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Summary. Automated market makers are algorithmic agents that provide liquidity
in electronic markets. We construct two new automated market makers that each
solve an open problem of theoretical and practical interest. First, we formulate a
market maker that has bounded loss over separable measure spaces. This opens up
an exciting new set of domains for prediction markets, including markets on locations
and markets where events correspond to the natural numbers. Second, by shifting
profits into liquidity, we create a market maker that has bounded loss in addition
to a bid/ask spread that gets arbitrarily small with trading volume. This market
maker matches important attributes of real human market makers and suggests a
path forward for integrating automated market making agents into markets with
real money.

1.1 Introduction

Automated market makers are algorithmic agents responsible for maintaining
open interest in electronic markets, and they have been applied successfully
to create new prediction markets that would not exist without the interven-
tion of liquidity-providing agents. For instance, the Gates Hillman Prediction
Market successfully forecast a fine-grained probability distribution over poten-
tial opening dates for the new computer science buildings at Carnegie Mellon
University [Othman and Sandholm, 2010], and Yoopick was a Facebook ap-
plication that allowed users to predict point spreads with far more detail than
in traditional sports betting [Goel et al., 2008]. In this paper, we develop two
new automated market makers that can be applied to new domains.

First, we design a loss-bounded automated market maker for separable
measure spaces. Automated market making research has centered on finite
discrete event spaces, but the market maker we present here is suitable for
countably infinite discrete event spaces and uncountably infinite continuous
event spaces. This market maker opens up exciting possibilities for valuable
new markets. For instance, a prediction market over earthquakes in California



2 Abraham Othman and Tuomas Sandholm

or hurricanes in Florida could be run; traders could select ranges of locations
and dates and magnitudes (all of these being continuous variables), and get
paid if their predictions are correct. More importantly, administrators could
use market prices to get a better picture of disaster risks, providing vital
insight that could improve preparation and planning.

We are also interested in expanding the use of automated market makers
beyond mediating prediction markets (that typically use artificial currency).
We would like to see automated market makers used in real markets with real
money. As we saw in the recent “Flash Crash”, where open interest in popular
equities dropped precipitously [Sterling, 2010], it would be of immense value to
have trading regulated by algorithmic agents with predictable behavior. The
second market maker we design replicates the desirable features of existing
human-mediated markets, but in an algorithmic way. The market maker can
run at a profit and is appropriate for use in markets where the level of liquidity
is not known a priori. Our new market maker reduces its bid/ask spread to
zero with sufficient trading volume while still retaining a finite bound on loss.
No existing market maker in the literature has both of these properties.

Though the problems we solve sound distinct, our solutions are very simi-
lar; both involve extending the same existing framework in different ways. We
proceed with an introduction to automated market making, and then discuss
each of our new market makers in turn.

1.2 Setting

To construct an automated market maker, the space of possible futures is
exhaustively partitioned into a set of events Ω, such that exactly one of the
ω ∈ Ω will be realized. The bets traders make with the market maker are
represented as functions from the event space to the real numbers, so that
bets are contracts specifying how much the market maker will pay out if each
of the various futures is realized. Typically, automated market makers use cost
functions to price trades.

Definition 1 Over n events, a cost function is a scalar field C : <n 7→ <
that maps a vector of amounts the market maker must pay out (the obligation
vector) to a scalar value (the cost).

The automated market maker keeps track of their obligation vector over
the sequence of bets traders make. A trader who wishes to move the obligation
vector from x to y is charged C(y)− C(x).

(In our notation, x is a scalar and x is a vector. xi refers to the i-th element
of a discrete vector, and x(t) refers to the evaluation of a vector function at
point t (when we move to general vector spaces). ∇f is the gradient of the
function f and 1 refers to a vector in which every component is 1.)

Over a series of transactions, the cost function telescopes from some initial
x0 (which is often just set to 0). Consequently, the scalar difference between
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the current payout vector x and the initial payout vector x0, C(x)− C(x0),
is the amount traders have paid to the automated market maker. When an
event ωi is realized, the market maker’s profit or loss is C(x) − C(x0) − xi.
If, for all x and all ωi this quantity is bounded, we say the market maker has
bounded worst-case loss (or just bounded loss). A review of the mechanics of
automated market makers can be found in Pennock and Sami [2007].

Most automated market makers use cost functions that are convex risk
measures:

Definition 2 A convex risk measure is a cost function C that satisfies three
properties:

Monotonicity If x ≤ y, then C(x) ≤ C(y).
Convexity For all x and y, and λ ∈ [0, 1]

C(λx + (1− λ)y) ≤ λC(x) + (1− λ)C(y).

Translation invariance For all x and α, C(x + α1) = C(x) + α.

Monotonicity ensures that traders cannot profit without taking on some
risk, convexity avoids pricing degeneracies, and translation invariance means
that buying or selling a guaranteed profit of a dollar costs a dollar.

Examples of convex risk measures in the literature include the LMSR [Han-
son, 2003, 2007], sequential convex parimutuel mechanisms [Peters et al., 2007,
Agrawal et al., 2009], market makers derived from no-regret online learning
algorithms [Chen et al., 2008, Chen and Vaughan, 2010], and constant-utility
cost functions [Chen and Pennock, 2007], the notion we extend in this work.

One alternative to convex risk measures is the liquidity-sensitive cost func-
tion of Othman et al. [2010], which we discuss later in this paper.

Market makers that do not use cost functions at all include heuristic mar-
ket makers [Das, 2008, Brahma et al., 2010] (which do not rule out manipu-
lability), subsidized dynamic pari-mutuel mechanisms [Pennock, 2004] (which
do not offer guaranteed payoffs), and self-financing static pari-mutuel mecha-
nisms [Lambert et al., 2008] (which do not offer guaranteed payoffs or sequen-
tial interactions with a market maker). We will not discuss these alternatives
to cost-function-based market makers further in this paper.

1.2.1 Constant-utility cost functions

In this section we describe constant-utility cost functions, an existing frame-
work for building cost functions that was introduced by Chen and Pennock
[2007]. Our new market makers are created by extending this framework.

Definition 3 A utility function is an increasing concave function u : < 7→ <.

A constant-utility cost function works by charging traders the amount
that keeps the market maker’s utility at a constant level. Put another way,
the market maker prices each bet so that he is indifferent between a trader
declining and accepting it.
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Definition 4 Let x0 ∈ domu and let µ be a probability distribution over the
ωi, defining pi ≡ Pµ (ωi). A constant-utility cost function C : <n 7→ < is
defined implicitly as the solution to∑

i

piu(C(x)− xi) = u(x0)

Since the cost function is given implicitly by a root-finding problem, rather
than explicitly as a function of the vector x, it is not immediately clear that
costs exist, are unique, and are easily computable. However, because the utility
function is monotonically increasing, the cost function exists for any input
vector and is unique. Furthermore, because the utility function is increasing,
we can compute b bits of the value of the cost function in b steps of a binary
search over possible values.

The partial derivatives of the cost function are known as prices. Where
u is differentiable the prices of a constant-utility cost function have a closed
form [Jackwerth, 2000, Chen and Pennock, 2007]:

Where u is differentiable the prices of a constant-utility cost function form
a probability distribution:

∇iC(x) =
piu

′(C(x)− xi)∑
j pju

′(C(x)− xj)
.

The prices form a probability distribution because they sum to one and
are non-negative (the utility function is non-decreasing and so its derivative
is never negative).

We are particularly interested in a special class of utility functions that
we dub log-like.

Definition 5 A log-like utility function u is a differentiable utility function
defined over (0,∞) that is unbounded from below from the right:
limx→0+ u(x) = −∞.

One example of a log-like utility function is log, and another is −1/x.
The key property of log-like utility functions that we exploit is the extreme
negative weight on input values close to zero.

1.3 Market making over measure spaces

In this section we extend constant-utility cost functions so that they apply
over arbitrary measure spaces, and demonstrate how a particular class of util-
ity functions over separable measure spaces has bounded loss. What makes
this challenging is the tension between loss boundedness and sometimes offer-
ing traders bets that would be irrational to accept regardless of what event
materializes. It is easy to create market makers with bounded loss if they
charge agents as much as they could possibly win. On the other hand, it is



1 Extending Constant-Utility Cost Functions 5

also easy to create market makers that only offer bets a rational agent could
accept, but have unbounded loss. For instance, the most popular automated
market maker in practice is the LMSR, which for n events has worst-case
loss Θ(log n). Over infinite event spaces, however, it has unbounded loss [Gao
et al., 2009].

Because of this tension, it has been an open problem whether there exist
market makers with bounded loss over arbitrary measure spaces that never
offer agents bets which are immediately bad. In this section, we construct such
a market maker. Our only restriction is that the spaces must be separable, a
technical condition that is met naturally by all spaces of interest—such as the
real line or the natural numbers, as well as geometric shapes like cubes and
spheres.

1.3.1 Measure spaces and separability

We generalize the usual notation from settings with a finite number of events
to settings with potentially an infinite number of events. In this context, the
events are t ∈ Ω, and bets still map from events to how much the trader
gets paid based on what event materializes. However, bets and payout vectors
(which were represented as points in <n in the finite case) are now functions
over the event space; formally, x : Ω 7→ <.

The cost function from a finite-event setting now generalizes to be a func-
tional that maps these functions x to scalar values, i.e., C : (Ω 7→ <) 7→ <.
The notational similarity with the traditional setting that has only a finite
number of events can be seen later because sums are simply replaced by in-
tegrals and probability mass functions are replaced by probability density
functions.

We assume that the event space is separable, meaning that it possesses
a natural notion of distance. With a separable event space we can assert
the existence of a probability distribution over the events that has positive
measure for every event, even though the space of events could be infinite.
Formally, the following result is well known in measure theory.

Proposition 1 In any separable measure space, there exists a probability
measure µ such that µ(t) > 0 for all t.

We call such a µ an always-positive measure. Over the real line, an example
of an always-positive measure is a Gaussian distribution. Measure spaces that
are not separable are highly degenerate and are unlikely to be of practical
importance.

1.3.2 Market making without offering bad bets

The aim of this section is to devise a market maker that has bounded loss over
separable measure spaces that does not offer agents bets which are immedi-
ately bad. This latter quality is important because it is simple to construct a
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market maker with bounded loss over arbitrary measure spaces. The sup cost
function (which can be thought of as an arbitrary-dimensional max)

C(x) = sup
t

x(t)

accomplishes this goal. This is easy to see because a trader is charged as much
as she could possibly gain from the realization of any event. However, sup is
one example of a cost function that offers bets which are immediately bad.

Definition 6 A differentiable convex risk measure C offers bets which are
immediately bad if there exists an obligation vector x where a proper subset
of the event space has prices that sum to at least 1.

As the name implies, trade with a cost function of this sort can sometimes
be a dominated action: a trader pays at least as much as she could possibly
make from any contract, but there also exist events for which the trader loses
her bet, too.

Agrawal et al. [2009] present several cost functions with a worst-case loss
of Θ(1 − 1/n), which implies bounded loss as n gets large. However, they
achieve their bounded worst-case loss by offering good bets only up to a certain
amount of uncovered exposure. After reaching this limit (which is controlled by
a parameter set a priori by the market administrator) the price of some events
is set to zero, implying that the other events form a proper subset with unit
marginal price. This makes the market maker offer bets which are immediately
bad. (Furthermore, the market makers in Agrawal et al. [2009] rely on solving
a relatively complex convex optimization, so it is not immediately clear how
to generalize their technique over infinite-dimensional spaces, or whether such
a generalization is even possible.)

1.3.3 Our loss-bounded market makers

We now show that using a constant-utility cost function with a log-like util-
ity function and an always-positive measure produces a market maker with
bounded loss over separable measure spaces that never offers bets to agents
which are immediately bad. These are the first market makers to have both
of these properties.

These market makers could be used over continuous spaces, for instance,
to create time and location markets for natural disasters like earthquakes, tor-
nadoes, and hurricanes. Furthermore, events that take place over unbounded
discrete sets (such as population sizes, interest rates, or stock prices) can also
be handled effectively with these market makers because countable sets are
also separable measure spaces.

Our market maker requires solving an integral equation over the measure
space, and so the feasibility of our scheme relies on how easy it is to evaluate
the integral. We suggest that while it is possible to describe degenerate cases
where it is not possible to compute this integral effectively, for natural domains
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like geometric shapes or number lines the integral can be computed using
numerical techniques in a straightforward manner.

Proposition 2 Let u be a log-like utility function, µ be an always-positive
measure, and x0 > 0. Then the constant-utility cost function given by the
solution to ∫

t

u(C(x)− x(t))µ(t) dt = u(x0)

loses at most x0 and never offers bets which are immediately bad.

Proof. To prove the bounded loss property, it suffices to show that there exists
no x and t such that x(t) − C(x) > x0, because if such an x and t existed
it would imply that by moving the market maker to the payoff vector x and
realizing the event t the market maker would lose more than x0. Suppose there
did exist such an x and t. By definition, evaluating the integrand at t would
involve evaluating

u(C(x)− x(t)) = −∞
because the utility function is log-like. Since the probability measure is always
positive, µ(t) > 0 and so the resulting integral is undefined rather than u(x0),
a contradiction.

To prove the resulting cost function never offers bets which are immedi-
ately bad, consider that over a separable measure space a differentiable convex
risk measure offer immediately bad bets if there exists a proper subset of the
space A and an obligation vector x such that∫

A

∇C(x)µ(t) dt = 1

while ∫
A

µ(t) dt 6= 1

For there to not exist such an A,x pair, it is suffices that for all x and t,
∇C(x)(t)µ(t) > 0 or, because µ is an always positive measure ∇C(x)(t) > 0
for all x and t.

Since C is a constant-utility cost function, recall the closed-form expression
for its gradient (which over general measure spaces is a function)

∇C(x)(t) =
µ(t)u′(C(x)− x(t))∫
u′(C(x)− x(t))µ(t) dt

Because the utility function is strictly increasing and differentiable, its deriva-
tive exists and is always positive. Coupling this with the fact that µ is an
always positive measure, we have that the numerator

µ(t)u′(C(x)− x(t)) > 0

and so ∇C(x)(t) > 0 for all x and t. Consequently, there never exists a proper
subset A of the space that has unit marginal price. Thus, the cost function
never offers bets that are immediately bad. �
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1.4 Funneling profits into liquidity

In this section we construct a cost-function-based market maker with a fixed
worst-case loss that also shrinks its bid/ask spread to zero (provided there is
sufficient transaction volume). In these characteristics, and also in its ability
to realize a profit, the market maker we describe in this section closely matches
human market makers we see operating in the real world. This suggests that
our automated market maker could prove to be a practical choice for markets
with real money.

We achieve these properties through realizing the notion of “driving profits
toward liquidity”, an idea that has never been successfully and fully imple-
mented in an automated market maker. Probably the closest prior effort is
the market maker of Othman et al. [2010], which features a liquidity-sensitive
market maker with a shrinking bid/ask spread. However, that market maker
can only shrink its bid/ask spread to a positive constant determined a priori,
not arbitrarily small.

1.4.1 Description of the problem

Liquidity is the amount of active interest in a market. It is intimately related to
the bid/ask spread, or the difference between the price to buy and the price to
sell a contract. Real world markets are characterized by an inverse relationship
between transaction volumes and bid/ask spreads. Deep (aka liquid) markets
have small bid/ask spreads; for instance, large cap equities generally have one-
cent bid ask spreads for thousands of dollars of interest. These markets can
sustain large trades without prices moving significantly. In contrast, a shallow
(aka illiquid) market is characterized by large bid/ask spreads and prices that
move significantly in response to trades. At an extreme, a very illiquid market
may not have any open interest at all.

From an automated market making perspective, there exists a sharp ten-
sion between the sensitivity of the market maker to liquidity and the amount
that the market maker can lose. Consider the case of a market maker that
prices bets according to some probability distribution over the future state
of the world, and does not change that distribution in response to the bets
placed by traders. Such a market maker always has a bid/ask spread of zero,
but also has unbounded worst-case loss. In contrast, the bounded-loss convex
risk measures in the literature always have non-vanishing, positive bid/ask
spreads for fixed-size bets.

We can also come up with more sophisticated variations on these schemes
in an effort to shrink bid/ask spreads, but these also do not satisfy our desider-
ata. Consider a market maker operating based on a fixed probability distribu-
tion who also takes a diminishing profit cut, a notion we will mathematically
formalize later in this section. With such a scheme, the bid/ask spread falls
to zero with increasing liquidity, but the market maker still has unbounded
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worst-case loss. On the other hand, a standard bounded-loss convex risk mea-
sure equipped with a diminishing profit cut has bounded worst-case loss and
a shrinking bid/ask spread, but this spread never goes away even as liquidity
gets large.

What has not been resolved is the design of a market maker that (1) has
bounded loss and (2) has a bid/ask spread that becomes arbitrarily small with
increasing liquidity. In this section, we build such a market maker.

1.4.2 Diminishing profit cuts

In this section we introduce a framework for a market maker adding an ad-
ditional charge to trades on top of a cost function. While it is easy to, for
example, charge a trader 10 cents extra per transaction, making a profit cut
that vanishes with liquidity requires more sophistication.

Recall that a constant-utility cost function solves∑
i

piu(C(x)− xi) = u(x0)

Now consider how to add profits into this calculation. The profit function (or
cut) Π : <+ 7→ <+, is a continuous increasing function that keeps track of
the amount of profit we have collected. Π relies on the current state s; at the
market’s initiation we set s = 0, and since Π tracks profit, Π(0) ≡ 0. When
the obligation vector of the market moves from x to y we set s = s+ ||y − x||.

The following algorithm details how our market maker prices trades as the
sum of the cost function and the profit function.

1. We are currently at obligation vector x and profit state s. A trader wishes
to take on a transaction that would leave the market maker with the
obligation vector y.

2. The value of the cost function, C(y), is solved through∑
i

piu(C(y)− yi +Π(s+ ||y − x||)) = u(x0)

(In this equation, C(y) is the variable and all of the other values are
constants.)

3. The total transaction cost quoted to the trader (the quoted price) is

C(y)− C(x) +Π(s+ ||y − x||))−Π(s)

4. If the trade is accepted, the current profit state is updated, s .= s+||y−x||.

In order to design our new market maker, we require our profit function
to meet some additional requirements. First, it must not have a bound on
the total amount it collects lims→∞Π(s) = ∞. Second, the marginal profit
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cut must vanish as liquidity gets large; for differentiable Π this condition is
lims→∞Π ′(s) = 0.

There are many functions that satisfy these conditions. Any such function
would constitute a market maker in our desired class, and the propositions in
the rest of this section would go through. However, in what follows, we will
focus on one particularly simple such function: Π(s) = α log(s + 1) for some
α > 0. The corresponding marginal profit cut is Π ′(s) = α

s+1 .
Equipped with this profit side, we can now introduce our market maker.

1.4.3 Our new market maker

Our market maker uses a constant-utility cost function with the profit cut
framework we described above. The utility function is u(x) = log(x) and the
profit function is Π(s) = α log(s+ 1).

The market administrator has two parameters to set: the x0 > 0 chosen
to initially seed the constant utility level, and the α > 0 chosen to moderate
the profit function. Higher x0 leads to higher worst-case loss but more initial
liquidity-sensitivity. Higher α makes the profit cut larger.

Our market maker has loss bounded by its initial cost seed:

Proposition 3 Let mini pi > 0, so the probability mass function is always
positive. Then our market maker loses no more than the x0 chosen to initially
seed the constant utility level log x0.

Proof. Because we are using a log-like utility function and the probability mass
function is never negative, the costs, profits, and obligation vector always obey
the relationship C(x) +Π(s) > maxi xi because if this were not the case the
sum used to calculate expected utility would be undefined. But our loss if the
market expires at state (x, s) is at most

max
i
xi + C(0)− C(x)−Π(s)

Consequently, loss can be no greater than C(0), which for constant-utility
cost functions is just x0 by definition. �

Our market maker’s bid/ask spread becomes arbitrarily small with in-
creasing activity:

Proposition 4 The bid/ask spread of our market maker becomes arbitrarily
small as s→∞.

Proof. We prove that as s → ∞, the quoted price of any fixed trade can
be arbitrarily well-approximated by a linear extrapolation from the marginal
prices of the cost function. Since the cost function is a differentiable convex
risk measure, these marginal prices sum to unity, and so the bid/ask spread
becomes arbitrarily small as both the buy and sell sides approach the same
quoted prices.
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Let the market maker be in state (x, s), let y be some trade, and let Ca
denote a logarithmic constant-utility cost function seeded with initial cost a.
Since profits are funneled into liquidity, we have that the quoted price to move
to state (x + y, s+ ||y − x||) is no larger than

Cx0+Π(s)(x + y)− Cx0+Π(s)(x) +Π(s+ ||y − x||)−Π(s)

Now consider each pair of these terms in turn as s grows large. For the
cost function terms, a logarithmic constant-utility market maker with large
initial cost becomes increasingly insensitive to the second-order effects (i.e.,
changing prices) when taking on a fixed size bet. This is because utility grows
arbitrarily large in initial cost, while marginal utility shrinks arbitrarily small
in initial cost. Consequently, since Π gets arbitrarily large in s we have that
for large s

Cx0+Π(s)(x + y)− Cx0+Π(s)(x) ≈ ∇Cx0+Π(s)(x) · y

or, that the difference in costs can be arbitrarily well-approximated by a linear
extrapolation from marginal prices.

As for the Π terms, by construction the derivative of the profit cut Π ′

gets arbitrarily small in s, so for large s the difference of the two terms is
arbitrarily small. Furthermore, the upper bound on the quoted price of

Cx0+Π(s)(x + y)− Cx0+Π(s)(x) +Π(x + y)−Π(x)

gets arbitrarily tight as s gets large, because as profits get arbitrarily small,
the impact of adding them back into the cost function of our market maker
gets arbitrarily small, too.

Putting all of these arguments together, the quoted price can be approx-
imated arbitrarily well as s gets large by ∇Cx0+Π(s)(x) · y, which is a linear
extrapolation of the marginal prices of the cost function. �
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