
Tartanian7: A Champion Two-Player No-Limit Texas Hold’em
Poker-Playing Program

Noam Brown, Sam Ganzfried, and Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
{nbrown, sganzfri, sandholm}@cs.cmu.edu

Abstract

The leading approach for solving large imperfect-information
games is automated abstraction followed by running an eq-
uilibrium-finding algorithm. We introduce a distributed ver-
sion of the most commonly used equilibrium-finding algo-
rithm, counterfactual regret minimization (CFR), which en-
ables CFR to scale to dramatically larger abstractions and
numbers of cores. The new algorithm begets constraints on
the abstraction so as to make the pieces running on different
computers disjoint. We introduce an algorithm for generat-
ing such abstractions while capitalizing on state-of-the-art ab-
straction ideas such as imperfect recall and the earth-mover’s-
distance similarity metric. Our techniques enabled an equilib-
rium computation of unprecedented size on a supercomputer
with a high inter-blade memory latency. Prior approaches run
slowly on this architecture. Our approach also leads to a sig-
nificant improvement over using the prior best approach on
a large shared-memory server with low memory latency. Fi-
nally, we introduce a family of post-processing techniques
that outperform prior ones. We applied these techniques to
generate an agent for two-player no-limit Texas Hold’em. It
won the 2014 Annual Computer Poker Competition, beating
each opponent with statistical significance.

1 Hierarchical Abstraction Algorithm
In order to enable distributed equilibrium finding, we have
developed a new abstraction algorithm that creates an in-
formation abstraction that assigns disjoint components of
the game tree to different blades so that sampling in each
blade will only access information sets that are located on
that blade. At a high level, the first stage of our hierarchi-
cal abstraction algorithm is to cluster public information at
some early point in the game (public flop boards, i.e., com-
binations of public flop cards, in the case of Texas Hold’em
(TH)), giving a global basis for distributing the rest of the
game into non-overlapping pieces. Then, as a second stage
our algorithm conducts clustering of information states (that
can include both public and private information) in a way
that honors the partition generated in the first stage.

The main abstraction algorithm, Algorithm 1, works as
follows. Let r̂ be the special round of the game where we
perform the public clustering. For the initial r̂ − 1 rounds,
we compute an abstraction using an arbitrary algorithm Ar

for round r. Next, the public states at round r̂ are clustered
into C buckets. Once this public abstraction has been com-
puted, we compute abstractions for each round from r̂ to

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

R over all states of private information separately for each
of the public buckets that have been previously computed.
These abstractions can be computed using any arbitrary ap-
proach, Ar. For our poker agent, we used an abstraction al-
gorithm that had previously been demonstrated to perform
well as the Ar’s (Johanson et al. 2013). To compute the ab-
straction of public information at round r̂, we compute a dis-
tance between pairs of public states based on how often the
states were grouped together using a strong base abstraction.
We then use this distance function to compute the public ab-
straction using a custom clustering algorithm.

Algorithm 1 Main abstraction algorithm
Inputs: number of rounds R; round where public information ab-
straction is desired r̂; number of public buckets C; number of de-
sired private buckets per public bucket at round r, Br; abstraction
algorithm used for round r, Ar

for r = 1 to r̂ − 1 do
cluster information states at round r using Ar

cluster public information states at round r̂ into C buckets (using
our custom distance function and clustering algorithm)
for r = r̂ to R do

for c = 1 to C do
cluster private information states at round r that have
public information in public bucket c into Br buckets
using abstraction algorithm Ar

2 Equilibrium-Finding Algorithm
To solve the abstract game, we developed a modification of
Monte Carlo CFR (MCCFR) (Lanctot et al. 2009) specifi-
cally for architectures with high inter-blade memory access
latency. It designates one blade as the “head” blade, which
is used to store the regrets and average strategies for the top
part of the game tree (preflop round in TH). The algorithm
begins by sampling private information and conducting MC-
CFR on the head blade. When an action sequence is reached
that transitions outside the top of the game tree (to the flop
in TH), the algorithm will send the current state to each of
the C child blades. Each child blade then samples public in-
formation from its public bucket, and continues the iteration
of MCCFR. Once all the child blades complete their part
of the iteration, their calculated values are returned to the
head blade. The head blade calculates a weighted average
of these values, weighing them by the number of choices of
public information (possible flops in TH) that they sampled
from. This ensures that the expected value is unbiased. The
head node then continues its iteration of MCCFR, repeating
the process whenever the sample exits the top part (a flop



SartreNLExp Nyx Hyperborean.iro Slumbot Prelude HibiscusBiscuit PijaiBot Feste.iro LittleRock KEmpfer Rembrant3 HITSZ CS 14 Lucifer
261 ± 47 121 ± 38 21 ± 16 33 ± 16 20 ± 16 125 ± 44 499 ± 68 141 ± 45 214 ± 57 516 ± 61 980 ± 34 1474 ± 180 1819 ± 111

Table 1: Win rate (in mbb/h) of our agent in the 2014 AAAI Annual Computer Poker Competition against opposing agents.

sequence is encountered), until the iteration is complete.

3 New Family of Post-Processing Techniques
Post-processing techniques have been shown to be useful for
mitigating the issue of overfitting the equilibrium to one’s
abstraction and the issue that approximate equilibrium find-
ing may end up placing positive probability on poor actions.
Two approaches have been studied, thresholding and purifi-
cation (Ganzfried, Sandholm, and Waugh 2012). In thresh-
olding, action probabilities below some threshold are set to
zero and the remaining probabilities are renormalized. Pu-
rification is the special case of thresholding where the action
with the highest probability is played with probability 1.

We observe that thresholding leads to the issue that dis-
cretizing actions finely in some area of the action space dis-
favors those actions because the probability mass from the
equilibrium gets diluted among them. To mitigate this, we
propose to bucket abstract actions into similarity classes for
the purposes of thresholding. We also observe that biasing
toward conservative actions that reduce variance (e.g., the
fold action in poker) is helpful in a strong agent (variance
increases the probability that the weaker opponent will win).

We have developed a new post-processing technique that
combines these ideas. It first separates the available actions
into three categories: fold, call, and bet. If the probability of
folding exceeds a threshold parameter, we fold with proba-
bility 1. Otherwise, we follow purification between the three
options of fold, call, and the “meta-action” of bet. If bet is
selected, then we follow purification within the bet actions.

There are many variations of this technique—so it begets
a family—depending on what threshold for definitely us-
ing the conservative action (fold) is used, how the actions
are bucketed for thresholding, what thresholding value is
used among the buckets, and what thresholding value is used
within (each of possibly multiple) meta-actions.

4 Experiments
We experimented on the version of 2-player no-limit Texas
Hold’em (NLTH) used in the AAAI Annual Computer Poker
Competition (ACPC). We used our new abstraction algo-
rithm to create an abstraction that is six times larger than
the largest abstractions used by prior NLTH agents—and, to
our knowledge, the largest imperfect-information game ever
tackled by an equilibrium-finding algorithm. This scale was
enabled by our new, distributed approach.

We ran our equilibrium-finding algorithm for 1,200 hours
on a supercomputer (Blacklight) with a high inter-blade
memory access latency using 961 cores (60 blades of 16
cores each, plus one core for the head blade), for a total of
1,153,200 core hours. Each blade had 128 GB RAM.

The results from the 2014 ACPC against all opponents
are shown in Table 1. The units are milli big blinds per hand
(mbb/h), and the ± indicates 95% confidence intervals. Our
agent beat each opponent with statistical significance, with
an average win rate of 479 mbb/h.

We compared our algorithm’s performance to that of us-
ing the prior best approach on a low-latency shared-memory
server with 64 cores and 512 GB RAM. This server is at
the upper end of shared-memory hardware commonly avail-
able today. The approach used external sampling MCCFR
to solve an abstraction computed using the state-of-the-art
non-distributed algorithm (Ganzfried and Sandholm 2014).

We benchmarked both against the two strongest agents
from the 2013 competition, Figure 1. The new approach
outperformed the old against both agents for all timestamps
tested. So, it is able to effectively take advantage of the ad-
ditional distributed cores and RAM.

Figure 1: Trajectory of win rates over time against the two
strongest agents from the 2013 poker competition.

We also studied the effect of using our new post-proc-
essing techniques on the final strategies computed by our
distributed equilibrium computation. We compared using no
threshold, purification, a threshold of 0.15, and using the
new technique with a threshold of 0.2. We tested against
the same two strongest agents from the 2013 competition.
Results are shown in Table 2. The new post-processor out-
performed the prior ones both on average performance and
on worst observed performance.

Hyperborean.iro Slumbot Avg Min
No Threshold +30 ± 32 +10 ± 27 +20 +10
Purification +55 ± 27 +19 ± 22 +37 +19

Thresholding-0.15 +35 ± 30 +19 ± 25 +27 +19
New-0.2 +39 ± 26 +103 ± 21 +71 +39

Table 2: Win rate (in mbb/h) of several post-processing tech-
niques against the strongest 2013 poker competition agents.

References
Ganzfried, S., and Sandholm, T. 2014. Potential-aware
imperfect-recall abstraction with earth mover’s distance in
imperfect-information games. In AAAI.
Ganzfried, S.; Sandholm, T.; and Waugh, K. 2012. Strategy
purification and thresholding: Effective non-equilibrium ap-
proaches for playing large games. In AAMAS.
Johanson, M.; Burch, N.; Valenzano, R.; and Bowling, M.
2013. Evaluating state-space abstractions in extensive-form
games. In AAMAS.
Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte Carlo sampling for regret minimization in ex-
tensive games. In NIPS.


