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Abstract

Noncooperative game theory provides a normative framework for analyzing strategic interactions. How-
ever, for the toolbox to be operational, the solutions it defines will have tofputedIn this paper, we
provide a single reduction that 1) demonstraté®-hardness of determining whether Nash equilibria

with certain natural properties exist, and 2) demonstrategttRehardness of counting Nash equilibria

(or connected sets of Nash equilibria). We also show that 3) determining whether a pure-strategy Bayes-
Nash equilibrium exists i&/P-hard, and that 4) determining whether a pure-strategy Nash equilibrium
exists in a stochastic (Markov) gameRsSP.ACE-hard even if the game is invisible (this remaijkisP-

hard if the game is finite). All of our hardness results hold even if there are only two players and the
game is symmetric.

1 Introduction

Noncooperative game theory provides a normative framework for analyzing strategic interactions. However,
for the toolbox to be operational, the solutions it defines will have tedmputed47]. There has been

growing interest in the computational complexity of natural questions in game theory. Starting at least
as early as the 1970s, complexity theorists have focused on the complexity of playing particular highly
structured games (usually board games, such as chess or Go [26], but also games such as Geography or
QSAT [48]). These games tend to be alternating-move zero-sum games with enormous state spaces, which
can nevertheless be concisely represented due to the simple rules governing the transition between states.
As a result, effort on finding results for general classes of games has often focused on complex languages in
which such structured games can be concisely represented.

Real-world strategic settings are generally not nearly as structured, nor do they generally possess the
other properties (most notably, zero-sumness) of board games and the like. Algorithms for analyzing this
more general class of games strategically are a necessary component of sophisticated agents that are to play
such games. Additionally, they are neededimgchanism designevgho have (some) control over the rules
of the game and would like the outcome of the game to have certain properties, such as maximum social
welfare.

Noncooperative game theory provides languages for representing large classes of strategic settings, as
well as sophisticated notions of what it means to "solve” such games. The best known solution concept is
that of Nash equilibrium[31], where the players’ strategies are such that no individual player can derive

*This material is based upon work supported by the National Science Foundation under CAREER Award IRI-9703122, Grant
11S-9800994, ITR 11S-0081246, and ITR 11S-0121678.



any benefit from deviating from its strategy. The question of how complex it is to construct such an equi-
librium has been dubbed “a most fundamental computational problem whose complexity is wide open” and
“together with factoring, [...] the most important concrete open question on the boundanpday” [38].

While this question remains open, important concrete advances have been made in determining the
complexity of related questions. For example, 2-person zero-sum games can be solved using linear pro-
gramming [27] in polynomial time. As another example, determining the existence of a joint strategy where
each player gets expected payoff at lelass N P-complete in a concisely representable extensive form
game where both players receive the same utility'[61s yet another example, in 2-player general-sum
normal form games, determining the existence of Nash equiltittacertain propertiess A’ P-hard [13].

Finally, the complexity of best-responding and of guaranteeing payoffs in repeated and sequential games
has been studied in [5, 20, 37, 51].

In this paper we provide new complexity results on questions related to Nash equilibria. In Section 2
we provide a single reduction which significantly improves on many of Gilboa and Zemel's results on
determining the existence of Nash equilibria with certain properties. In Section 3, we use the same reduction
to show that counting the number of Nash equilibria (or connected sets of Nash equilib#i®)-ferd.

In Section 4 we show that determining whether a pure-strategy Bayes-Nash equilibrium eX&ts is

hard. Finally, in Section 5 we show that determining whether a pure-strategy Nash equilibrium exists in
a stochastic (Markov) game B8SP.ACE-hard even if the game is invisible (this remaik&P-hard if the

game is finite). All of our hardness results hold even if there are only two players and the game is symmetric.

2 Equilibria with certain properties in normal form games

When one analyzes the strategic structure of a game, especialy from the viewpoint of a mechanism designer
who tries to construct good rules for a game, finding a single equilibrium is far from satisfactory. More
desirable equilibria may exist: in this case the game becomes more attractive, especially if one can coax the
players into playing a desirable equilibrium. Also, less desirable equilibria may exist: in this case the game
becomes less attractive. Before we can make a definite judgment about the quality of the game, we would
like to know the answers to questions such as: What is the game’s most desirable equilibrium? Is there a
unique equilibrium? If not, how many equilibria are there? Algorithms that tackle these questions would be
useful both to players and to the mechanism designer.

Furthermore, algorithms that answer certain existence questions may pave the way to designing algo-
rithms that construct a Nash equilibrium. For example, if we had an algorithm that told us whether there
exists any equilibrium where a certain player plays a certain strategy, this could be useful in eliminating
possibilities in the search for a Nash equilibrium.

However, all the existence questions that we have investigated turn outp@hkigard. These are not the
first results of this nature; most notably, Gilboa and Zemel provide s@fRehardness results in the same
spirit [13]. We provide a single reduction which in demonstrates (sometimes stronger versions of) most of
their hardness results, and interesting new results. Additionally, as we show in Section 3, the reduction can
be used to showtP-hardness of counting the number of equilibria.

To begin, we need some standard defintions from game theory.

Definition 1 In anormal form gamgwe are given a set of agentls and for each agent, a strategy sek;
and a utility functionu; : 31 x Xp x ... x X4 — R

Definition 2 A mixed strategy; for player: is a probability distribution oved;. A special case of a mixed
strategy is gpure strategywhere all of the probability mass is on one elemenit of

1This game can be converted to a normal form game as well, but it will grow exponentially in size, and the hardness result does
not go through.



Definition 3 (Nash [31]) Given a normal form game,ldash equilibrium (NE)s vector of mixed strategies,

one for each agent such that no agent has an incentive to deviate from its mixed strategy given that the oth-
ers do not deviate. Thatis, for angnd any alternative mixed strategy, we haveF [u;(s1, s2, . . ., Si - - -, s14)] =
Elui(s1,82,...,5},...,54))], where eacls; is drawn fromo;, ands] is drawn fromo;.
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Now we are ready to present our reduction.

Definition 4 Let ¢ be a Boolean formula in conjunctive normal form. Létbe its set of variables (with
|V| = n), L the set of corresponding literals (a positive and a negative one for each vadaate)C its set
of clauses. The function: L — V gives the variable corresponding to a literal, exfx1) = v(—x1) =
x1. We defing7(¢) to be the following symmetric 2-player game in normal form. Let ¥; = ¥y =
LUV UCU{f}. Letthe utility functions be specified as follows:

o ui(I',1%) = ug(12,1') = 1 forall I*,1? € L with[* # —1?;

‘Ul

(
(
(
(
(
o ui(v,z) =ug(x,v) = -2forallveV,z € ¥ - L;
(
(
(
(
(

o ui(c,l) =us(l,c) =2forallce C,l € Lwithl ¢ ¢;

o ui(c,l) =us(l,c)=2—nforallce C,l € Lwith] € ¢;
e ui(c,z) =ug(x,c)=—2forallce C,x € ¥ - L;

o ui(f,f) =u2(f, f)=0;

o ui(f,x) =wa(x, f)=1foralz € ¥ — {f}.

Theorem 1 If (I1,12,...,1,) (Wherev(l;) = x;) satisfiesp, then there is a Nash equilibrium 6f(¢) where
both players play; with probability%, with expected utility 1 for each player. Furthermore, the only other
Nash equilibrium is the one where both players pfaynd receive expected utility 0 each.

Proof: We first demonstrate that these combinations of mixed strategies indeed do constitute Nash equilibria.
If (11,12, ..., 1y) (Wherev(l;) = ;) satisfiesp and the other player playswith probability L, playing one
of thesel; as well gives utility 1. On the other hand, playing the negation of one of thagees utility
1(—2) + 2=1(1) < 1. Playing some variable gives utility (2 — n) + 2=1(2) = 1 (since one of
the [; that the other player sometimes plays hés) = v). Playing some clause gives utility at most
%(2 —n)+ ”7‘1(2) = 1 (since one of thé; that the other player sometimes plays occurs in clausace
the l; satisfy¢). Finally, playing f gives utility 1. It follows that playing any one of tHg that the other
player sometimes plays is an optimal response, and hence that both players playing eachipfititiese
probability% is a Nash equilibrium. Clearly, both players playifigs also a Nash equilibrium since playing
anything else when the other playgives utility —2.

Now we demonstrate that there are no other Nash equilibria. If the other player always pthgs
unique best response is to also plagince playing anything else will give utility-2. Otherwise, given
a mixed strategy for the other player, consider a player’'s expected utility given that the other player does
not play f. (That is, the probability distribution over the other player’'s strategies is proportional to the
probability distribution constituted by that player's mixed strategy, ex¢eptcurs with probability 0). If
this expected utility is smaller than 1, the player is strictly better off playirffgrhich gives utility 1 when

2Thus, ifz, is a variablez;, and—z are literals. We make a distinction between the variahland the literal .



the other player does not plgy and also performs better than the original strategy when the other player
does playf). So this cannot happen in a Nash equilibrium.

There are no Nash equilibria where one player always pfalyst the other does not, so suppose both
players playf with probability less than one. Consider the expected social welfafe, (+ us]), given
that neither player play$. It is easily verified that there is no outcome with social welfare greater than 2.
Additionally, any outcome in which one player plays an elemenf af C' has social welfare strictly below
2. It follows that if either player ever plays an elementlobr C, the expected social welfare given that
neither player playg is strictly below 2. By linearity of expectation it follows that the expected utility of at
least one player is strictly below 1 given that neither player pjgayend by the above reasoning, this player
would be strictly better off playing instead of its randomization over strategies other tfiaft follows
that no element oV or C'is ever played in a Nash equilibrium.

So, we can assume both players only put positive probability on stratedies {rf }. Then, if the other
player puts positive probability ofi, playing f is a strictly better response than any elemenLdsince
both give utility 1 if the other player plays an elementigfbut f/ does better if the other player plays It
follows that the only equilibrium wherg is ever played is the one where both players always filay

Now we can assume that both players only put positive probability on elementsRiippose that for
somel € L, the probability that a given player plays eitlier — is less than};. Then the expected utility
for the other player of playing(l) is strictly greater tha%(? —n)+ ”7‘1(2) = 1, and hence this cannot be
a Nash equilibrium. So we can assume that for laayL, the probability that a given player plays eitlier
or — is precisely:.

If there is an element af such that player 1 puts positive probability on it and player 2 on its negation,
both players have expected utility less than 1 and would be better off switchifig30, in a Nash equilib-
rium, if player 1 playd with some probability, player 2 must pldywith probability%, and thus player 1
must play! with probability%. Thus we can assume that for each variable, exactly one of its corresponding
literals is played with probability- by both players. It follows that in any Nash equilibrium (besides the
one where both players pla}), literals that are sometimes played indeed correspond to an assignment to
the variables.

All that is left to show is that if this assignment does not satisfyve do not have a Nash equilibrium.
Letc € C be a clause that is not satisfied by the assignment, that is, none of its literals are ever played. Then
playingc would give utility 2, and both players would be better off playing this.m

Hence, there exists a Nash equilibrium@f{¢) where each player gets utility 1 if and only df is
satisfiable; otherwise, the only equilibrium is the one where both playersfptad each of them gets 0.
Since any sensible definition of welfare optimization would prefer the first kind of equilibrium, it follows
that determining whether a “good” equilibrium exists is hard for any such definition. Additionally, the first
kind of equilibrium is, in various senses, an optimal outcome for the game, even if the players were to
cooperate, so even finding out whether such an optimal equilibrium exists is hard. The following corollaries
illustrate these points (each corollary is immediate from Theorem 1).

Corollary 1 Even in symmetric 2-player games, itN§P-hard to determine whether there exists a NE with

expected (standard) social welfar€[( > w;]) at leastk, even wherk is the maximum social welfare
1<i<|A|
that could be obtained in the game.

Corollary 2 Even in symmetric 2-player games, itA§P-hard to determine whether there exists a NE
where all players have expected utility at leaseven wherk is the largest number such that there exists a
distribution over outcomes of the game such that all players have expected utility at.least

Corollary 3 Even in symmetric 2-player games, itN§P-hard to determine whether there existPareto-
optimalNE. (A distribution over outcomes is Pareto-optimal if there is no other distribution over outcomes
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such that every player has at least equal expected utility, and at least one player has strictly greater expected
utility).

Corollary 4 Even in symmetric 2-player games, itA§P-hard to determine whether there exists a NE
where player 1 has expected utility at le&st

Some additional interesting corollaries are:

Corollary 5 Even in symmetric 2-player games, itN&P-hard to determine whether there is more than one
Nash equilibrium.

Corollary 6 Evenin symmetric 2-player games, iNSP-hard to determine whether there is an equilibrium
where player 1 sometimes plays ;.

Corollary 7 Even in symmetric 2-player games, ifNSP-hard to determine whether there is an equilibrium
where player 1 never plays < ;.

All of these results indicate that it is hard to obtain summary information about a game’s Nash equilibria.
(Corollary 5 and weaker versions of Corollaries 2, 6 and 7 were first proven by Gilboa and Zemel [13].)

3 Counting the number of equilibria in normal form games

Existence questions do not tell the whole story. In general, we are interested in characterizing all the equi-
libria of a game. One rather weak such characterization is the number of eqgilivéacan use Theorem 1
to show that even determining this number in a given normal form game is hard.

Corollary 8 Even in symmetric 2-player games, counting the number of Nash equili#i@ibard.

Proof: The number of Nash equilibria in our gani& ¢) is the number of satisfying assignments to the
variables ofp, plus one. Counting the number of satisfying assignments to a CNF form#lR-kard [49].
]

Itis easy to construct games where there is a continuum of Nash equilibria. In such games, it would be more
meaningful to ask how many distinct continuums of equilibria there are. More formally, one can ask how
many maximal connected sets of equilibria a game has (a maximal connected set is a connected set which
is not a proper subset of a connected set).

Corollary 9 Even in symmetric 2-player games, counting the number of maximal connected sets of Nash
equilibria is #P-hard.

Proof: Every Nash equilibrium inG(¢) constitutes a maximal connected set by itself, so the number of
maximal connected sets is the number of satisfying assignments to the variab)gdusfone. =

The most interestingtP-hardness results are the ones where the corresponding existence and search ques-
tions are easy, such as counting the number of perfect bipartite matchings. In the case of Nash equilibria, the
existence question is completely trivial: it has been analytically shown (by Kakutani’s fixed point theorem)
that a Nash equilibrium always exists [31]. The complexity of the search question remains open.

3The number of equilibria in normal form games has been studied both in the worst case [30] and in the average case [29].



4 Pure-strategy Bayes-Nash equilibria

Equilibria in pure strategies are particularly desirable because they avoid the uncomfortable requirement
that players randomize over strategies among which they are indifferent [12]. In normal form games with
small numbers of players, it is easy to determine the existence of pure-strategy equilibria: one can simply
check, for each combination of pure strategies, whether it constitutes a Nash equilibrium. However, this
is not feasible iBayesiangames, where the players have private information about their own preferences
(represented byypes. Here, players may condition their actions on their types, so the strategy space of
each player is exponential in the number of types.

In this section, we show that the question of whether a pure-strategy Bayes-Nash equilibrium exists is
in fact V"P-hard even in symmetric two-player games. First, we need the standard definition of a Bayesian
game and Bayes-Nash equilibrium from game theory.

Definition 5 In a Bayesian gamewe are given a set of agents for each agenti, a set of type®,; a
commonly known prior distributiop over©; x ©2 x ... x ©)y4; for each agent, a set of strategie¥;;
and for each agent, a utility functionu; : ©; x X; x 3a x ... X X4 — .

Definition 6 (Harsanyi [15]) Given a Bayesian game, Bayes-Nash equilibrium (BNEis a vector of
mixed strategies, one for each pdird; € ©;, such that no agent has an incentive to deviate, for any of
its types, given that the others do not deviate. That is, foriafyye ©;, and any alternative mixed strategy
0}, WE have

Eg_iwi [E[ul(ﬁl, 81791, 52792, e ,Siﬂi, e 75|A|,0|A‘ )H Z Eg_iwi [E[ul(el, 81791, 52792, e 75;,6'7;7 e 75|A|,9|A‘ )H
where eachy; g, is drawn fromo; g,, ands; 4. is drawn fromo; , .

We can now define the computational problem that we study.

Definition 7 (PURE-STRATEGY-BNE) We are given a Bayesian game. We are asked whether there exists
a BNE where all the strategies 4, are pure.

To show outNP-hardness result, we will reduce from the SET-COVER problem.

Definition 8 (SET-COVER) We are given a sef = {si,...,s,}, subsetsSy, Sa,..., Sy, of S with
Ui<i<m Si = S, and anintegek. We are asked whether there exist, S, , . . ., S¢, suchthatJ; ;< S¢; =
S.

Theorem 2 PURE-STRATEGY-BNE.J¢P-hard, even in symmetric 2-player games whgeie uniform.

Proof: We reduce an arbitrary SET-COVER instance to the following PURE-STRATEGY-BNE instance.
Let there be two players, with = ©; = 0, = {#',...,0*}. ¢ is uniform. Furthermorel = X; = %y =
{S1,89,...,5m,s1,S2,...,s,}. The utility functions we choose in fact do not depend on the types, so we
omit the type argument in their definitions. They are as follows:

o ui(S;, ;) = ux(S;,5;) = 1forall S; andS;;

(
o ui(S;,s5) =ua(sj,S;) = 1forall S; ands; ¢ S;;
o ui(S;,s5) =ua(sj, ;) =2forall S; ands; € S;;
o ui(si,s5) = ua(sy,s;) = —3k forall s; ands;;
o ui(sj,5;) = ua(S;,s;) = 3forall S; ands; ¢ S;;
o ui(s;,S;) = u2(S;, s;) = —3k forall S; ands; € ;.
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We now show the two instances are equivalent. First suppose thereSgxist,, ..., S., such that
Ui<i<k S¢; = S. Suppose both players play as follows: when their typg,ithey playS,,. We claim that
this is a BNE. For suppose the other player employs this strategy. Then, becausedprthage is at least
oneS,, such thats; € S.,, we have that the expected utility of playingis at most%(—Bk) + %3 < 0.

It follows that playing any of theS; (which gives utility 1) is optimal. So there is a pure-strategy BNE.

On the other hand, suppose that there is a pure-strategy BNE. We first observe that in no pure-strategy
BNE, both players play some element®for some type: for if the other player sometimes plays seme
the utility of playing somes; is at most%(—Bk:) + %3 < 0, whereas playing som®, instead guarantees a
utility of at least 1. So there is at least one player who never plays any elemgniNafwv suppose the other
player sometimes plays somg. We know there is som#; such thats; € S;. If the former player plays
this S;, this will give it a utility of at least{2 + 21 = 1 + +. Since it must do at least this well in the
equilibrium, and it never plays elements®fit must sometimes receive utility 2. It follows that there exist
S, ands, € S, such that the former player sometimes pl&ysand the latter sometimes plays But then,
playing s, gives the latter player a utility of at mo%(—f%k) + %3 < 0, and it would be better off playing
somes; instead. (Contradiction.) It follows that in no pure-strategy BNE, any elemefii®tver played.

Now, in our given pure-strategy equilibrium, consider the set of allSththat are played by player 1 for
some type. Clearly there can be at mbsiuch sets. We claim they covér For if they do not cover some
elements;, the expected utility of playing; for player 2 is 3 (because player 1 never plays any element
of S). But this means that player 2 (who never plays any elemeist either) is not playing optimally.
(Contradiction.) Hence, there exists a set covem

If one allows for general mixed strategies, a Bayes-Nash equilibrium always exists [12]. However, the
guestion of how efficiently one can be constructed remains open.

5 Pure-strategy Nash equilibria in stochastic (Markov) games

We now shift our attention from single-shot games to games with multiple stages. In each stage, the play-
ers get to act and obtain payoffs. There has already been some research into the complexity of playing
repeated and sequential games. For example, determining whether a particular automaton is a best response
is N'P-complete [5]; it isSNP-complete to compute a best-response automaton when the automata under
consideration are bounded [37]; the question of whether a given player with imperfect recall can guaran-
tee itself a given payoff using pure strategies\i$-complete [20]; and in general, best-responding to an
arbitrary strategy can even be noncomputable [51]. In this section, we present, to our knowledge, the first
PSPACE-hardness result on the existence of a pure-strategy equilibrium.

A multi-stage game is typically represented asachastic (Markov) gamevhere there is an underlying
set of states, and the game shifts between these states from stage to stage [12, 45, 46]. At every stage, each
player’'s payoff depends not only on the players’ actions, but also on the state. Furthermore, the probability
of transitioning to a given state is determined by the current state and the players’ current actions. Hardness
results for such games cannot be obtained simply by formulating a known hard game such as generalized
Go [26] or QSAT [48] as a Markov game, because such a formulation would have to specify an exponential
number of states. Even if the number of states is polynomial, one might suspect hardness due to the fact
that the strategy spaces are extremely rich. However, in this section welARBwACE-hardness even in a
variant where the strategy spaces are simple (in the sense that the players cannot condition their actions on
events in the game).

Definition 9 A stochastic (Markov) gameonsists of the following.

e A set of players;
e A set of state$, among which the game transits;

7



For each playet, a set of action&; that can be played in any state;

A transition probability functiorp : S x ¥ x ... x X4 x S — [0, 1], wherep(s1, a1, . . ., an, 52)
gives the probability of the game being in staien the next stage given that the current state of the
game iss; and the players play actions,, . . ., a,;

For each player, a payoff function; : S x ¥ x ... X4 — R, whereu;(s, a1, ..., a4) gives the
payoff to playetr in states where the players play actions, . . ., a,;

[e.e)

A discount facto such that the total utility of agentis > 6u;(s*,a¥, ... ’alkAI)’ wheres* is the
k=0

state of the game at stageand the players play actiong’, . . ., a* in stagek.

In general, a player need not always be aware of the current state of the game, the actions the others
played in previous stages, or the payoffs that the player has accumulated. In the extreme case, players
never find out any of these and are hence playing blindly. We call such a Markov igaisible. It is
relatively easy to specify a pure strategy in an invisible Markov game, because there is nothing to condition
on. Hence, such a strategy is “simply” an infinite sequence of actions (for playsequencéa’}, where
it plays actiona? in stagek, regardless}. In spite of this apparent simplicity of the game, we show that
determining whether pure-strategy equilibria exist is extremely hard.

Definition 10 (PURE-STRATEGY-INVISIBLE-MARKOV-NE) We are given an invisible Markov game.
We are asked whether there exists a Nash equilibrium where all the strategies are pure.

We show that this problem IBSP.ACE-hard, by reducing from PERIODIC-SAT, which is known to be
PSPACE-complete [36].

Definition 11 (PERIODIC-SAT) We are given a CNF formula(0) over the variables{z! ...z} U
{z}...2L}. Leto(k) be the same formula, except that all the superscripts are incremented We are
asked whether there exists a Boolean assignment to the varighles, {z}...z%} such thatp(k) is
satisfied for every = 0,1, .. ..

Theorem 3 PURE-STRATEGY-INVISIBLE-MARKOV-NERAS P ACE-hard, even when the game is sym-
metric, 2-player, and the transition process is deterministic.

Proof: We reduce an arbitrary PERIODIC-SAT instance to the following symmetric 2-player PURE-STRATEGY-
INVISIBLE-MARKOV-NE instance. The state spaceds= {s; }1<i<nU{t; .} 1<i<onicccU{t; . }1<i<onicecU

{r}, whereC is the set of clauses if(0). Furthermore}X = ¥; = ¥y = {¢, f} U C. The transition proba-

bilities are as follows:

e p
p(s1,bl, 0%, s0) = 1forall b, b2 € {t, f};
p(s1,¢,b,th ) =1forallb e {t, f} andc € C;

(54, 2%, 22 s Sit1(modn)) = Lforl <i <mnand allz!, 22 € %;
(
(
p(s1,b,¢,t5,) =1forallb e {t, f} andc € C;
(
(t;
(

3

E

31,0 c? r)—lforallc e
)

erha? ], ) =1foralll <i<2n,je{1,2},ceC, andat,a? €%

opt2nc,x 22, r)=1forallj € {1,2},c€ C,andx!, 2% € 3;
e p(r,zt, 2%, r) = 1forallz! 2% € X.

“We do not need to worry about issues of credible threats and subgame perfection in this setting, so we can simply use Nash
equilibrium as our solution concept [28].



Some of the utilities obtained in a given stage are as follows (we do not specify utilities irrelevant to our
analysis):

o uy(si,xt,2%) = ug(si, 22, 2!) =0for1 < i <nandallz!, 2% € 3;

o uy(sy,bt,b?) = us(sy, b, bl) = 0forall b, b2 € {t, f};

e ui(s1,c,b) = ua(s1,b,c) = 1forallb € {t, f} andc € C, when setting variable! to b does not

satisfyc;

e ui(s1,c,b) = ua(s1,b,c) = —1forallb € {t,f} andc € C, when setting variable{ to b does
satisfyc;

o ui(sy,cl,c?) = us(sy,c?, cl) = —1forallc!,c? € C;

o Ul(thpyie 5 0) = ua(tf 10 0,2) = 0fork € {0,1},1 <i <n,allc e Candb € {t, f} such that
setting variableci-C to b does not satisfy, and allx € X;

o ul(t}mﬁyc,:c,b) = u2(tzn+i’c,b, x) = —4fork € {0,1},1 <i<mn,allc e Candb € {t, f} such
that setting variable” to b does satisfy:, and allx € ¥;

o Ui(thyio® ) =ua(tf, 0 ¢sx) =0forke {0,1},1 <i<mn,aled e C andallz € X.

Additionally, the game played in stateis some symmetric zero-sum game without a pure-strategy
equilibrium (for example, a generalization of rock-paper-scissors) with very small payoffs. Finally, the
discount factor i$§ = (1)1 (so thats?" > 1),

We start our analysis with a few observations. First, there can be no pure-strategy equilibrium in which
stater is reached at some point, because (singean absorbing state) this would require that some pure-
strategy equilibrium of the game in statevere played whenever stateccurred. (Otherwise a player who
is not best-responding in one of these stages could simply switch to a best response in this stage, and because
the game is invisible, the rest of the game would remain unaffected, so this would give higher utility.) But
such an equilibrium does not exist. Second, if we ever reach one ¢f tistates, we will inevitably reach
stater at some point after this. It follows that all pure-strategy Nash equilibria never leave steges.

Now suppose an assignment satisfying the periodic SAT formula exists. Let both players play as follows:
in stagekn + i (with 1 < i < n), b € {t, f} is played, where is the value that the variable’ is set
to. Clearly, both players receive utility O with these strategies. Does either player have an incentive to
deviate? The only deviation of any significance is to play seme C when the current state is. So,
without loss of generality (because of the symmetry of the game), say player 2 deviates to playirig
in stagekn + 1 (when the state is;). We know that in the satisfying assignment, some variabemong
ab, o ak Rt 2k s set to somé such that setting! " to b satisfiese. If itis ¥, which is set to
b, then in stagén + 1 player 1 play9, and player 2 gets payoff1 in this stage since we are in stateand
settingx? to b satisfiesc. Otherwise, if it inﬁ with [ = k£ + 1 ori # 1, which is set tah, then player 2 will
get payoff 1 in stagén + 1, but in stagdn + i player 1 play9, and player 2 gets payoff4 in this stage
since we are in statt%fk)nﬂ.’c and settings}~* to b satisfiese. The discounting is insignificant enough that
this more than cancels out the 1 earned in stage- 1. Player 2 will get (at most) 0 in the other stages
up to the first stage in state and given that we made the payoffs in the game in statafficiently small
relative tod, player 2 will not earn enough in the remaining stages to cancel out its losses so far. So there is
no incentive to deviate. Thus, a pure-strategy NE exists.

On the other hand, suppose that no assignment satisfying the periodic SAT formula exists. Let us in-
vestigate whether a Nash equilibrium could exist. We know that in such a Nash equilibrium we never leave
the s;, so both players receive utility 0, and nds ever played in a stage with state Since playing & in
one of the other stages can have no deterrent value, we may suppose that only elefielfitsare played.

Now consider the following assignment to th§: if player 1 playsb in stagekn + i, 2% is set tob. Since
no assignment satisfying the periodic SAT formula exists, we know there is some clandsomeé: such
that no variable:t amongz¥, ... 2% o5 . 2k+1is set to somé such that setting! " to b satisfies:.

VR
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But then, if player 2 deviates to play thisn stagekn + 1, it will receive payoff 1 in this stage, and payoff 0

in all the remaining stages up to the first stage in stateurthermore, player 2 can guarantee itself at least
payoff 0 in each stage in stateas this state corresponds to a zero-sum symmetric game. It follows that this
deviation gives player 2 positive utility and is hence beneficial. Thus, no pure-strategy NE exists.

A simpler version of the same argument shows a weaker form of hardness for the case where the game
is restricted to have only finitely many stages (we omit the proof due to limited space):

Theorem 4 PURE-STRATEGY-INVISIBLE-MARKOV-NENSP-hard, even when the game is symmetric,
2-player, the transition process is deterministic, and the number of stages in the game is finite.

6 Conclusions and future research

Noncooperative game theory provides a normative framework for analyzing strategic interactions. However,
for the toolbox to be operational, the solutions it defines will have todmeputed In this paper, we provided

a single reduction that 1) demonstrafé$-hardness of determining whether Nash equilibria with certain
natural properties exist, and 2) demonstrategtfehardness of counting Nash equilibria (or connected sets

of Nash equilibria). We also showed that 3) determining whether a pure-strategy Bayes-Nash equilibrium
exists isNP-hard, and that 4) determining whether a pure-strategy Nash equilibrium exists in a stochastic
(Markov) game isPSP.ACE-hard even in invisible games (and remald®-hard if the game is finite). All

of our hardness results hold even if there are only two players and the game is symmetric.

The intersection of computer science and economics is a fertile research area, and has many excit-
ing avenues for future research. For example, within the area of computational complexity, there are
open questions regarding the complexityexiecutingvarious mechanism optimally (e.g., [4, 16,42, 43])
or approximately (e.g. [25, 33]), the complexityrofnipulatingvarious mechanisms (e.qg., [2, 3, 9, 44]), the
complexity ofdesigningmechanisms (that lead to desirable outcomes) [10, 40], and the complexity of de-
ciding what information tcelicit from the players in various mechanisms [11]. Another avenue involves
studying more sophisticated equilibrium notions which take into account that players have limited memory
(e.g.[1,14, 32,39, 41]) or limited capability to solve optimization problems (e.g. [19, 23, 24, 34]). There are
also open issues on communication complexity in games (e.g., [7, 8,17, 35, 50]), and on the complexity of
computing general equilibria (“market equilibria”) (e.g., [50]) and other solutions.

There are numerous open research guestions even in the area of computing solutions to honcooperative
games. Some recent work has focused on novel knowledge representations which, in certain settings, can
drastically speed up equilibrium finding (e.g. [18, 21, 22]). One avenue of future theoretical work includes
identifying restricted classes of games for which equilibria (or equilibria with certain properties) can be
found fast. Another avenue involves studying the complexity of characterizing (some of) the equilibria of
a gamepartially. Yet another avenue includes analyzing the computational complexity of other solution
concepts from noncooperative game theory.
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