
Strategy Purification ∗

Sam Ganzfried, Tuomas Sandholm, and Kevin Waugh
Computer Science Department

Carnegie Mellon University
{sganzfri, sandholm, waugh}@cs.cmu.edu

Abstract

There has been significant recent interest in computing effec-
tive practical strategies for playing large games. Most prior
work involves computing an approximate equilibrium strat-
egy in a smaller abstract game, then playing this strategy
in the full game. In this paper, we present a modification
of this approach that works by constructing a deterministic
strategy in the full game from the solution to the abstract
game; we refer to this procedure as purification. We show
that purification, and its generalization which we call thresh-
olding, lead to significantly stronger play than the standard
approach in a wide variety of experimental domains. First,
we show that purification improves performance in random
4 × 4 matrix games using random 3 × 3 abstractions. We
observe that whether or not purification helps in this setting
depends crucially on the support of the equilibrium in the full
game, and we precisely specify the supports for which purifi-
cation helps. Next we consider a simplifed version of poker
called Leduc Hold’em; again we show that purification leads
to a significant performance improvement over the standard
approach, and furthermore that whenever thresholding im-
proves a strategy, the biggest improvement is often achieved
using full purification. Finally, we consider actual strate-
gies that used our algorithms in the 2010 AAAI Computer
Poker Competition. One of our programs, which uses purifi-
cation, won the two-player no-limit Texas Hold’em bankroll
division. Furthermore, experiments in two-player limit Texas
Hold’em show that these performance gains do not necessar-
ily come at the expense of worst-case exploitability and that
our algorithms can actually produce strategies with lower ex-
ploitabilities than the standard approach.

1 Introduction
Developing strong strategies for agents in multiagent sys-
tems is an important and challenging problem. It has re-
ceived significant attention in recent years from several dif-
ferent communities, particularly in light of the competitions
held at some of the top conferences (e.g., the computer
poker, robo-soccer, and trading agent competitions). Most
domains of interest are so large that solving them directly

∗This material is based upon work supported by the National
Science Foundation under grants IIS-0905390, IIS-0964579, and
CCF-1101668.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(i.e., computing a Nash equilibrium or other relevant solu-
tion concept) is computationally infeasible, so some amount
of approximation is necessary to produce practical agents.

In particular, significant work has been done in recent
years on computing approximate game-theory-based strate-
gies in large games. This work typically follows a three-step
approach. First, an abstraction algorithm is run on the orig-
inal game G to construct a smaller game G′ which is strate-
gically similar to G (Billings et al. 2003; Gilpin and Sand-
holm 2007; Shi and Littman 2002). Second, an equilibrium-
finding algorithm is run on G′ to compute an ε-equilibrium
σ′ (Gilpin et al. 2007; Zinkevich et al. 2007). Third, a re-
verse mapping is applied to σ′ to compute an approximate
equilibrium σ in the full game G (Gilpin, Sandholm, and
Sørensen 2008; Schnizlein, Bowling, and Szafron 2009).
While most prior work has focused on the first two steps
of this approach, in this paper we focus on the third.

Almost all prior work has used the trivial reverse map-
ping, in which σ is the straightforward projection of σ′ into
G. In other words, once the abstract game is solved, its so-
lution is just played directly in the full game. However, in
some settings this is simply not possible; for instance, if we
abstract away some actions ofG inG′, our strategy must still
specify how to react if the opponent selects some of those
omitted actions. For example, abstraction algorithms for no-
limit Texas Hold’em often involve restricting the set of al-
lowed bet sizes; however when the game is actually played,
the opponent is free to make bets of any size. A currently
popular way of dealing with this is to apply a randomized
reverse mapping that maps the bet size of the opponent to
one of the two closest bet sizes in the abstraction (Schni-
zlein, Bowling, and Szafron 2009).

In this paper, we show that applying more sophisticated
reverse mappings can lead to significant performance im-
provements — even in games where the trivial mapping is
possible. The motivation for our approaches is that the ex-
act probabilities of the mixed strategy equilibrium in an ab-
straction often exemplify overfitting to the particular lossy
abstraction used. Ideally, we would like to extrapolate gen-
eral principles from the strategy rather than just use values
that were finely tuned for a specific abstraction. This is
akin to the classic example from machine learning, where
we would prefer a degree-one polynomial that fits the train-
ing data quite well to a degree-hundred polynomial that may

fit it a little better.
We show that our algorithms lead to significantly stronger

play in several domains. First, we show that purification
improves performance in random 4 × 4 matrix games us-
ing random 3 × 3 abstractions. We observe that whether or
not purification helps in this setting depends crucially on the
support of the equilibrium in the full game, and we precisely
specify the supports for which purification helps. Next we
consider a simplifed version of poker called Leduc Hold’em;
again we show that purification leads to a significant perfor-
mance improvement over the standard approach, and fur-
thermore that whenever thresholding improves a strategy,
the biggest improvement is often achieved using full purifi-
cation. Finally, we consider actual strategies that used our
algorithms in the 2010 AAAI Computer Poker Competition.
One of our programs, which uses purification, won the two-
player no-limit Texas Hold’em bankroll division. Further-
more, experiments in two-player limit Texas Hold’em show
that these performance gains do not necessarily come at the
expense of worst-case exploitability, and that our algorithms
can actually produce strategies with lower exploitabilities
than the standard approach.

2 Game theory background
In this section, we briefly review relevant definitions and
prior results from game theory and game solving.

2.1 Strategic-form games
The most basic game representation, and the standard rep-
resentation for simultaneous-move games, is the strategic
form. A strategic-form game (aka matrix game) consists of a
finite set of players N, a space of pure strategies Si for each
player, and a utility function ui : ×Si → R for each player.
Here ×Si denotes the space of strategy profiles — vectors
of pure strategies, one for each player.

The set of mixed strategies of player i is the space of prob-
ability distributions over his pure strategy space Si. We will
denote this space by Σi. Define the support of a mixed strat-
egy to be the set of pure strategies played with nonzero prob-
ability. If the sum of the payoffs of all players equals zero at
every strategy profile, then the game is called zero sum. In
this paper, we will be primarily concerned with two-player
zero-sum games. If the players are following strategy pro-
file σ, we let σ−i denote the strategy taken by player i’s op-
ponent, and we let Σ−i denote the opponent’s entire mixed
strategy space.

2.2 Extensive-form games
An extensive-form game is a general model of multiagent
decision-making with potentially sequential and simultane-
ous actions and imperfect information. As with perfect-
information games, extensive-form games consist primar-
ily of a game tree; each non-terminal node has an associ-
ated player (possibly chance) that makes the decision at that
node, and each terminal node has associated utilities for the
players. Additionally, game states are partitioned into in-
formation sets, where the player whose turn it is to move

cannot distinguish among the states in the same informa-
tion set. Therefore, in any given information set, a player
must choose actions with the same distribution at each state
contained in the information set. If no player forgets infor-
mation that he previously knew, we say that the game has
perfect recall. A (behavioral) strategy for player i, σi ∈ Σi,
is a function that assigns a probability distribution over all
actions at each information set belonging to i.

2.3 Nash equilibria
Player i’s best response to σ−i is any strategy in
arg maxσ′i∈Σi

ui(σ
′
i, σ−i). A Nash equilibrium is a strategy

profile σ such that σi is a best response to σ−i for all i.
An ε-equilibrium is a strategy profile in which each player
achieves a payoff of within ε of his best response.

In two player zero-sum games, we have the following re-
sult which is known as the minimax theorem:

v∗ = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2).

We refer to v∗ as the value of the game to player 1. Some-
times we will write vi as the value of the game to player i.
It is worth noting that any equilibrium strategy for a player
will guarantee an expected payoff of at least the value of the
game to that player.

All finite games have at least one Nash equilibrium. In
two-player zero-sum strategic-form games, a Nash equilib-
rium can be found efficiently by linear programming. In the
case of zero-sum extensive-form games with perfect recall,
there are efficient techniques for finding an ε-equilibrium,
such as linear programming (LP), the excessive gap tech-
nique (Gilpin et al. 2007), and counterfactual regret mini-
mization (Zinkevich et al. 2007). However, the latter two
scale to much larger games: 1012 states in the game tree,
while the best current LP techniques cannot scale beyond
108 states.

2.4 Abstraction
Despite the tremendous progress in equilibrium-finding in
recent years, many interesting real-world games are so large
that even the best algorithms have no hope of computing
an equilibrium directly. The standard approach of dealing
with this is to apply an abstraction algorithm, which con-
structs a smaller game that is similar to the original game;
then the smaller game is solved, and its solution is mapped
to a strategy profile in the original game. The approach
has been applied to two-player Texas Hold’em poker, first
with a manually generated abstraction (Billings et al. 2003),
and now with abstraction algorithms (Gilpin and Sandholm
2007). Many abstraction algorithms work by coarsening the
moves of chance, collapsing several information sets of the
original game into single information sets of the abstracted
game.

The game tree of two-player no-limit Texas Hold’em
has about 1071 states (while that of two-player limit Texas
Hold’em has about 1018 states); so significant abstraction is
necessary, since currently we can only solve games with up
to 1012 states.

3 Purification and thresholding
In this section we present our new reverse-mapping algo-
rithms, purification and thresholding.

Suppose we are playing a game Λ that is too large to solve
directly. As described in Section 2.4, the standard approach
would be to construct an abstract game Λ′, compute an equi-
librium σ′ of Λ′, then play the strategy profile σ induced by
σ′ in the full game Λ.

One possible problem with doing this is that the specific
strategy profile σ′ might be very finely tuned for the abstract
game Λ′, and it could perform arbitrarily poorly in the full
game (see the results in Section 5). Ideally we would like
to extrapolate the important features from σ′ that will gen-
eralize to the full game and avoid playing a strategy that is
overfit to a particular abstraction. This is the motivation for
our new algorithms.

3.1 Purification
Let τi be a mixed strategy for player i in a strategic-form
game, and let S = arg maxj τi(j), where j ranges over all
of player i’s pure strategies. Then we define the purification
pur(τi) of τi as follows:

pur(τ)(j) =

{
0 : j /∈ S
1
|S| : j ∈ S

Informally, this says that if τi plays a single pure strat-
egy with highest probability, then the purification will play
that strategy with probability 1. If there is a tie between sev-
eral pure strategies of the maximum probability played un-
der τi, then the purification will randomize equally between
all maximal such strategies. Thus the purification will usu-
ally be a pure strategy, and will only be a mixed strategy
in degenerate special cases when several pure strategies are
played with identical probabilities.

If τi is a behavioral strategy in an extensive-form game,
we define the purification similarly: at each information set
I , pur(τi) will play the purification of τi at I.

3.2 Thresholding
Purification can sometimes seem quite extreme: for exam-
ple, if τi plays action a with probability 0.51 and action b
with probability 0.49, τ will still never play b. Maybe we
would like to be a bit more conservative, and only set a prob-
ability to 0 if it is below some threshold ε. We refer to this
algorithm as thresholding.

More specifically, thresholding will set all actions that
have weight below ε to 0, then renormalize the remaining ac-
tion probabilities. One intuitive interpretation of threshold-
ing is that actions with probability below ε were just given
positive probability due to noise from the abstraction (or
because an anytime equilibrium-finding algorithm had not
yet taken those probabilities all the way to zero), and really
should not be played in the full game.

4 Evaluation metrics
In recent years, several different metrics have been used to
evaluate strategies in large games.

4.1 Empirical performance
The first metric, which is perhaps the most meaningful,
is empirical performance against other realistic strategies.
For example, in the annual computer poker competition at
AAAI, programs submitted from researchers and hobbyists
from all over the world compete against one another. Empir-
ical performance is the metric we will be using in Section 8
when we assess our performance in Texas Hold’em.

4.2 Worst-case exploitability
The worst-case exploitability of player i’s strategy σi is the
difference between the value of the game to player i and the
payoff when the opponent plays his best response to σi (aka
his nemesis strategy). Formally it is defined as follows:

expl(σi) = vi − min
σ−i∈Σ−i

ui(σi, σ−i).

Worst-case exploitability has recently been used to assess
strategies in a simplified variants of poker (Gilpin and Sand-
holm 2008; Waugh et al. 2009).

Any equilibrium has zero exploitability, since it receives
payoff vi against its nemesis. So if our goal were to approxi-
mate an equilibrium of the full game, worst-case exploitabil-
ity would be a good metric to use, since it approaches zero
as the strategy approaches equilibrium.

Unfortunately, the worst-case exploitability metric has
several drawbacks. First, it cannot be computed in very
large games. For example, it cannot currently be computed
in two-player no-limit Texas Hold’em.

Second, exploitability is a worst-case metric that implic-
itly assumes that the opponent is both trying to exploit our
strategy and that he is able to do that effectively in the full
game. In many large games, agents just play fixed strate-
gies since the number of interactions is generally tiny com-
pared to the size of the game, and it is usually quite difficult
to learn to effectively exploit opponents online. For exam-
ple, in recent computer poker competitions, almost all sub-
mitted programs simply play a fixed strategy. In the 2010
AAAI computer poker competition, many of the entrants
attached summaries describing their algorithm. Of the 17
bots for which summaries were included, 15 played fixed
strategies, while only 2 included some element of attempted
exploitation. If the opponents are just playing a fixed strat-
egy and not trying to play a best response, then worst-case
exploitability is too pessimistic of an evaluation metric. Fur-
thermore, if the opponents all have computational limita-
tions and use abstractions, then they will not be able to fully
exploit us in the full game.

4.3 Performance against full equilibrium
In this paper, we will also evaluate strategies based on per-
formance against equilibrium in the full game. The intu-
ition behind this is that in many large two-player zero-sum
games, the opponents are simply playing fixed strategies that
attempt to approximate an equilibrium of the full game (us-
ing some abstraction). For example, most entrants in the
annual computer poker competition do this. Against such
static opponents, worst-case exploitability is not very signif-
icant, as the agents are not generally adapting to exploit us.

This metric, like worst-case exploitability, is not feasible
to apply on large games like Texas Hold’em. However, we
can still apply it to smaller games as a means of comparing
different solution techniques. In particular, we will use this
metric in Sections 6 and 7 when presenting our experimental
results on random matrix games and Leduc Hold’em. This
metric has similarly been used on solvable problem sizes
in the past to compare abstraction algorithms (Gilpin and
Sandholm 2008).

5 Worst-case analysis
So which approach is best: purification, thresholding, or
the standard abstraction approach? It turns out that using
the performance against full equilibrium metric, there exist
games for which each technique can outperform each other.
Thus, from a worst-case perspective, not much can be said
in terms of comparing the approaches.

Proposition 1 shows that, for any equilibrium-finding al-
gorithm, there exists a game and an abstraction such that pu-
rification does arbitrarily better than the standard approach.
Proposition 1. For any equilibrium-finding algorithms A
and A′, and for any k > 0, there exists a game Λ and an
abstraction Λ′ of Λ, such that

u1(pur(σ′1), σ2) ≥ u1(σ′1, σ2) + k,

where σ′ is the equilibrium of Λ′ computed by algorithm A′,
and σ is the equilibrium of Λ computed by A.

L M R
U 2 0 −3k − 1
D 0 1 −1

Figure 1: Two-player zero-sum game used in the proof of
Proposition 1.

Proof. Consider the game in Figure 1. Let Λ denote the
full game, and let Λ′ denote the abstraction in which player
2 (the column player) is restricted to only playing L or M,
but the row player’s strategy space remains the same. Then
Λ′ has a unique equilibrium in which player 1 plays U with
probability 1

3 , and player 2 plays L with probability 1
3 . Since

this is the unique equilibrium, it must be the one output by
algorithm A′. Note that player 1’s purification pur(σ′1) of σ′
is the pure strategy D.

Note that in the full game Λ, the unique equilibrium is
(D,R), which we denote by σ. As before, since this equilib-
rium is unique it must be the one output by algorithm A.
Then we have

u1(σ′1, σ2) =
1

3
(−3k − 1) +

2

3
(−1) = −k − 1

u1(pur(σ′1), σ2) = −1.

So u1(σ′1, σ2) + k = −1, and therefore

u1(pur(σ′1), σ2) = u1(σ′1, σ2) + k.

Due to limited space, we omit our other results, but we
can similarly show that purification can also do arbitrarily
worse against the full equilibrium than standard abstraction,
and that both procedures can do arbitrarily better or worse
than thresholding (using any threshold cutoff).

6 Random matrix games
The first set of experiments we conducted to demonstrate the
power of purification was on random matrix games. This is
perhaps the most fundamental and easy to analyze class of
games, and is a natural starting point when analyzing new
algorithms.

6.1 Evaluation methodology
We studied random 4×4 two-player zero-sum matrix games
with payoffs drawn uniformly at random from [-1,1]. We re-
peatedly generated random games and analyzed them using
the following procedure. First, we computed an equilibrium
of the full 4 × 4 game Λ; denote this strategy profile by
σF . Next, we constructed an abstraction Λ′ of Λ by ignor-
ing the final row and column of Λ. As in Λ, we computed
an equilibrium σA of Λ′. We then compared u1(σA1 , σ

F
2) to

u1(pur(σA1), σF2).
Unfortunately we realized that obtaining statistically sig-

nificant results could require millions of trials even on small
games. In particular, the standard algorithm for solving
two-player zero-sum games involves solving a linear pro-
gram (Dantzig 1951), and solving millions of linear pro-
grams would be very time-consuming. Thus, we develop our
own algorithm for solving small matrix games that avoids
needing to solve linear programs. Our algorithm is similar to
the support enumeration of (Porter, Nudelman, and Shoham
2008), but it uses analytical solutions instead of solving lin-
ear feasibility programs and therefore runs much faster. Full
details of our algorithm are given in the appendix.

6.2 Results
In our experiments on 4 × 4 random games, we performed
3 million trials, of which 867,110 did not satisfy the condi-
tions of Proposition 4 and thus counted towards our results.
The results are given in Table 1. We conclude that purified
abstraction outperforms the standard unpurified abstraction
approach using 95% confidence intervals. Note that the pay-
offs listed in the table are not unbiased estimators of actual
payoffs of the two approaches over all random games; recall
that we ignored certain games for which the two approaches
perform identically in order to reduce the number of trials
required. Thus, these payoffs should not be interpreted in
terms of their absolute values, but rather should be viewed
relatively to one another.

u1(σA1 , σ
F
2) u1(pur(σA1), σF2)

−0.16284± 0.00052 −0.14883± 0.00061

Table 1: Results for experiments on random 4 × 4 matrix
games. The ± given is the 95% confidence interval.

To understand these results further, we investigated
whether they would vary for different supports of σF . In
particular, we ran Algorithm 3, keeping separate tallies of
the performance of pur(σA1) and σA1 for each support of σF .
We observed that pur(σA1) outperformed σA1 on many of the
supports, while they performed equally on some (and σA1
did not outperform pur(σA1) on any, using 95% confidence
intervals). A summary of the results from these experiments
is given in Observation 1.
Observation 1. In random 4 × 4 matrix games using 3 ×
3 abstractions, pur(σA1) performs better than σA1 using a
95% confidence interval for each support of σF except for
supports satisfing one of the following conditions, in which
case neither pur(σA1) nor σA1 performs significantly better:

• σF is the pure strategy profile in which each player plays
his fourth pure strategy

• σF is a mixed strategy profile in which player 1’s support
contains his fourth pure strategy, and player 2’s support
does not contain his fourth pure strategy.

We find it very interesting that there is such a clear pattern
in the support structures for which pur(σA1) outperforms σA1 .
We obtained identical results using 3 × 3 games with 2 × 2
abstractions, though we did not experiment on games larger
than 4× 4. We conjecture that similar results would hold on
larger games as well and present the general case as an open
problem.

7 Leduc Hold’em
Leduc Hold’em is a small poker game that has been used in
previous work to evaluate imperfect information game play-
ing techniques (Waugh et al. 2009). Leduc Hold’em is large
enough that abstraction has a non-trivial impact, but unlike
larger games of interest, e.g., Texas Hold’em, it is small
enough that equilibrium solutions in the full game can be
quickly computed. That is, Leduc Hold’em allows for rapid
and thorough evaluation of game playing techniques against
a variety of opponents, including an equilibrium opponent
or a best responder.

Prior to play, a deck of six cards containing two Jacks, two
Queens, and two Kings is shuffled and each player is dealt
a single private card. After a round of betting, a public card
is dealt face up for both players to see. If either player pairs
this card, he wins at showdown; otherwise the player with
the higher ranked card wins. For a complete description of
the betting, we refer the reader to (Waugh et al. 2009).

7.1 Experimental evaluation and setup
To evaluate the effects of purification and thresholding in
Leduc Hold’em, we compared the performance of a number
of abstract equilibrium strategies altered to varying degrees
by thresholding against a single equilibrium opponent av-
eraged over both positions. The performance of a strategy
(denoted EV for expected value) was measured in millibets
per hand (mb/h), where one thousand millibets is a small
bet. As the equilibrium opponent is optimal, the best obtain-
able performance is 0 mb/h. Note that the expected value
computations in this section are exact.

We used card abstractions mimicking those produced by
state-of-the-art abstraction techniques to create our abstract
equilibrium strategies. Specifically, we used the five Leduc
Hold’em card abstractions from (Waugh et al. 2009), de-
noted JQK, JQ.K, J.QK, J.Q.K and full. The abstraction
full denotes the null abstraction (i.e., the full unabstracted
game). The names of the remaining abstractions consist of
groups of cards separated by periods. All cards within a
group are indistinguishable to the player prior to the flop.
For example, when a player using the JQ.K abstraction is
dealt a card, he will know only if that card is a king, or if it is
not a king. These abstractions can only distinguish pairs on
the flop. By pairing these five card abstractions, one abstrac-
tion per player, we learned twenty four abstract equilibrium
strategies using linear programming techniques. For exam-
ple, the strategy J.Q.K-JQ.K denotes the strategy where our
player of interest uses the J.Q.K abstraction and he assumes
his opponent uses the JQ.K abstraction.

7.2 Purification vs. no purification
In Table 2 we present the performance of the regular and pu-
rified abstract equilibrium strategies against the equilibrium
opponent. We notice that purification improves the perfor-
mance in all but 5 cases. In many cases this improvement
is quite substantial. In the cases where it does not help, we
notice that at least one of the players is using the JQK card
abstraction, the worst abstraction in our selection. Prior to
purification, the best abstract equilibrium strategy loses at
43.8 mb/h to the equilibrium opponent. After purification,
14 of the 24 strategies perform better than the best unpuri-
fied strategy, the best of which loses at only 1.86 mb/h. That
is, only five of the strategies that were improved by purifica-
tion failed to surpass the best unpurified strategy.

7.3 Purification vs. thresholding
In Figure 2 we present the results of three abstract equilib-
rium strategies thresholded to varying degrees against the
equilibrium opponent. We notice that, the higher the thresh-
old used the better the performance tends to be. Though this
trend is not monotonic, all the strategies that were improved
by purification obtained their maximum performance when
completely purified. Most strategies tended to improve grad-
ually as the threshold was increased, but this was not the case
for all strategies. As seen in the figure, the JQ.K-JQ.K strat-
egy spikes in performance between the thresholds of 0.1 and
0.15.

From these experiments, we conclude that purification
tends to improve the performance of an abstract equilib-
rium strategy against an unadaptive equilibrium opponent
in Leduc Hold’em. Though thresholding is itself helpful,
it appears that whenever thresholding improves a strategy,
the improvement generally increases monotonically with the
threshold, with the biggest improvement achieved using pu-
rification.

8 Texas Hold’em
In the 2010 AAAI computer poker competition, the CMU
team (Ganzfried, Gilpin, and Sandholm) submitted bots that

Strategy Base EV Purified EV Improvement
JQ.K-J.QK -119.46 -37.75 81.71
J.QK-full -115.63 -41.83 73.80
J.QK-J.Q.K -96.66 -27.35 69.31
JQ.K-J.Q.K -96.48 -28.76 67.71
JQ.K-full -99.30 -39.13 60.17
JQ.K-JQK -80.14 -24.50 55.65
JQ.K-JQ.K -59.97 -8.31 51.66
J.Q.K-J.QK -60.28 -13.97 46.31
J.Q.K-J.Q.K -46.23 -1.86 44.37
J.Q.K-JQ.K -44.61 -3.85 40.76
full-JQK -43.80 -10.95 32.85
J.QK-J.QK -96.60 -67.42 29.18
J.QK-JQK -95.69 -67.14 28.55
full-J.QK -52.94 -24.55 28.39
J.QK-JQ.K -77.86 -52.62 25.23
J.Q.K-full -68.10 -46.43 21.66
full-JQ.K -55.52 -36.38 19.14
full-J.Q.K -51.14 -40.32 10.82
JQK-J.QK -282.94 -279.44 3.50
JQK-full -273.87 -279.99 -6.12
JQK-J.Q.K -258.29 -279.99 -21.70
J.Q.K-JQK -156.35 -188.00 -31.65
JQK-JQK -386.89 -433.64 -46.75
JQK-JQ.K -274.69 -322.41 -47.72

Table 2: Effects of purification on performance of abstract
strategies against an equilibrium opponent in mb/h.

used both purification and thresholding to the two-player
no-limit Texas Hold’em division. We present the results in
Section 8.1. Next, in Section 8.2, we observe how varying
the amount of thresholding used effects the exploitabilities
of two bots submitted to the 2010 two-player limit Texas
Hold’em division.

8.1 Performance in practice
The two-player no-limit competition consisted of two sub-
competitions with different scoring rules. In the instant-
runoff scoring rule, each pair of entrants plays against each
other, and the bot with the worst head-to-head record is elim-
inated. This procedure is continued until only a single bot
remains. The other scoring rule is known as total bankroll.
In this competition, all entrants play against each other and
are ranked in order of their total profits. While both scoring
metrics serve important purposes, the total bankroll compe-
tition is considered by many to be more realistic, as in many
real-world multiagent settings the goal of agents is to maxi-
mize total payoffs against a variety of opponents.

We submitted bots to both competitions: Tartanian4-IRO
(IRO) to the instant-runoff competition and Tartanian4-TBR
(TBR) to the total bankroll competition. Both bots use the
same abstraction and equilibrium-finding algorithms. They
differ only in their reverse-mapping algorithms: IRO uses
thresholding with a threshold of 0.15 while TBR uses purifi-
cation. IRO finished third in the instant-runoff competition,
while TBR finished first in the total bankroll competition.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Threshold

EV
 a

ga
in

st
 e

qu
ilib

riu
m

 (m
b/

h)

J.Q.K−J.Q.K
J.QK−JQK
JQ.K−JQ.K

Figure 2: Effects of thresholding on performance of abstract
strategies against an equilibrium opponent in mb/h.

Although the bots were scored only with respect to the
specific scoring rule and bots submitted to that scoring rule,
all bots were actually played against each other, enabling
us to compare the performances of TBR and IRO. Table 3
shows the performances of TBR and IRO against all of the
bots submitted to either metric in the 2010 two-player no-
limit Texas Hold’em competition.

One obvious observation is that TBR actually beat IRO
when they played head-to-head (at a rate of 80 milli big
blinds per hand). Furthermore, TBR performed better than
IRO against every single opponent except for one (c4tw.iro).
Even in the few matches that the bots lost, TBR lost at a
lower rate than IRO. Thus, even though TBR uses less ran-
domization and is perhaps more exploitable in the full game,
the opponents submitted to the competition were either not
trying or not able to find successful exploitations. Addition-
ally, TBR would have still won the total bankroll competi-
tion even if IRO were also submitted.

These results show that purification can in fact yield a big
gain over thresholding (with a lower threshold) even against
a wide variety of realistic opponents in very large games.

8.2 Worst-case exploitability
Despite the performance gains we have seen from purifica-
tion and thresholding, it is possible that these gains come
at the expense of worst-case exploitability (see Section 4.2).
Exploitabilities for several variants of a bot we submitted
to the 2010 two-player limit AAAI computer poker com-
petition (GS6.iro) are given in Table 4. Interestingly, us-
ing no rounding at all produced the most exploitable bot,
while the least exploitable bot used a threshold of 0.15. Hy-
perborean.iro was submitted by the University of Alberta to
the competition; exploitabilities of its variants are shown as
well. Interestingly, Hyperborean’s exploitabilities increased
monotonically with threshold, with no rounding producing
the least exploitable bot.

c4tw.iro c4tw.tbr Hyperborean.iro Hyperborean.tbr PokerBotSLO SartreNL IRO TBR
IRO 5334 ± 109 8431 ± 156 -248 ± 49 -364 ± 42 108 ± 46 -42 ± 38 -80 ± 23
TBR 4754 ± 107 8669 ± 168 -122 ± 38 -220 ± 39 159 ± 40 13 ± 33 80 ± 23

Table 3: Results from the 2010 AAAI computer poker competition for 2-player no limit Texas Hold’em. Values are in milli
big blinds per hand (from the row player’s perspective) with 95% confidence intervals shown. IRO and TBR both use the same
abstraction and equilibrium-finding algorithms. The only difference is that IRO uses thresholding with a threshold of 0.15 while
TBR uses purification.

These results show, on the one hand, that it can be hard to
predict the relationship between the amount of rounding and
the worst-case exploitability, and that it may depend heav-
ily on the abstraction and/or equilibrium-finding algorithm
used. While exploitabilities for Hyperborean are perhaps
in line with what we might intuitively expect, results from
GS6 show that the minimum exploitability can actually be
produced by an intermediate threshold value. The reason
is that (1) a bot that uses too high a threshold may not have
enough randomization and thus be too predictable and reveal
too much about its private signals (cards) via its actions, but
(2) a bot that uses too low of a threshold may have a strategy
that is overfit to the particular abstraction used.

Exploitability Exploitability
Threshold of GS6 of Hyperborean

None 463.591 235.209
0.05 326.119 243.705
0.15 318.465 258.53
0.25 335.048 277.841

Purified 349.873 437.242

Table 4: Results for full-game worst-case exploitabilities of
several strategies in two-player limit Texas Hold’em. Re-
sults are in milli big blinds per hand. Bolded values indicate
the lowest exploitability achieved for each strategy.

9 Conclusions and future research
We presented two new reverse-mapping algorithms for large
games: purification and thresholding. From a theoretical
perspective, we proved that it is possible for each of these
algorithms to help (or hurt) arbitrarily over the standard ab-
straction approach, and each can perform arbitrarily better
than the other. However, in practice both purification and
thresholding seem to consistently help over a wide variety of
domains, with purification generally outperforming thresh-
olding.

Our experiments on random matrix games show that, per-
haps surprisingly, purification helps even when random ab-
stractions are used. Our experiments on Leduc Hold’em
show that purification leads to improvements on most ab-
stractions, especially as the abstractions become more so-
phisticated. Additionally, we saw that thresholding gen-
erally helps as well, and its performance improves overall
as the threshold cutoff increases, with optimal performance
usually achieved at full purification. We also saw that pu-
rification outperformed thresholding with a lower threshold
cutoff in the AAAI computer poker competition against a

wide variety of realistic opponents. In particular, our bot that
won the 2010 two-player no-limit Texas Hold’em bankroll
competition used purification. Finally, we saw that these
performance gains do not necessarily come at the expense
of worst-case exploitibility, and that intermediate threshold
values can actually produce the lowest exploitability.

References
Billings, D.; Burch, N.; Davidson, A.; Holte, R.; Schaeffer,
J.; Schauenberg, T.; and Szafron, D. 2003. Approximat-
ing game-theoretic optimal strategies for full-scale poker. In
IJCAI.
Dantzig, G. 1951. A proof of the equivalence of the pro-
gramming problem and the game problem. In Koopmans,
T., ed., Activity Analysis of Production and Allocation.
Gilpin, A., and Sandholm, T. 2007. Better automated ab-
straction techniques for imperfect information games, with
application to Texas Hold’em poker. In AAMAS.
Gilpin, A., and Sandholm, T. 2008. Expectation-based ver-
sus potential-aware automated abstraction in imperfect in-
formation games: An experimental comparison using poker.
In AAAI. Short paper.
Gilpin, A.; Hoda, S.; Peña, J.; and Sandholm, T. 2007.
Gradient-based algorithms for finding Nash equilibria in ex-
tensive form games. In WINE.
Gilpin, A.; Sandholm, T.; and Sørensen, T. B. 2008. A
heads-up no-limit Texas Hold’em poker player: Discretized
betting models and automatically generated equilibrium-
finding programs. In AAMAS.
Porter, R.; Nudelman, E.; and Shoham, Y. 2008. Simple
search methods for finding a Nash equilibrium. Games and
Economic Behavior.
Schnizlein, D.; Bowling, M.; and Szafron, D. 2009. Proba-
bilistic state translation in extensive games with large action
sets. In IJCAI.
Shi, J., and Littman, M. 2002. Abstraction methods for
game theoretic poker. In Revised Papers from the Second
International Conference on Computers and Games.
von Stengel, B. 2002. Computing equilibria for two-person
games. In Aumann, R., and Hart, S., eds., Handbook of
game theory.
Waugh, K.; Schnizlein, D.; Bowling, M.; and Szafron, D.
2009. Abstraction pathologies in extensive games. In AA-
MAS.
Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione,

C. 2007. Regret minimization in games with incomplete
information. In NIPS.

Appendix
In this appendix we describe the algorithm used to solve 4×4
two-player zero-sum matrix games for the experiments in
Section 6.1. First, we recall from prior work (von Stengel
2002) that in our random matrix game setting, a game will
have an equilibrium with balanced supports (i.e., equal sup-
port sizes for both players) with probability 1.
Definition 1. A two-player strategic-form game is called
nondegenerate if the number of pure best responses to a
mixed strategy never exceeds the size of its support.
Definition 2. A strategic-form game is called generic if each
payoff is drawn randomly and independently from a contin-
uous distribution.
Proposition 2. A generic two-player strategic-form game is
nondegenerate with probability 1.
Corollary 1. A generic two-player strategic-form game
contains a Nash equilibrium with equal support sizes for all
players with probability 1.

Corollary 1 allows us to restrict our attention to balanced
supports. For support size at most 3, it turns out that there is
a simple closed-form solution for any equilibrium.
Proposition 3. Let Λ be a nondegenerate two-player
strategic-form game. Let S1 and S2 be sets of pure strate-
gies of players 1 and 2 such that |S1| = |S2| ≤ 3. Then if Λ
contains a Nash equilibrium with supports S1 and S2, then
there is a simple closed-form solution for the equilibrium.

Finally, before presenting our algorithm, we note that pu-
rification and abstraction will perform identically in games
with equilibria that have certain support structures. If we in-
clude all of these games, then we will require more samples
to differentiate the performances of the two algorithms. On
the other hand, if we ignore games for which the two ap-
proaches perform identically, then we can differentiate their
performances to a given level of statistical significance using
fewer samples, and therefore reduce the overall running time
of our algorithm. Proposition 4 gives us a set of conditions
under which we can omit games from consideration.
Proposition 4. Let Λ be a two-player zero-sum game, and
let Λ′ be an abstraction of Λ. Let σF and σA be equi-
libria of Λ and Λ′ respectively. Then u1(σA1 , σ

F
2) =

u1(pur(σA1), σF2) if either of the following conditions is met:
1. σA is a pure strategy profile
2. support(σA1) ⊆ support(σF1)

Proof. If the first condition is met, then pur(σA1) = σA1
and we are done. Now suppose the second condition is
true and let s, t ∈ support(σA1) be arbitrary. This im-
plies that s, t ∈ support(σF1) as well, which means that
u1(s, σF2) = u1(t, σF2), since a player is indifferent between
all pure strategies in his support at an equilibrium. Since s
and t were arbitrary, player 1 is also indifferent between all
strategies in support(σA1) when player 2 plays σF2 . Since
purification will just select one strategy in support(σA1), we
are done.

We are now ready to present our algorithm; it is similar
to the support enumeration algorithm of (Porter, Nudelman,
and Shoham 2008), though it avoids solving linear feasibil-
ity programs and omits the conditional dominance tests. The
procedure Test-Feasibility tests whether an equilibrium ex-
ists with the specified support. Compute-Equilibrium iter-
ates over all balanced supports and tests whether there is an
equilibrium consistent with each one. Finally, our main al-
gorithm repeatedly generates random games and compares
the payoffs of σA1 and pur(σA1) against the full equilibrium
strategy of player 2. As discussed above, to reduce the num-
ber of samples needed we omit games for which the equi-
libria satisfy either condition of Proposition 4. Note that
Compute-Equilibrium does not actually compute an equilib-
rium if the only equilibrium is fully mixed for each player;
instead it returns a dummy equilibrium profile where each
player puts weight 0.25 on each action. We do this because
games with only fully mixed equilibria will satisfy the sec-
ond condition of Proposition 4 and will be ignored by Algo-
rithm 3 anyway.
Algorithm 1 Test-Feasibility(A,S1, S2)
σ ← candidate solution for supports S1, S2 given by
closed form expression described in Proposition 3.
if all components of σ are in [0,1] and neither player can
profitably deviate then

return σ
else

return INFEASIBLE
end if

Algorithm 2 Compute-Equilibrium(A)
dummy-equilibrium ← ((0.25, 0.25, 0.25, 0.25),(0.25,
0.25, 0.25, 0.25))
for all balanced support profiles S1, S2 in increasing order
of size, starting with (1,1), (1,2), ... do

if both supports have size 4 then
return dummy-equilibrium

end if
σ ← Test-Feasibility(A,S1, S2)
if σ 6= INFEASIBLE then

return σ
end if

end for
Algorithm 3 Simulate(T)
πA = 0, πP = 0
for i = 1 to T do

Λ← random 4× 4 matrix game with payoffs in [-1,1]
Λ′ ← 3×3 abstraction of Λ ignoring final pure strategy
of each player
σF ← Compute-Equilibrium(Λ)
σA ← Compute-Equilibrium(Λ′)
if σF , σA do not satisfy either condition of Proposi-
tion 4 then
πA ← πA + u1(σA1 , σ

F
2)

πP ← πP + u1(pur(σA1), σF2)
end if

end for

