (in the form of bids or con-
tracts), the approach optimizes the allocation of (loriga)expres-
sive ad contract$o ad channelgthat is, groups of features satisfy-
ing specific properties) based on the distribution of predicup-
ply. Indeed, inexpressiveness can lead to arbitrary ineffay in
GSP for certain distributions of agent preferences (eveh per-
item preferences) [3].

In what follows, we assume that advertisers makpressive of-
fers that articulate their preferences feequencesr setsof im-
pressions (or clicks, conversions, etc.). These can ieghed-item
bids, budgets, and other standard forms, but are extendec tide
much richer offer terms. We enumerate just a few examples-of e
pressiveness that illustrate the power of our model:

e Minimum targets/threshold preferences. bidder pays a
fixed amount only if a minimum impression threshold is met
during a target period (e.g$d for 300K impressions satis-
fying some conditionp). Multiple targets may be mixed, as
may per-impression bids witlonusesor achieving specific
targets. Maximums, even frequency capping at the site or
individual level, can be imposed as well.

e Temporal sequencing/smoothness: bidder desires a mini-
mum number of impressions satisfying conditiprin each
of a set of time periods (e.g., 200K impressions per day for
two weeks); or the bidder may make a threshold or per-
impression offer that is only “valid” if the variance in the
number of impressions per time period is no more than 10%
(here validity may mean that the impressions outside that
range are not counted, or that the entire contract is invalid

e Complements: ads on site A and site B must appear in a
2:1 ratio (either over the life of the campaign, or duringreac
relevant time period, e.g., hour, day-part, day, week).

While per-item expressiveness and budgets can usuallydog-in
porated directly into an LP model [1], some of these richemf®
of expressiveness require the introduction of binary \des (e.g.,
threshold preferences). Such MIP formulations are explisolved

in [6]. However, existing LP/MIP models are unable to scale t
practical problems involving a large number fefitures(impres-
sion attributes); yet it is precisely the ability to segmentvery
detailed attributes that explains the appeal of online diueg!
The key bottleneck is thehannel explosianthe number of spe-
cific ad channeldo which ads can be assigned in an LP/MIP—i.e.,
the number of distinct feature instantiations—grows exgtially

in the number of features, a problem to which we now turn.

3 Allocation Modd

We first outline a generic model for display ad allocation. ukm

ber of factors, such as the observability of impressionufess,
stochasticity of supply, and data representation are $e¢ glsut
see Sec. 7). For now, we assume the ability to tractably neaso
with arbitrary logical formulae over multi-valued featarand joint
distributions over such features.

and individual details to target ads as they are online woudéte
the problem addressed here as acute in such settings.

We assume a finite set of attributes featuresF, with each
F' € F having finite domainDom(F*) = {f{, fs,..., f.: }.
Features describe attributes of an ad display such as vweelpaie
location, user demographic, day part, etc. Each featurssilply
depending on the web property, is eitiobiservable—an ad display
is known to satisfy that feature with certainty or not—stochas-
tically verifiable—an ad can be determined to satisfy that feature
only with some specified probabilifyTo reduce notational clutter,
we assume all features are observable (but see Sec. 7). pldydis
occur over some finite set of time periofls ..., T'}.

Define the set ofoncrete channels (c-channelS)= Dom/(F)
to be the instantiations or “possible worlds” over featuresIn-
tuitively, a c-channet € C'is a finest-grained chunk of supply to
which an ad can be assigned. We often tkeas a model of the
propositional language over variabl@s(e.g., writingc = ¢ for
propositional formulae over F). Let s(c, t) denote the supply of
c-channelk available at time < T. We take supply to be deter-
ministic (uncertain is addressed in Sec. 7.)

Potential advertisers have particular campaign objextivenind,
which will be expressed using a set of one or more bids, witls bi
potentially linked by shared variables, constraints,, e&flecting
the forms of expressiveness discussed above. While we allow
types of expressiveness that can be expressed as a MIP, $ome o
our techniques below can be motivated by considering venpls
bid structures, embodying “LP expressiveness” only. Wesgme
this special case here. Assume a bid Betonsisting of a set of
item-based, budget-constrained bids. Each:bidB has the form
(%, v, g*, w'), wherey® is an arbitrary logical formula over the
featuresF, v* > 0 is’s value/price per impression! > 0 is its
budget, andy’ is a time window(s’, '] with a start and end period
between which impressions must occiir< s* < e < T). Bid
1 reflects advertiser's interest in impressions satisfying the condi-
tion ¢*. The (deterministic) allocation problem in this settingnca
be formulated as a simple LP that maximizes revenue by atloca
ing 2 (t) impressions of c-channe} € C'to bid i at time¢. To
simplify notation, we formulate the optimization as if teexvere a
single time period (the generalization to multiple peridglsbvi-
ous). Letvj bei's value for ac;-impression} = v’ if ¢; = ¢';

v} = 0 otherwise. Then we have:

i i
max E Evjxj
J

zt -
J 7

s.t. Z zh < s(cj) Vej € C

v;x; <g Vie B
J

Other forms of campaign expressiveness can easily be incor-
porated into this LP. For example, if a campaign has (parjial
substitutable demands (e.g., it desites or o2 with valueswv;
andv), two separate bids can be posted with a joint budget con-
straint. If o1 andy. are complements, we can constrain the al-
located impressions to meet some approximate ratio tasggf (
ent(p1) < (14 e)ent(p2), ent(p2) < (1 + €)ent(p1), where
cnt(¢p) is the number of impressions @). Smoothness constraints
can also be encoded linearly (e.g., requiring at least 10%taf
impressions to be allocated in each eligible time periodg. réfer
to these and any other expressiveness forms that can beeshicod

8E.g., impressions to registered readers of the New York Sime
may be observable with respect to gender, while the gendesrof
registered readers might only be probabilistically presticgiven
statistical data. Certain features may alsoiregplicable under
certain conditions, for example, on certain sites.



the LP ad_P expressivenesslotions such as threshold/bonus bids
cannot be expressed in an LP, requiring the introductionradry
variables [14, 6]: we refer to these formslIBsexpressiveness

4 Abstract Channels

The number of c-channe|€’| grows exponentially in the number
of features of interest. This number can be pruned by elitnina
ing any features that interest no bidder. We can also prozide
tighter bound on the number of required channels by aggrepat
c-channels that are indistinguishable to every biddes; phovides
asimple lossless abstractidsy grouping sets of c-channels corre-
sponding to (logically consistent) formulae of the form: 5 + ¢*;
i.e., conjunctions over all bid formulae or their negations

However, such simple lossless abstraction is unlikely talee
optimization (whether LP or MIP) practical: we still expeantpo-
nential growth in the number of channels, even when abstlact
in this way. Instead, we must consider the use of “approxéfhat
abstract channels (a-channelshn abstract channel is any aggre-
gation of c-channels, and can be represented as a logicaufar
« over F. An abstractionis a partitioning of c-channel€’ into
a setA of a-channels, i.e., a set of mutually exclusive and cover-
ing formulae{a, ..., a4, }. We treat an a-channel and its logical
representatiom indistinguishably, writing botle € « andc = «
as appropriate.

Given an abstractiorl, our optimization problem becomes one
of assigning ads/bids t&-channelgather than c-channels. Define
the supply of a-channet to bes(a) = 3 {s(c¢) : c € C,c E a}.

In the LP case with per-impression value, define the valuenof a
a-impression to bid:

vfx = Pr(gpi|a), where Pr(gpi|a) = s(goi Na)/s(a).

This value reflects the (expected) value ahadom dispatch pol-
icy: if 4 is assigned to an abstract channelit will be assigned
randomly to the c-channels that constitut® The optimal alloca-
tion under the random dispatch assumption is given by the LP:

max Y ohet,
Fay i ooy
s.t. Z :cij < s(ay) Voj € C
i
Vie B

E <
U(ijaj =9
J

With more general IP expressiveness, we do not associate gal
rectly with impressions, but with properties of the entiteation;
specific impressions satisfying logical formulag“count towards”
satisfaction of a bid’s conditions. Thus we generally distahe
impressions that courtbward bid satisfaction b¥r(*|«) rather
than discounting objective function value. The value distdn
the per-impression LP is a special case of this.

5 Creating Abstractions: Column Generation

The solution of the abstract LP or MIP provides us with anropti
assignment of bids to a set of a-channels. This leaves trsiqoe
of choosing a suitable set of a-channels: a set of computitje
manageable size, yet whose optimal solution provides aimapt

"The dispatch of ads can be handled more intelligently: nmed f
will actually be assigned to a channel not satisfyjstgintelligent
dispatch [14] can be used to reassign such wasted supplyg thaid
can exploit it. Thusyg, will underestimate true value. We discuss
this further below, and we develop methods to assign adsstoeath
channels in a more refined fashion.

or near-optimal solution to the original unabstracted MDBr first
technique relies on column generation, and deals diredtly kP
expressiveness. We first describe the method using probistins
only supply constraints, but then show how it applies mooadly
to include arbitrary linear constraints (including budgenstraints).
We then show how to account for IP expressiveness.

The basic approach is as follows: we solve an abstract LRjusin
some initial level of abstraction (e.g., aggregating atlhannels
into a single a-channel’). We refine the abstraction heuristically
by choosing an abstract chanmeto split into two by conjoining a
formula 8 and its negation, thus replacingby o A 3 anda A .

A new LP is solved with the new a-channels, and the process re-
peats until the improvement in LP objective value falls laesmme
threshold or the number of channels reaches a specified limit

Consider the following LP to allocate bids= {1, 2} to a single
abstract channel (with no budget or other constraint$):

Max olzl +0v2z2
stz +a2 <s(a)

Refining a-channed requires introducing the bid columns (and
supply rows) corresponding to A 3, a A 3 for someg.

Column generatiorj12] is used to solve LPs with very large
numbers of variables by first solving a version of the LP wigihy
few variables (columns), then adding new variables intoLtReat
each iteration and resolving. At each iteration, the newrools are
chosen by solving @ricing subproblenwhich identifies columns
that potentially improve the objective. We adopt this apptohere,
but with some significant enhancements that exploit theiapec
structure of our problem, and account the introduction oftimu
ple columns at oncev@mﬁ anda:iaAE for each bid; in the example)

while simultaneously removing other columng, .

5.1 Scoring Abstract Channel Splits

Assume we have the solution of the abstract LP above. We first
determine the value, @core of a potential split ofx into two a-
channelsy A 8, a A B. This score allows us to compare candidate
splits defined by differen8. We score a split by: (a) scoring the
new columns introduced by the split using a form of columnegen
ation scoring; and (b) combining the scores of these newnmodu
in a way that exploits the special structure of our problem.
Standard column generation methods solve a pricing sulgrob
to identify columns absent from an LP with positiretuced cost
and typically add a column with maximum reduced cost (for max
imization problems), terminating when no reduced costgas-
tive. We apply a similar technique. Let, be the value of the dual
variable corresponding to the supply constraint for a-oleba in
the dual of the abstract LP (i.e., the shadow price of thetcains).
The reduced cost of variabk—imﬁ is:

rc(:cimﬁ) = vimﬁ —cm

wherec is z, ,5's column andr is the vector of dual variables.
The reduced cost Qifimﬁ is defined similarly. Unfortunately, the
abstract LP does not include relevant supply constraimta fa 3

or o A B, meaning shadow prices for these constraints cannot be
directly obtained from the LP. We consider adding two newstov

the original abstract LP, reflecting split channel suppdy/falows:

8We illustrate with a single channel to reduce notationattetu
Unlessa = T, this LP will have a set of a-channels and alloca-

tion variablest’ for each bidi and a-channet;.



Max ovlzl —I—Uil’i
st ozl +a2 < s(a)
Pr(fla)zs  +Pr(fla)zs < s(anp)
Pr(fla)zs  +Pr(Bla)zl < s(anp)

Sinces(a A B) = Pr(B|a)s(a) (similarly for §), these new
constraints are multiples of the origina{a) constraint, leaving
the optimal solution unaffected. This allows us to price tive
new constraints: when we consider the dual of this LP, onienaht
solution sets the dual variabte, to its value in the original abstract
dual LP, and sets the two new dual variables.s = TonG =
0. As a result, we can compute the reduced costs of the vasiable
corresponding to the split channels using terms availabla the
solution of the original abstract LP:

7c(Tonp) = Vang — CT = Uppg — Ta
re(z,,5 anB

Reduced cost measures the increase in objective value fier un
increase in the (nonbasic) variable, making maximum redlaost
a common, easily computableuristic for variable introduction.

(It can also be used to prove optimality when max reducedisost
nonpositive.) However, it can be misleading since it failcon-
sider how far the target variable can be moved until conssaire
met. Furthermore, our aim is to introduceset of new columns
(all bid variables for the two new channels created by thé)spl
andremovea set of columns (those corresponding to the original
channel).

In our simple case, with only supply constraints, we can meas
exactlythe change in objective value resulting from a split. With-
out budget constraints, all supply of the new split channel 3
will be allocated to the bid that has maximum valuefmﬁ, giving
total objective value improvement M(ngB)s(a A B). Here the
reduced cost component reflects the precise differencejétinle
value if ana-impression to a current winning bid is replaced by
ana A g-impression to bid, while the supply component tells us
exactly how much substitution is available. Applying thengaar-
gument tax A 3 gives us the following measure for scoring the split
of any channet into two subchannels A 3 anda A B

score(a, 3, 3) = meaé({rc(:c;Aﬁ)s(a AB)}

i
)fv(mﬁ—cwfv — Ta

+max{re(z, 5)s(a A B)}

This scoring function has the desirable property that thozesc
of a split isexactlythe induced improvement in objective value
when the only constraints are supply constraints. Of coalgs@ost
all natural problems will have other constraints: budgetst@ints
most certainly, and other expressive forms as well. Howefer
we limit ourselves to LP expressiveness, the reduced cdmi-ca
lation remains straightforward, requiring one vector pretd(us-
ing dual/shadow prices computed in the LP solution). Theisgo
function itself becomes heuristic—though it still provide guar-
antee of optimality if the maximum score is nonpositive. o
vides an upper bound on the possible improvement in obgctiv
value (e.g., consider the case where the maximizing lfd split

5.2 Searching for Suitable Splits

Scoring a splitis computationally simple, requiring at tritj#| re-
duced cost calculatiort8. However, the number of potential splits
of an a-channek is doubly exponential im (i.e., 25" formulae
overn features with domain sizk). In addition, we need to evalu-
ate splits of each a-channe} in the current abstractioA.

To manage the complexity of this search, we adopt a simple my-
opic approach to determining the best split of an a-chanpeWe
build up the formulgs; on whiche; is split as follows. Denote

Dom(F) \ {fi} asf;, i.e., the exclusion of the value for at-

tribute . We first consider eacﬁ} consisting off_li for a single:
andk. Thatis, at the first “level” we consider splits that exclunte
attribute-value. We “commit” to a single attribute-valuekision

with the best scoracore(a;, }ﬁ;). We then consider refining
B} by conjoining with some nevyf; or disjoining with some new
f} (conjoining tightenss}, disjoining relaxes it). Each resulting
(33 is scored in a similar fashion, and we again commit togfie
with the highest score. This continues fariterations, wheren
is either a fixed threshold or is determined dynamically yuie
ing a minimum score improvement be met. The best split ofs
determined heuristically a(ﬁjﬁj), whereg; = 3;".

Given a current abstractiod, thea; € A with the highest-
scoring best split is adopted, creating a new abstractionith o
replaced byx; A B; anda; A Ej. The LP resulting from the new
abstraction is solved, and the search for a best split regeattil
the score of the best split of falls below some threshold.

5.3 Using Abstractions in Ad Auction Opti-
mization

One limitation of the column generation model as proposetsis
focus on LP expressiveness. However, recall that the atbistna
process is used to create the set of abstract channelsusebién
MIP optimization; i.e., the intended output of this procesa set
of a-channels, not (necessarily) the allocation itselfze@ian allo-
cation problem with IP expressiveness, we use column géoera
with a linear relaxation of the problem to generate abstrhen-
nels. Once the abstract channels are constructed, we tihen so
the “original” MIP using allocation to the abstract charmete-
ated, with appropriate discounting of impression valuesammt
variables by the probability of a bid receivingrelevantimpres-
sion within an a-channel (see Sec4)To evaluate this approach,
we experimented the column generation model on a collection
random problems, some with LP expressiveness only, othighs w
IP expressiveness. All experiments were run on a machirteavit
3.8GHz Xeon CPU, 2BM cache, and 16GB RAM.

5.3.1 L P Expressiveness

The first battery of problems involves bids that use only Lpres-
siveness; specifically, each bid has per-impression vahsfor
a particular set of attribute-values over a given time mkradong

a A B has a budget constraint that prevents it from consuming the with a total budget. Optimizations are performed over a tiroe-

entire split supply). Despite this, it provides much befierfor-
mance than using reduced costs alone. One could envisioa mor
complex scoring functions that attempt to solve small oftétion
problems to better estimate the improvement in objectivaevtor

a given spli® However, a key advantage is that our scoring func-
tion requires no additional computation over standard cedwost
calculations (using terms readily available from the LR/ephpart
from a trivial maximization. This is critical, since the nber of
potential splits is doubly exponential: we discuss thistnex

9Folklore in column generation suggests this is rarely waile.

zon of 30 periods. This battery contains multiple sets oblem
instances, each set characterized by two parametetsinary at-
tributes andh bidders. We ran sets of instances with= 10m for
m € {10, 20, 30, ...,100}.

1°This is in fact an overestimate, since any bithat cannot use

abstract channel (i.e.,« = —¢") will not have a variabler} and
will not contribute to the score.

Hif the original problem uses only LP expressiveness, therLf

solution used to create the final refinement will be the oftatia-
cation and no re-solve is needed.



Supply distribution. The probability of a unit of supply satis-
fying attribute-valuef; is drawn fromtU|[0, 1]: since Dom (F*) =
{fE, faY, Pr(f3) = 1 — Pr(f}). Total supply of impressions, over
all attribute-values, is 1,000,000 for each time period.

Bids. Each bidj has form{yp?, v?, g7, w’) and cares about a set
of attributesA? with size| 47| ~ U[0, 10]. We assume bidders tend
to have a lot of commonality w.r.t. the attributes they cdreud, so
bid attributes are sampled from a Zipf distribution, with(F* ¢
Aj) = (1/0)/ (X1 <r<m 1/k), sampled without replacement. For
any F* € A7, bid j requires that impressions satisfy,, with
z; € {1, 2} chosen uniformly. The bid's formula is the conjunction
of all required attributesy’ = A i f2..

Our bid valuation model reflects the intuition that biddensd to
place higher value on more specific bids (i.e., with moréfattes),
and higher value if the attributes in their bid formula argieater
demand. We determine biddgs per impression value’ as fol-
lows. We first draw a “base value? from U/[0.1, 1] then adjust
it by settingv’ = ©7(1 4+ 10} i 4; Pr(F")). Thatis, if the
bid cares about no attributes, theh = 05, whereas if were to
care about alin attributes, then’ = 119;. A bid’s time win-
dow w’ is determined by sampling: andt» from U[—10, 40],
settingw’ = [min(t1,t2), max(t1, t2)], then truncatings? to lie
in [1, 30]. This incorporates the idea that some bids have windows
that extend beyond the optimization horizon. A bid’s budgetet
to a fraction of the value of the total supply that it careswubo
Namely, ifo; is the total supply of formula?’ during windowa?,
then the budget ig’ = 77007 with 7; ~ U[0.1, 1].

In addition to the bids above, we include a “market” bid with
value 0.1, unlimited budget, and no attribute preferences ¢ =
True). This accounts for value that might be obtained from other
sources (e.g., future bids or a spot market).

Optimization parameters. During an iteration of column gener-
ation, we continue searching for a suitable split so long asan
find a channel refinement that provides a score that offerstaice
minimum improvement over the previous abstraction. Pateame
MI sets this target: if some refinement offers at leashMarfrac-
tional improvement over the allocation value of the mosertd.P,

we continue; if there is no such refinement on any channelewe t
minate column generation. Even if there is kb improvement,

it doesnot necessarily mean the the allocation value is witkiin
fraction of the true optimal value. Rather, it means themoisy-
opic improvement of at lea¥ll that can be obtained within the
restricted channel splitting space we consider: some seguef
channel refinements could effect greater improventent.
Estimating an upper bound on the optimal value. To measure
how good an allocation is, we need to estimate the true optimu
value achievable if we generated all relevant columns. kepcte

an upper bound on the optimum as follows. When column gener-
ation is complete, we run another optimization usimgliscounted
values. That is, we remove dllr(¢’|o;) terms. This is clearly
an upper bound on the optimum because it assumes that bilds cou
actually make use of the entire amount of a channel it is atéxt
(rather than the onlPr(*|a;) fraction it actually cares about for
channelj). However, this is a very loose upper bound. We can

12The restricted space of channel splits we consider can oslyio
impact our ability to find a suitable refinement. Even withthis
restriction (i.e., even if splitting into arbitrary pair$ subsets is
allowed), one can show that myopic splitting is insufficiengen-
eral when IP expressiveness is admitted. For certain fofmh&o0
expressiveness, however, we can show that, if an abstnastimt
lossless, there always exists a two-way split of some cHahae
improves value. Hence a myopic search (over an unrestraptid
space) is sufficient to find an optimal, lossless abstraction

# Frac Runtime (sec)
m n channels uB Improve u range
10 100 12.0 0.893 0.447 12 [4,24]
20 200 11.0 0.828 0.364 40 [8,74]
30 300 10.2 0.841 0.380 75 [35,150]
40 400 9.8 0.803 0.334 153 [28,556]
50 500 10.0 0.816 0.396 212 [23,418]
60 600 8.6 0.827 0.343 245 [33,470]
70 700 8.3 0.824  0.304 314 [26,656]
80 800 9.2 0.824 0.345 461 [101,940]
90 900 8.6 0.806 0.333 566 [75,1211]
100 1000 9.3 0.804 0.344 811 [203,1438]

Table1: Averageresultsfor column generation with L P expres-
sivenessand MI = 0.01, m attributes, and n bidders.

# Frac Runtime (sec)
m n channels uUB Improve pu range
10 100 324 0.965 0.515 53 [10,112]
20 200 33.8 0.905 0.439 317 (21, 758]
30 300 27.1 0.899 0.438 538 [112,1384]
40 400 28.6 0.871 0.399 1247 [211,4159]
50 500 26.8 0.871 0.450 1543 [153,4027]
60 600 22.7 0.877 0.392 1775 [88,4798]
70 700 19.3 0.867 0.346 1959 [66,5878]
80 800 24.2 0.873 0.393 3746 [469,8670]
90 900 24.0 0.858 0.374 4956 [807,14534]
100 1000 25.7 0.853 0.392 6687 [1677,17047]

Table2: Averageresultsfor column generation with L P expres-
siveness, M1 = 0.001, m attributes, and n bidders.

tighten it significantly by ensuring that a bid’s allocatidoes not
exceed the supply that it actually cares about. That is, wieaddi-
tional constraints of the form’ < s(¢’ A «;)/s(a;) for all bids
¢ and channelg. This is still an overestimate because it does not
account for interactions between multiple bids. Howeverpigi-
cally, this bound is quite close to an even tighter upper dahat
we generate via constraint generation (see Sec. 6).
Experimental results. Table 1 shows results from runs with pa-
rameterMI = 0.01, averaged over 20 instances for edeh, n)
pair. The table shows several key measures including thébaum
of a-channels generated. The fraction of the upper bounden t
optimal value obtained by the abstract LP when column géioara
terminates (“Frac UB") is also shown (giving us a lower bound
on the quality of the abstract allocation relative to thes toptimal
allocation). An estimate of the improvement in the degreemf
timality is shown (“Improve”). This is reported as the avggaof
(Final—Initial ) /UB, whereFinal is the final LP valuelnitial is the
LP value at the start of column generation (when a singleradtst
channel is used), andB is the upper bound on the optimal value.
Finally, the average and range of runtimes is presented.

Table 2 shows similar results, but for runs wit/ = 0.001.

We see that, with LP expressiveness, column generationlzan o

tain a significant fraction of the upper bound value for peois
in which it would be impossible to even enumerate the fullbina
stracted LP. Setting a lower value for the minimum improvete
parameterMI allows us to obtain a greater fraction of the up-
per bound, but with a fairly significant increase in run tinféhis
suggests adopting a more sophisticated technique thasiooadly
computes an upper bound during the course of column geoerati
(using the current set of channels), then weighs the additipo-
tential improvement against the amount of time already spen

Fortunately, although the numbermdtentialchannels increases
exponentially inm andn, our column generation procedure can
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Figure 1: Fraction of upper bound vs number of channels for
m =10, n = 100.

obtain high value with very few channels. Indeed, the nundber
generated channels, and the resulting quality of solutiosmcom-
parable across ath andn tested. Furthermore, on average, much
of the improvement is obtained early in the procedure. Fghdws
the fraction of upper bound obtained after a given numbehahe
nels has been generated, averaged over 20 instancespwitho,

n = 100, and MI = 0.001. We obtain a high fraction of the up-
per bound from the first few channels generated, with additio
channel splitting providing more modest improvement.

5.3.1 | P Expressiveness

The second set of problems includes bidders with all-ohingt
bonus bids, as well as bidders with per-impression valud$ad-
gets. Since all-or nothing bids require binary variabledumn
generation on the LP relaxation offers only an approxinmatiall
problems have 100 attributes, bonus bidders, and, = 4n; per-
impression bidders, with, € {10, 20,...,60}. The preferences
of per-impression bidders is determined as before. A borus b
der hady? andw’ chosen similarly. However, its per-impression
value isv’ = 0, and instead the bidder paysif it receives at least
¢’ impressions satisfying’, but nothing otherwise. We selegt

to be a fractionr’ of the total supply the bid cares about, namely,
¢ = t70j, with 7; ~ U[0.1, 1], ando; the total supply of for-
mula ¢’ during time windoww?’. We then set/ = b7¢’ where
b is chosen as’ for a flat bidder, but then multiplied by a factor
chosen fronlJ[1.1, 1.5]. We also include a “market” bid as above.

Table 3 shows results with/I = 0.01, averaged over 20 in-
stances for eaclins, n;) pair. Shown are the number of channels
generated, the fraction of the upper bound (on the optimuwr) o
tained by when column generation terminates (“Frac UB,ith-
provement over the fraction of the upper bound obtainedrbefo
column generation (“Improve”), and the range of runtimesrdtie
20 instances. Although we use the LP relaxation to deterotina-
nel splits, we solve MIPs to determine the abstract allocasind
value (hence fraction of the upper bound) obtained.

Although column generation operates on a relaxation ofrile t
MIP, our scoring function is nevertheless effective in gugdour
procedure to good channel splits. Indeed, the performatiittel
expressiveness compares favorably to that with LP exmerssss.
We emphasize that these campaign-level optimizationsuaref:
fline, and used to parameterize dispatch policies that ereithple-
mented in real time. Thus the times reported here allow #atju
multiple optimizations (and reoptimization) of offline adlations
(e.g., within a stochastic optimization framework [6]).

# Frac Runtime (sec)
ny, N channels UB Improve u range
10 40 6.6 0.847 0.248 41 [5, 82]
20 80 6.6 0.815 0.252 66  [15, 129]
30 120 7.0 0.769 0.264 91 [14, 205]
40 160 8.5 0.790 0.296 153 [31, 282]
50 200 8.8 0.823 0.325 188 [39, 613]
60 240 6.8 0.814 0.289 92 [5, 325]

Table 3: Averageresultsfor column generation with | P expres-
siveness, MI = 0.01, 100 attributes, n, bonus bidders, and n;
per-impression bidders.
6 Constraint Generation for Abstract Optimiza-
tion
The optimization above, using the abstraction generatedibgol-
umn generation process, assumes that any ad allocated to an a
channek will be randomly dispatched to the component c-channels
that make upx. This is reflected in the MIP (or LP) objective
by replacing the per-impression valuéof bid i by v%, Pr(¢’|a).
With a well-crafted abstraction, this may produce an optiafia-
cation (e.g., consuming as much of each advertiser's buxgeds-
sible). However, if the number of a-channels is limited fompu-
tational reasons, the “pessimistic” assumption of rand@paich
may leave revenue on the table. We consider another meamps of o
timizing with a-channels that relies on constraint genenain the
abstract MIP (or LP) to allocate the supply of abstract cletsto
bids non-uniformly, thus improving revenue.

6.1 Constraint Generation Procedure

Let A be an abstraction andl/ the optimistic MIPin which bids
are assigned to a-channels, but where each impression toidid
assumedo satisfy its formulap;. This assumption is realized by
replacing the per-impression valug for a-channeb by v¢ itself:
i.e., we assume thaweryad for: assigned tax will be dispatched
intelligently, thus guaranteeing that is satisfied. In a simple two-
bid, two a-channel case, the resulting MIP (in this case,i&#)
vlmél

1
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The optimistic assumption embodied in this formulation1is u
reasonable in general. There is no reason to believe theatibo
of bids toa; permits feasible “packing” of their promised supply in

such a way that each bidgets onlyy’-impressions. However, we
can test this assumption by solving an LP that determineshehe
there is enough supply to do just this: in our example, we want

to determine ifoe; contains enouglp! andy? supply to meet the
“obligations” contained in the solution of the optimistid®4 simi-

larly, we wish to test a-channek. More generally, lek = {g‘cf;j}
be the solution of the optimistic MIP with a-channdls;}. Let
W) ={i: g‘cf;j > 0} denote the the “winners” of a-channe}.
We solve the following LP for eachy; (with a constant objective,
since our aim is only to determine feasibility):

max 1
s.t. > a=al, Vi € W(4)
cEaj,cl=pt
Z z! < s(c) Ve € aj

€W (4)

BAs discussed above, in general, we don't discountvidlee of

an impression to a bid, but the number of impressions ¢bant
toward satisfaction of bid conditions. The optimistic Migptaces
all discounted counts by their undiscounted counterparts.



This LP determines a feasible allocation of bidhat sharey;
to the c-channels that constitutg, thus guaranteeing that every
impression given ta satisfies its bid conditiog’. The first set of
constraints ensures there is enouyghsupply for each bid—call
thesebid adequacy constraintswhile the second establishes that
no constituent c-channel is overallocated—call thetsmnel sup-
ply constraints If LP(«;) is feasible for each;, then it provides
an optimal dispatch policy that extracts the full objectiadue of
the optimistic MIP. If not, we post constraints on the opstiu
MIP and resolve. In particular, |t P(«;) be infeasible. Then
there must be some minimal set of constraints that are yointl
feasible. LetS = S, U S, be such a minimal set, whefg, are bid
adequacy constraints arftl are channel supply constraints. We
can show that the MIP solution violates the inequality:

St € X o0
1€Sq cESs

We can resolve the MIP by posting this constraint to ensuae th
overallocation of the channels B does not occur for the purposes
of maximizing value extracted from bids },. A tighter version

We found that, for larger problems, constraint generatidmdt
always terminate within a reasonable amount of time. In @pee
iments, if constraint generation did not terminate withf0&ec-
onds, we stopped generating constraints and generatedibléea
allocation that minimized the maximum difference from théPM
allocation. We accomplish this with the following LP:

min €
s.t. > a <, Vi € W ()
cEaj,cl=pt
o mizan, - Vi € W(5)
cE€aj,cl=pt
o mizan, - Vi € W(5)
cEaj,c\:Lpi

As discussed above, the feasibility LP could require an expo
nential number of variables. In practice, we find thatlif(y) is
no greater than around 20, the size of the LP is reasonabte (an
muchsmaller thar2?°). If at any point the MIP give$V () > 20,
we split channeb;. However, rather than using the scoring func-

of this constraint can be employed: we can add to the sum on thetion discussed above, we attempt to reduce the maximum, over

lefthand side any bid all of whose relevant channels are included
in Ss, i.e., anyi s.t.{c € a; : ¢ = '} C S,. At each itera-
tion, setsS leading to violated constraints are identified for each
a-channel and postéfl. The MIP is resolved until feasibility is at-
tained (in which case full optimistic objective value isaibied), or
computational or time bounds are reached.

Computationally, the most demanding aspect of this algarits
the solution of the LPs used to generate constraints. Whelsdlu-
tion of LP(«;) could, in principle, require an exponential number
of variables (i.e., thec: corresponding to all c-channetse «;)
and constraints, we use simple lossless channel abstrdotiol-
lapse this number. As such, the number of winners for eaatineia
(and the interaction of their bids) determines the true derity of
the required LP solvel. The constraint generation algorithm can
be used directly to solve the ad allocation MIP without nedyon
column generation. For example, it can be applied directlthe
fully abstract MIP with a single a-channerl’). It could also be
used to optimize oveany heuristically chosen abstraction.

6.2 Empirical Results

To evaluate the effectiveness of constraint generation xpere
iment with problems with bonus and per-impression biddess,
described in Sec. 5.3. We first perform column generationgusi
MI = 0.01, then extend the solution using constraint generation
To avoid generating an unreasonable number of constraietase

a tolerance (set t00.01), whereby the feasibility LP allows the al-
locations from the MIP to decrease by upctoThat is, we replace
the first set of constraints in the LP by:

S a <y, Vi € W(j)
cEaj,cl=pt
S aizal, — Vi e W(45)

cEaj,cl=pt

Thus, when constraint generation terminates, the allocégiguar-
anteed to be feasible, but may be suboptimal.

¥These can be identified using the facilities of standardess|v
such as the CPLEX IIS (irreducible inconsistent set) rautikive
use our own special purpose algorithm to identify such sets.
The interaction is in fact even less when one accounts foe tim
windows: a separate feasibility testing/generation seds in-
voked for each a-channel, time-period pair.

the two new channels, of the bids that care about the channel.
That is, we minimizescore(a, 8,8) = max({|{i}| : B A ¢' #
False}, {|{i}| : B A ¢" # False}).

When constraint generation is complete, we compute theevalu
of the allocation based on the final feasible allocation geee by
the LP (which might be different than that of the final MIP abe
tion, due toe), but use the final (infeasible) MIP allocation as an
upper bound on the true optimum value. This bound is clodauto,
somewhat tighter than the bound generated in Sec. 5.3.

Table 4 shows the results of experiments on the set of prablem
with bonus and per-unit bidders described in Sec. 5.3. Hare w
show the results only for the constraint generation porticie ta-
ble shows several key measures, including the number ofredms
generation iterations, the number of additional channetetated
and the number of constraints generated. The fraction afpper
bound on the optimal value obtained by the MIP when constrain
generation terminates (“Frac UB”) is also shown. An estercit
the improvement in the degree of optimality over the finaliooh
generation value is shown (“Improve”). Finally, the averaand
range of runtimes is presented. Clearly, the additionabgha-
creases value to a high degree of optimality, although oiotgi
this improvement can be time consuming for larger problems.

6.3 Other Usesof Constraint Generation

One of the bottlenecks in the effective use of constrainegaion
is its tendency to scale poorly in the number of “winners.e&8f
ically, if an a-channel, time-period pair has a large nundféids
that are allocated to it in the initial abstract MIP solves firoce-
dure can generate hundreds of thousands of constrainsingahe
MIP to slow down significantly and dominate runtime. The num-
ber of winners in the MIP can be used to suggest further channe
refinements. The development of effective channel spdittieuris-
tics that attempt to “separate” bids into different chasngbuld
make constraint generation much more effective. The quiek-
tification of problematic a-channels during constrainteyation is
critical as well: whenever a channel is split, all constimion the
split channel must be discarded, and new ones must be getierat
on the new channels, further “wasting” computational ¢fféhus
problematic a-channels should be identified before sigmificon-
straint generation occurs.

Constraint generation can also be used selectively. ThedsihP
be solved by using the “optimistic” values on some chanimeét



# # # Frac Runtime (sec)
ny, N iterations channels constraints UB Improve u range
10 40 12.7 0.1 221 0.954 0.104 154 [14,615]
20 80 121 2.3 557 0.939 0.118 636 [118,1178]
30 120 9.1 4.4 750 0.965 0.190 850 [317,1750]
40 160 5.9 7.5 787 0.954 0.157 1434 648, 6609]
50 200 5.6 8.0 721 0.967 0.139 1419 [679, 6235]
60 240 8.4 7.6 803 0.964 0.143 1029 [635, 2269]

Table 4: Average results for column generation followed by constraint generation with 100 attributes, n; bonus bidders, and n;

per-impression bidders.

pairs—requiring constraint generation to effectivelyveaup sup-
ply with those segments—while the random dispatch poliecyli
assumed in others (e.g., those where constraint geneiumt
scale effectively). This offers a tractable means for imprg on
the abstract allocation problem without necessarily anting for
intelligent dispatch across the entire space.

7 Data Representation and Other |ssues
The implementation and practical deployment of our techesq

bring to light a number of subsidiary issues that need to be ad
dressed. We first discuss several ways in which our column an

constraint techniques can be extended to further enhaatabie
ity, then outline some additional challenges to practiegldyment
and how we address them.

7.1 Discussion of Techniques

The column generation procedure converges to an optinwdaall
tion for LP expressiveness, even with our myopic searcheproc
dure. Successive conjoining of literals must eventualbdpce all
c-channels; and since our scoring function overestimat@sdve-
ment in LP objective achieved by any split, all worthwhilditsp
will be made. Of course, tractability requires that we do syt
the channels too finely. To this end, we consider complex splits
by allowing both literal conjunction and disjunction dugirsplit
search. Although complete search is impractical, more istph
cated techniques for constructing split formulae may leagven
better splits. For instance, dynamic programming may be irse
special cases (e.g., under certain independence assus)pflech-
nigues for constructing logical class and concept desariptirom
the classification and concept learning literature—andeng@ener-
ally, methods for feature selection in learning [10]—magoabe
adapted to our setting.

However, we emphasize that our goal is not to identify thelsma
est set of channels per se, but rather a set of channels #ukst te
a high value from optimization while allowing the LP to remai
tractable. Our approach obtains high value with a small rermob
channels. For our larger problems, search dominates rantien

LP relaxation at the root of the MIP search tree, it is not goar
teed to converge to optimality. Alternatively, we could éaypa
branch-and-pricd2] approach, whereby column generation is ap-
plied at multiple points in the MIP search tree. This woulldbwal
convergence to an optimal allocation in the IP case, but ishmu
more computationally expensive than standard (LP) coluemeg
ation; it also leads to complications in the cutting plargpathms
needed to solve MIPs efficiently.

7.2 Data Representation

g Our approach to channel abstraction requires manipulafidog-

ical formulae describing both abstract channels and bidsthEr-
more, the natural and compact description of both bids/eégng
and channel supply requires the use of logical formulae.rébp
lems with dozens or hundreds of channel features, we carpete
supply distributions to be explicitly articulated for eachncrete
channel. Nor should we expect bidders to specify their astsr
explicitly over such concrete channels.

Our data distributions make specific independence assongpti
that allow them to be represented tractably. While more ggne
models can be used (e.g., graphical models of distributioch
as Bayesian networks), we adopt a simple clustering mode¢ T
channel feature séf is partitioned into a s = { H;} of subsets
or factors and we assume an explicit joint distribution fmsten-
tial) +; is provided for each factoH; (e.g., if H; = {A, B,C},
then1); is a joint distribution ovetDom (A, B, C)). These poten-
tials are independent, so the probability of any channBkig) =
IL;4;(c[i]), wherec]d] is the restriction of c-channelto its feature
values inH;. The supplys(c,t) of any channel at time is then
s(c,t) = s(t) Pr(c).t” Our assumption above of complete feature
independence is a special case of this model.

Ourimplementation of channel abstraction usetered Boolean
decision diagrams (OBDD¢gY] to represent logical formulae: this
includes the logical representation of bid formulaeand of ab-
stract channels;. Given the specification of probabilities in terms
of factors and potentials, we have devised efficient alfgovit for:
(a) computing the probabilities of a formula representeahe®BDD

quiring more than nine times as much time as the LP solvess Thu (€.9., to comput®r(«) for some a-channet in order to determine

our primary focus is accelerating split search, rather #aguring
completeness. Simple heuristics for variable/literakoirty based
on channel supply and bid properties could dramaticallyrowe
the runtime performance of column generation.

Constraint generation can be used independently of colienn g
eration, but itis much more tractable if it starts with a gabdtrac-
tion. While constraint generation can improve an allogatiothe
case of LP expressiveness, it is most beneficial with IP espre-
ness, since column generation is applied to an approximafithe
MIP (i.e., its LP relaxation). Since column generation is an the

its supply); and (b) computing the conditional probabilitiyone
OBDD given another (e.g., to compute the probabilty(¢*|a)
that a-channek satisfies bid formulg").

7.3 Channel Featuresand Stochastic Supply

The nature of useful channel features varies significantignfone
web site to another. We capture this by aggregating c-chaimte
groups known abase channelgypically corresponding to partic-
ular sites (or subsections of sites). Each base channe| éesge-
cific web site) is characterized by its total amount of sugsigd by
the set of features that aobservablgi.e., features that are known

'®Standard bounds from the column generation literature @n b with certainty to hold of a particular impression, such ag-gart,

adapted to our problem to bound the degree of suboptim&liyld
we stop generating channels when some split still has pesi-
duced cost [12].

It impression distributions are nonstationary, the pagsican be

indexed by time, or by time “features” such as day-part.



gender of subscription users, etcsjpchastically verifiabl€i.e.,
features for which a probabilistic estimate of satisfattean be
given), orinapplicable(features for which no information is avail-
able). The distribution of channels with a base channelésifipd
using the method above.

C-channels cannot be defined using inapplicable featursechas-

tically verifiable features: for any base channel, its crrieds are
the instantiations of its observable features only. Fdmimse, on a

site A that has statistical data on gender, but no means of observ-

ing gender, no c-channel exists with featuséie = A, gender =

male (Since one cannot assign an ad to such an impression with

certainty). The distribution of gender is used only to pcedie

number ofmale-impressions (hence payment) when an ad is as-

signed tosite = A. Similarly, if a feature is inapplicable, every
feature value is assumed to go unsatisfied.

Our abstraction model is presented as if supply is detestini
If supply is stochastic, our abstraction techniques canemeigl-
ized using the methods described in [6], where the resulteof
terministic optimization are used in a sampling and reojatition
framework to manage uncertainty and risk. Our data reptasen
tion can easily be generalized as well: (a) we replace thatpoi
estimate of the supply(b) of a base channél by a distribution
(e.g., normal, or other parametric form that makes sensecand
easily be sampled from); (b) instead of a simple multinorfoal
each observable attribute, we specify a Dirichlet, withdrparam-
eters for each domain value. This allows simple computatfex-
pected values for deterministic optimization, and simplegling
for stochastic optimization.

8 Concluding Remarks

We developed a suite of techniques based on column and aomstr
generation that effectively tackle the channel explosiablem in
the optimal allocation of online ads. Our techniques appligdath
simple, current forms of expressiveness (e.g., simple éudgn-
straints) and other, richer forms of campaign-level exgiveness
that require the solution of large-scale integer progras.exper-
iments demonstrate that high-quality allocations can berdened
using very few abstract channels in optimization: thissiitates the
desirable sensitivity of our methods to those channelmistins
that have the greatest impact on value (e.g., revenue oieeffi).
Our techniques scale to problems with hundreds of attribatel
bidders. Given the offline nature of the optimization problee
propose, our computational results suggest that our puvesdan
be run and rerun frequently to determine, say, (approxilylate-
timal allocations in stochastic models that require sangp]6].
There are a number of interesting directions in which thiskwo
can be extended, in particular, in directions that wouldagick
scaling to even larger problems. The search for channdkspli
column generation, while effective for our problems, idl sfilite
crude, and we suggested several avenues for improving étinih
provements to constraint generation discussed in Sec.nél.&e
ploring branch-and-price techniques remain a high pyi@st well.
Finally, assessing the impact of approximate channel atisin
and/or optimization on incentives in ad markets is of ingere
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