
Mixed-Integer Programming Methods for Finding Nash Equilibria ∗

Tuomas Sandholm and Andrew Gilpin and Vincent Conitzer
Carnegie Mellon University

Computer Science Department
{sandholm,gilpin,conitzer}@cs.cmu.edu

Abstract

We present, to our knowledge, the first mixed integer pro-
gram (MIP) formulations for finding Nash equilibria in games
(specifically, two-player normal form games). We study dif-
ferent design dimensions of search algorithms that are based
on those formulations. OurMIP Nashalgorithm outperforms
Lemke-Howsonbut notPorter-Nudelman-Shoham (PNS)on
GAMUT data. We argue why experiments should also be
conducted on games with equilibria with medium-sized sup-
ports only, and present a methodology for generating such
games. On such gamesMIP Nashdrastically outperforms
PNSbut notLemke-Howson. CertainMIP Nashformulations
also yield anytime algorithms forε-equilibrium, with prov-
able bounds. Another advantage ofMIP Nashis that it can be
used to find anoptimalequilibrium (according to various ob-
jectives). The prior algorithms can be extended to that setting,
but they are orders of magnitude slower.

Introduction
Nash equilibrium(Nash 1950) is the most central solution
concept for games. It defines how rational agents should
act in settings where an agent’s best strategy may depend on
what another agent does, and vice versa. For the concept to
be operational, it needs to be accompanied by an algorithm
for finding an equilibrium. While the concept was invented
in 1950, it remains unknown whether an equilibrium can be
found in polynomial time, even in 2-agent games.

In a 2-agent normal form game, the focus of this pa-
per, each agenti has a finite setSi of pure strategies to
choose from, and the agent’s utility isui(si, s1−i), where
si ∈ Si is the agent’s chosen pure strategy, ands1−i is the
other agent’s chosen pure strategy. Each agenti can also
use amixed strategy, i.e., randomize over the pure strate-
gies inSi (according to probabilitiespsi

which sum to 1).
The pure strategies that an agent plays with nonzero prob-
ability are called that agent’ssupport. The (mixed) strate-
giespsi

are inNash equilibriumif neither agent has an in-
centive to alter his probabilities given that the other does
not alter hers: for both agentsi ∈ {0, 1}, for any mixed
strategyp′si

,
∑

si∈Si
psi

∑

s1−i∈S1−i
ps1−i

ui(si, s1−i) ≥

∗This material is based upon work supported by the Na-
tional Science Foundation under ITR grants IIS-0121678 and IIS-
0427858, and a Sloan Fellowship.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

∑

si∈Si
p′si

∑

s1−i∈S1−i
ps1−i

ui(si, s1−i). At least one
equilibrium exists in any such game (Nash 1950).

The question of how complex it is to construct a Nash
equilibrium has been dubbed “a most fundamental com-
putational problem whose complexity is wide open” and
“together with factoring, [...] the most important concrete
open question on the boundary of P today” (Papadimitriou
2001). Until recently, theLemke-Howsonalgorithm (Lemke
& Howson 1964) was the most efficient method for finding
an equilibrium in a 2-agent game.1 It is a path-following
method that finds an equilibrium by pivoting through com-
plementary feasible bases for the corresponding linear com-
plementarity problem. It takes exponentially many steps in
the worst case (Savani & von Stengel 2004).

A recent paper describes a simple search method, which
we refer to asPNS, for finding Nash equilibria (Porter,
Nudelman, & Shoham 2004). It enumerates strategy sup-
ports and determines whether the support yields a feasible
solution to the equilibrium problem. Although that idea has
been previously described (e.g. (Dickhaut & Kaplan 1991),
(Myerson 1991, Section 3.3)), the paper improved on the ba-
sic idea by adding dominance checks and a well-motivated
search bias, and reported the first computational experience
with that approach. In the experiments,PNSwas signifi-
cantly faster thanLemke-Howson.

We present search algorithms based onmixed integer pro-
gram formulations of the Nash equilibrium finding prob-
lem. (A mixed integer program is a linear program in which
some of the variables are constrained to be integers.) We de-
velop algorithms for finding a Nash equilibrium, anytime al-
gorithms for finding an approximate equilibrium, and algo-
rithms for finding an optimal Nash equilibrium—according
to a variety of criteria. We also provide experimental val-
idation of this approach using a modern MIP solver. For
many (but not all) problems the new algorithms outperform
the prior state of the art.

Mixed-integer program (MIP) formulations
The regretof pure strategysi is the difference in utility for
playeri between playing an optimal strategy (given the other

1Under various convexity assumptions, Nash equilibria can be
found using continuous optimization (Antipin 2003; Khamisov
2003).

player’s mixed strategy) and playingsi. Our mixed inte-
ger programs are based on the following simple observation
(which could be said to underlie the PNS algorithm as well):
In any equilibrium, every pure strategy is either played with
probability 0, or has0 regret. Also, any vector of mixed
strategies for the players where every pure strategy is either
played with probability0, or has0 regret, is an equilibrium.

Based on this observation, we introduce four MIP formu-
lations for finding an equilibrium. In the first, the equilib-
ria are the only feasible solutions. Therefore, this formula-
tion allows us to specify an objective to be optimized over
the space of equilibria. For instance, we can find a social-
welfare maximizing equilibrium. The other three formula-
tions have feasible solutions other than the equilibria as well;
the equilibria are exactly the solutions that minimize the ob-
jective. The benefit of this latter approach is that even when
the solver has not yet found an equilibrium, it may have al-
ready found something that is close (in a precise sense, dis-
cussed later). This also yields a measure of progress towards
finding an equilibrium. On the other hand, using the MIP ob-
jective in defining equilibrium makes it more difficult to use
these formulations to optimize an objective over the space of
equilibria. (We discuss how this can nevertheless be done.)

Formulation 1: Only equilibria are feasible
In our first formulation, the feasible solutions are exactlythe
equilibria of the game. For every pure strategysi, there is
a binary variablebsi

. If this variable is set to1, the proba-
bility placed on the strategy must be0. If it is set to0, the
strategy is allowed to be in the support, but the regret of the
strategy must be0. The formulation has the following vari-
ables other than thebsi

. For each player, there is a variable
ui indicating the highest possible expected utility that that
player can obtain given the other player’s mixed strategy.
For every pure strategysi, there is a variablepsi

indicating
the probability placed on that strategy, a variableusi

indi-
cating the expected utility of playing that strategy (giventhe
other player’s mixed strategy), and a variablersi

indicat-
ing the regret of playingsi. The constantUi indicates the
maximum difference between two utilities in the game for
player i: Ui = maxsh

i
,sl

i
∈Si,sh

1−i
,sl

1−i
∈S1−i

ui(s
h
i , sh

1−i) −

ui(s
l
i, s

l
1−i). The formulation follows below.

find psi
, ui, usi

, rsi
, bsi

such that

(∀i)
∑

si∈Si

psi
= 1 (1)

(∀i)(∀si ∈ Si) usi
=

∑

s1−i∈S1−i

ps1−i
ui(si, s1−i) (2)

(∀i)(∀si ∈ Si) ui ≥ usi
(3)

(∀i)(∀si ∈ Si) rsi
= ui − usi

(4)

(∀i)(∀si ∈ Si) psi
≤ 1 − bsi

(5)

(∀i)(∀si ∈ Si) rsi
≤ Uibsi

(6)

domains: psi
≥ 0, ui ≥ 0, usi

≥ 0, rsi
≥ 0, bsi

∈ {0, 1}.
The first four constraints ensure that thepsi

values consti-
tute a valid probability distribution and define the regret of
a strategy. Constraint 5 ensures thatbsi

can be set to1 only
when no probability is placed onsi. On the other hand, Con-
straint 6 ensures that the regret of a strategy equals0, unless

bsi
= 1, in which case the constraint is vacuous because

the regret can never exceedUi. (Technically, Constraint 3 is
redundant as it follows from Constraint 4 andrsi

≥ 0.)

Formulation 2: Penalize regret on strategies that
are played with positive probability
The formulation in this subsection allows for feasible so-
lutions in which pure strategies that are played with posi-
tive probability have positive regret. However, this regret is
counted as a penalty in the objective. Strategies that have
no probability placed on them are exempt from having this
penalty counted, which is done using binary variablesbsi

that can be set to1 if and only if no probability is placed on
the corresponding strategysi. The variables in the formula-
tion are the same as in the first formulation, with the addition
of a variablefsi

for everysi ∈ Si. The formulation is:

minimize
1

∑

i=0

∑

si∈Si

fsi
− Uibsi

subject to

Constraints 1, 2, 3, 4, 5, the domains from Formulation 1, and

(∀i)(∀si ∈ Si) fsi
≥ rsi

(7)

(∀i)(∀si ∈ Si) fsi
≥ Uibsi

(8)

Whenbsi
is set to1 in this formulation (which can be done

only when the probability on that strategy is0, by Con-
straint 5),fsi

must be set toUi, which then cancels out with
the−Uibsi

term in the objective. However, whenbsi
is set to

0, fsi
must be set torsi

(and the−Uibsi
term in the objective

will equal 0). Thus the objective is indeed to minimize the
sum of the regrets of strategies that have positive probability.

Formulation 3: Penalize probability placed on
strategies with positive regret
The formulation in this subsection is similar to the previ-
ous one; the difference is that instead of counting the regret
on strategies that are played with positive probability as a
penalty, we count the probability that is placed on strategies
that have positive regret as a penalty. Again, this is done
through the use of binary variablesbsi

that can be set to0
if and only if the corresponding strategysi has no regret.
Again, the variables in the formulation are the same as in
Formulation 1, with the addition ofgsi

for everysi ∈ Si.

minimize
1

∑

i=0

∑

si∈Si

gsi
− (1 − bsi

) subject to

Constraints 1, 2, 3, 4, 6, the domains from Formulation 1, and

(∀i)(∀si ∈ Si) gsi
≥ psi

(9)

(∀i)(∀si ∈ Si) gsi
≥ 1 − bsi

(10)

When bsi
is set to0 (which can be done only when that

strategy’s regret is0, by Constraint 6),gsi
must be set to

1, which then cancels out with the−(1 − bsi
) term in the

objective. However, whenbsi
is set to1, gsi

must be set
to psi

(and the−(1 − bsi
) term in the objective will equal

0). Thus the objective is indeed to minimize the sum of the
probabilities of strategies that have positive regrets.

Formulation 4: Penalize either the regret of or the
probability placed on a strategy
In our final formulation, we let the solver choose to count as
the penalty for a pure strategy either the strategy’s (normal-

ized) regret, or probability placed on the strategy. Exactly in
equilibria, every strategy has either a regret of0 or a proba-
bility of 0. Thus these are the only solutions of the program
with a total penalty of0. The objective is the penalty plus
|S0| + |S1|.

minimize
1

∑

i=0

∑

si∈Si

fsi
+ gsi

subject to

Constraints 1, 2, 3, 4, the domains from Formulation 1, and

(∀i)(∀si ∈ Si) fsi
≥ rsi

/Ui (11)

(∀i)(∀si ∈ Si) fsi
≥ bsi

(12)

(∀i)(∀si ∈ Si) gsi
≥ psi

(13)

(∀i)(∀si ∈ Si) gsi
≥ 1 − bsi

(14)

If bsi
= 0, thenfsi

must equalrsi
/Ui (which is at most1)

andgsi
must equal1. On the other hand, ifbsi

= 1, then
fsi

must equal1 andgsi
must equalpsi

. Thus,fsi
+ gsi

is at least1 for everysi, and an additional penalty must be
paid either for the normalized regret of the strategy, or the
probability of the strategy. Thusfsi

+ gsi
can equal1 if and

only if the strategy has either no probability or no regret;
otherwise,fsi

+ gsi
> 1.

Example
To illustrate the differences between the formulations, con-
sider the following game in whichε > 0 is small.

L R
U 1, ε 1, 0
D 0, 0 0, 1

U strictly dominatesD, andL is a strictly better response
to U thanR. Thus(U,L) is the unique equilibrium. Hence
it is the unique feasible solution for Formulation 1, and the
only optimal solution for Formulations 2–4.

Now consider the pair of strategies(U,R). The regret for
playingR is only ε. It follows that this is a near-optimal so-
lution for Formulation 2. For Formulation 3, however, this
is not a good solution because all of the column player’s
probability is on a strategy with positive regret. For Formu-
lation 4, we can choose to count the regret for playingR as
the penalty, and hence(U,R) is near-optimal.

Finally, consider the pair of mixed strategies where the
row player playsU with probability1−ε andD with proba-
bility ε, and the column player playsR. The regret for play-
ing R is now 0 (it yields an expected utility ofε, whereas
L yields an expected utility of(1 − ε)ε < ε). However, the
regret for playingD is 1, and therefore this is not a good
solution for Formulation 2. For Formulation 3 this is near-
optimal because onlyε probability is placed on a strategy
with regret. For Formulation 4, we can choose to count the
regret for playingD as the penalty; thus it is near-optimal.

Variations on the formulations
Numerous variations on the above formulations are possi-
ble. For example, in the formulations with an objective,
it is possible to place different weights on the strategies in
the objective. Moreover, it is in fact possible to mix up the
formulations to obtain a new formulation, using one of the
original formulations for some pure strategies and another
one for others. We leave investigating the performance of
weighted and mixed formulations for future research.

Design dimensions ofMIP Nash
There are several design dimensions to MIP search algo-
rithms, and in this section we study how a MIP-based
equilibrium-finding algorithm should be designed along
those dimensions. We implemented the variants in CPLEX
9.0, a commercial MIP software package (ILOG Inc 2003).
The solving method in CPLEX is a branch-and-bound al-
gorithm with several sophisticated techniques incorporated,
which we evaluate below. We tested the algorithms on the
leading test suite of game generators, GAMUT (Nudelman
et al. 2004). That library of 24 game generators was con-
structed from the descriptions of many different kinds of
games in the literature. Also, GAMUT is the data that was
used in the priorPNSexperiments (Porter, Nudelman, &
Shoham 2004). All the experiments referred to in this sec-
tion, and the next, concern the problem of finding one (any)
Nash equilibrium. Therefore in those experiments we stop
the search algorithm when the first equilibrium is found.

Objective function to help bias the search
Although Formulation 1 need not have an objective function,
we found that adding an objective function—to guide the
search—drastically speeds up the algorithm. We tried sev-
eral objectives: minimizing support size, maximizing sup-
port size, minimizing welfare, maximizing welfare, mini-
mizing the difference in the players’ support sizes, and min-
imizing a hybrid objective consisting of the size of the sup-
ports and the difference in the players’ support sizes. Our
experiments showed that usinganyof the objective functions
led to an order of magnitude speed improvement (over not
using an objective function). The objectives of minimizing
support sizes and maximizing welfare led to the best perfor-
mance. Therefore, in the experiments in the rest of this pa-
per (except where noted), we use the welfare-maximization
objective.

Search (node selection) strategy
For any branch-and-bound algorithm there is a choice of
which node to expand next. CPLEX provides several
options includingdepth-first search(in which the algo-
rithm chooses the “most recently created node”),best-bound
search(in which the algorithm chooses the “node with the
best objective function for the associated linear program
(LP) relaxation”),2 and best-estimate search(in which the
algorithm chooses the node with the “best estimate of the
integer objective value that would be obtained from a node
once all integer infeasibilities are removed”) (ILOG Inc
2003). The latter is designed specifically for problems where
finding a feasible solution is difficult. As thus suspected, we
observed that it had the best performance on the problem
of finding an equilibrium, and we thus use that strategy for
that problem. (On the problem of finding anoptimal equi-
librium, discussed later, we use best-bound search because
it is designed for finding a provably optimal solution using
the smallest possible search tree.)

2This is like A* except that a node’sh-value is only approxi-
mately computed when inserting the node onto the open list; the
exact computation is postponed until popping the node off the list.

Primal heuristics at nodes
At each node in the search tree,primal heuristicscan be
used to try to obtain a feasible solution or a better feasible
solution. Its value will allow more pruning in that subtree.
CPLEX does this by attempting to generate an integer fea-
sible solution using information about the node’s LP relax-
ation. We discovered that completely disabling this heuristic
resulted in a 6% average speed improvement. We therefore
disabled it for the rest of the experiments.

Problem formulation
Table 1 shows that Formulation 1 performed significantly
better than the other three formulations (Formulation 3 was
second best). Although the best formulation depends on the
distribution, we use Formulation 1 for the rest of our ex-
periments in order to conduct a fair comparison (where the
algorithm is not changed across distributions) against other
algorithms.

Form1 Form2 Form3 Form4
BertrandOligopoly 286.54 196.55 0.00 0.16
BidirectionalLEGCG 22.52 140.41 14.45 99.83
BidirectionalLEGRG 2.35 58.14 2.18 1.24
BidirectionalLEGSG 0.13 1.52 0.12 0.47
CovariantGamePos 0.47 464.54 28.67 464.54
CovariantGameRand 203.87 464.54 257.82 464.54
CovariantGameZero 99.91 464.54 263.16 464.54
DispersionGame 0.01 0.01 0.01 0.01
GraphicalGameRG 127.96 293.82 146.81 286.99
GraphicalGameRoad 151.18 464.54 288.29 464.54
GraphicalGameSG 181.98 464.54 246.53 464.54
GraphicalGameSW 234.56 464.54 253.34 464.54
LocationGame 0.45 0.83 0.38 1.52
MinimumEffortGame 0.04 0.01 0.83 0.02
PolymatrixGameCG 76.80 148.44 80.48 146.58
PolymatrixGameRG 42.70 101.18 44.02 99.51
PolymatrixGameRoad 7.03 58.59 2.05 51.37
PolymatrixGameSW 85.83 146.88 68.37 146.41
RandomGame 168.32 464.54 253.08 464.54
TravelersDilemma 0.05 0.01 0.01 0.03
UniformLEG CG 0.81 0.74 0.14 0.19
UniformLEG RG 2.60 41.44 1.37 0.83
UniformLEG SG 0.16 3.83 2.60 1.67
WarOfAttrition 0.03 4.51 1.78 0.19
OVERALL: 1696.29 4448.71 1956.51 4088.82

Table 1:Average time (in seconds) to find an equilibrium using the
different MIP formulations, in150 × 150 games from the GAMUT
distributions (10 instances of each). If an instance reached the 600
second limit, that time was counted toward the average.

Branching strategy
We also developed several strategies for choosing the next
variable to branch on that are motivated by game-theoretic
considerations (beyond CPLEX’s default strategy which is
close to the standard approach of branching on a variable
with the most fractional LP value):

1. Look at the number of strategies currently selected for
each player. Branch on a most fractional strategy for the
player with the smallest support. If the supports are of
equal size, let CPLEX choose.

2. Suppose player 1 is playing the strategy that corresponds
to the LP relaxation at this node. Find a pure strategy for
player 0 that is a best response to that. Swapping roles,
do the same to find a pure strategy for player 1. Branch
on the strategy of the two that has greatest utility improve-
ment for the corresponding agent compared to that agent’s
mixed strategy at that node.

3. Same as 2, except choose the strategy from the two that
gives the opponent the biggest gain.

4. Suppose the opponent plays randomly among his strate-
gies that have not been branched out. Choose a best re-
sponse (pure) strategy. Do this for both players. Branch
on the strategy of the two that has greatest utility improve-
ment for the agent compared to the agent’s mixed strategy
at that node.

5. Same as 4, except choose the strategy that gives the oppo-
nent the biggest gain.

6. Maken + 1 CPLEX calls. Calli ∈ {1, . . . n} has the
constraint that the support size for each player equalsi
(i.e., |support0| = |support1| = i). The last call has
|support0| < |support1| vs. |support0| > |support1| as
the first branch, and the MIP objective is to minimize the
sum of the support sizes.

7. Same as 6, except the objective is to maximize welfare
now also in the last call. (Of course, we still stop with the
first solution found.)

8. Make two CPLEX calls. In the first,|support0| =
|support1|. The second call has|support0| < |support1|
vs. |support0| > |support1| as the first branch, and the
MIP objective is to minimize the sum of the support sizes.

9. Like 8, but the objective in both calls maximizes welfare.

Strategies 1 and 6-9 direct the search towards finding
equilibrium with balanced supports. Strategies 2-5 are moti-
vated by the fact that strategies are mutual best responses in
equilibrium. Strategies 6 and 7 are geared towards finding
equilibrium with small supports.

Table 2 Left shows the performance of these branching
strategies. While each of them helped significantly on some
of the distributions, each of them was slower than CPLEX’s
default when averaged over all GAMUT distributions (strat-
egy 1 did not hurt that much). Therefore, in the rest of the
experiments we use CPLEX’s default branching strategy.

Cutting planes
Branch-and-cutis a modern, widely applied algorithm for
solving MIPs (Padberg & Rinaldi 1987). It is like branch-
and-bound, except that in addition, the algorithm may gen-
eratecutting planes(Nemhauser & Wolsey 1999). These
are constraints that, when added to the problem at a search
node, result in a tighter LP polytope (while not cutting off
the optimal integer solution) and thus a tighter LP bound.
The tighter bound in turn can cause earlier termination of
the search path, yielding smaller search trees. On the other
hand, more effort is invested per node to generate cuts and
solve the larger LP.

It is well known that on a given problem type, differ-
ent cuts can help or hurt speed. CPLEX supports nine cut
families (ILOG Inc 2003): clique cuts, cover cuts, disjunc-
tive cuts, flow cover cuts, flow path cuts, generalized upper
bounding cover cuts, implied bound cuts, Gomory fractional
cuts, and mixed integer rounding cuts. We experimented
with them by enabling only one at a time. We compared
the performance to default CPLEX, which has them all on.
CPLEX always determines heuristically which cuts to use
from the families that are enabled.

Default 1 2 3 4 5 6 7 8 9
BertrandOligopoly 286.54 242.11 249.28 69.99 65.57 24.97 1.50 10.12 40.90 284.50
BidirectionalLEGCG 22.52 36.69 91.10 53.34 103.73 103.81 12.22 19.32 75.05 27.40
BidirectionalLEGRG 2.35 2.08 15.04 4.55 62.16 3.92 0.86 5.36 25.06 1.89
BidirectionalLEGSG 0.13 51.03 3.81 5.87 51.68 51.92 0.24 0.63 1.02 0.02
CovariantGamePos 0.47 1.04 1.60 1.33 1.98 1.89 5.36 0.57 75.45 1.44
CovariantGameRand 203.87 233.63 240.50 242.79 245.62 248.50 213.01 195.32 326.24 239.66
CovariantGameZero 99.91 135.80 251.57 252.19 360.94 290.64 365.00 149.31 449.82 355.01
DispersionGame 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
GraphicalGameRG 127.96 215.47 269.70 298.82 282.38 229.96 247.29 216.85 277.82 287.30
GraphicalGameRoad 151.18 195.18 272.72 244.48 287.83 271.30 381.20 266.26 378.58 454.29
GraphicalGameSG 181.98 247.61 313.96 311.61 365.76 343.50 464.54 322.48 464.54 458.68
GraphicalGameSW 234.56 331.60 342.45 316.74 446.92 420.09 413.59 275.85 453.39 464.54
LocationGame 0.45 0.45 0.01 0.01 0.01 0.01 0.05 0.84 0.27 3.81
MinimumEffortGame 0.04 0.04 0.02 0.02 0.02 0.02 0.55 0.05 0.36 0.26
PolymatrixGameCG 76.80 107.17 95.61 85.03 146.25 101.95 139.16 100.14 147.04 100.77
PolymatrixGameRG 42.70 28.63 99.09 87.02 99.09 61.50 56.00 68.13 99.11 60.23
PolymatrixGameRoad 7.03 50.95 50.95 50.95 50.95 50.95 51.29 51.12 71.83 53.65
PolymatrixGameSW 85.83 79.76 114.19 91.72 103.37 119.23 146.34 42.06 70.03 109.83
RandomGame 168.32 304.03 322.18 333.13 343.77 364.30 366.90 291.92 464.54 464.54
TravelersDilemma 0.05 0.06 0.05 0.04 0.04 0.04 3.63 18.35 36.94 17.60
UniformLEG CG 0.81 0.39 0.39 0.49 0.50 0.27 0.16 1.04 0.83 0.84
UniformLEG RG 2.60 1.37 10.80 2.60 8.88 2.82 1.24 3.62 13.02 3.52
UniformLEG SG 0.16 1.04 7.70 2.80 7.31 3.11 1.04 2.29 5.12 0.81
WarOfAttrition 0.03 0.15 1.37 0.02 0.50 0.02 0.04 5.83 0.04 0.05
OVERALL: 1696.29 2266.29 2754.13 2455.56 3035.26 2694.73 2871.21 2047.48 3477.03 3390.67

Lemke-Howson PNS
0.04 0.01
0.06 0.01
0.05 0.01
0.06 0.01
0.06 0.01

376.92 267.81
263.48 0.13

0.05 0.01
96.02 0.05

277.80 0.13
133.07 0.10
168.49 0.09

0.05 0.01
0.05 0.01

72.82 65.13
76.26 0.01
1.26 0.05

145.38 0.13
162.08 0.16

0.02 0.01
0.05 0.01
0.05 0.01
0.05 0.01
4.29 0.01

1778.50 333.94

Table 2: Average time to find an equilibrium in150 × 150 games (10 instances). Left: branching strategies. Right: Lemke-Howson and
PNS. The percentage of time-outs (10 minute limit) for MIP Nash, Lemke-Howson, and PNS was 7.5%, 8.3%, and 2.0%, respectively.

There was significant variability as to which cuts hurt or
helped on different GAMUT distributions (we omit the com-
plete results table due to lack of space). Interestingly, using
no cuts, or using any one cut family alone, was 16% faster
on average than CPLEX’s defaults. The exceptions were the
last two families, which were within 3% of the default speed.

Experiments on finding a Nash equilibrium
In this section we compare the performance ofMIP Nash
against the prior state-of-the-art algorithms:Lemke-Howson
and PNS. We used the implementation ofLemke-Howson
available in the Gambit software library (McKelvey, McLen-
nan, & Turocy 2004). ForPNS, we used code given to us by
its authors.3 Table 2 shows the performance on the GAMUT
distributions.MIP Nashwas faster thanLemke-Howson, but
not nearly as fast asPNS.

Most of the games generated by the GAMUT distributions
have equilibria with small (and balanced) supports. This
is supported theoretically as it is known that mostn-player
games with payoffs generated uniformly at random from the
n-dimensional unit sphere have at least one equilibrium with
small supports (McLennan & Berg 2005). The speed ofPNS
on these distributions is largely due to its bias of searching
through (balanced) supports in smallest-first order. How-
ever, there is no guarantee that real-world games are gen-
erated by such distributions. For example, (ann-strategy
generalization of) the rock-paper-scissors game only has an
equilibrium where all pure strategies are played with equal
probability. On that type of game,PNSwould have to search
through all smaller supports before finding an equilibrium,
thus making it prohibitively slow. Of course, one could use
an algorithm with the reverse bias (searching through large
supports first), or even an algorithm that interleaves searches
with these two biases, thus performing well on games that
have equilibria with small or large supports. Still the algo-

3We are aware of at least one instance of a2×2 game (matching
pennies) in which this code returns an incorrect result. We do not
know of any larger games where the code is incorrect.

rithm would do poorly on games with medium-sized sup-
ports. In fact, there are too many medium-sized supports to
exhaustively search through (even just considering supports
of size|Si|/2, there are

(

|Si|
|Si|/2

)

≥ 2|Si|/2 of them for each
agenti). Therefore, we argue that in order to evaluate how
well an algorithm can really capitalize on the structure of any
equilibrium-finding problem (rather than testing whether the
distribution is amenable to a particular rigid search bias), ex-
periments should also be conducted on games that only have
equilibria of medium-sized supports.

Furthermore, those test games should not allow for many
of the game’s strategies to be eliminated using dominance or
iterated dominance. Moreover, this should remain the case
even after branching some strategies out of the support.

To conduct such experiments, we introduce a family of
games that satisfy both of these properties. For any positive
integerk, the gameGk has actionsa1, . . . , a2k−1, b1, . . . b2k
for the row player and actionsc1, . . . , c2k−1, d1, . . . d2k for
the column player. The utilities are:
• u(ai, ci+1(mod 2k−1)) = (2, 4), u(ai, ci−1(mod 2k−1)) = (4, 2)

• u(ai, cj) = (3, 3) for j /∈ {i ± 1(mod 2k − 1)}

• u(ai, dj) = (2, 0), u(bi, cj) = (0, 2), u(bi, di) = (3, 0)

• u(bi, di+1) = (0, 3) for oddi, u(bi, di−1) = (0, 3) for eveni

• u(bi, dj) = (0, 0) otherwise.

Example : G2 c1 c2 c3 d1 d2 d3 d4

a1 3, 3 2, 4 4, 2 2, 0 2, 0 2, 0 2, 0

a2 4, 2 3, 3 2, 4 2, 0 2, 0 2, 0 2, 0

a3 2, 4 4, 2 3, 3 2, 0 2, 0 2, 0 2, 0

b1 0, 2 0, 2 0, 2 3, 0 0, 3 0, 0 0, 0

b2 0, 2 0, 2 0, 2 0, 3 3, 0 0, 0 0, 0

b3 0, 2 0, 2 0, 2 0, 0 0, 0 3, 0 0, 3

b4 0, 2 0, 2 0, 2 0, 0 0, 0 0, 3 3, 0

Proposition 1 Gk has a unique equilibrium. Everyai and
ci is played w.p.1/(2k−1). Thebi anddi are never played.

Proof: First, suppose that some strategybi (with i odd) were
sometimes played in equilibrium. In order forbi to perform
at least as well asa1, it must be the case thatdi is played

with probability at least2/3. In order fordi to perform at
least as well asc1, it must be the case thatbi+1 is played with
probability at least2/3. In order forbi+1 to perform at least
as well asa1, it must be the case thatdi+1 is played with
probability at least2/3. But, it is impossible for each ofdi

anddi+1 to be played with probability2/3. It follows that
no strategybi (with i odd) is ever played in equilibrium, and
similarly it can be shown that no strategybi (with i even),di

(with i odd), ordi (with i even) is ever played in equilibrium.
The remainder of the game (the strategiesai andci) con-

stitute a symmetric zero-sum game. Thus, each player is
able to guarantee herself an expected payoff of3. Now, if
the row player plays strategyai with positive probabilityp,
she should play strategyai+2(mod 2k−1) with probability at
leastp (otherwise the column player could get expected util-
ity greater than3 by playingci+1(mod 2k−1)). By repeated
application of this (and the fact that2k − 1 is odd), it fol-
lows that eachai must be played with the same probability
in equilibrium. Symmetrically, the same holds for theci.

Figure 1 shows that on this game,MIP Nash drastically
outperformsPNS. The reason is thatMIP Nashhas a flex-
ible search bias and the techniques of MIP guiding it (such
as preprocessing, LP-guided branch selection, LP-based
bounding, cutting planes, and objective-based guidance).
MIP Nashis not as fast asLemke-Howsonon this game.

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 7 19 31 43 55 67 79 91 103 115 127 139

C
P

U
 ti

m
e

(s
)

Number of actions

Lemke-Howson
PNS

MIP Nash

Figure 1:Finding the Nash equilibrium in the gameGk.

Anytime algorithms for ε-equilibrium
A pair of mixed strategies is anε-equilibrium if the regret of
each player’s mixed strategy is at mostε. In this subsection,
we show that feasible solutions to Formulations 2, 3, and
4 with low objective values constituteε-equilibria. Thus,
applying a MIP solver to any one of these three formulations
constitutes ananytime algorithmfor finding ε-equilibrium,
which will eventually return an equilibrium (ε = 0).4

Proposition 2 In a feasible solution to Formulation 2 with
objective valueε, the sum of the players’ regrets is at mostε.

Proof: Let δ(0) = 0, δ(x) = 1 for x > 0. The sum of the
regrets is

∑1
i=0

∑

si∈Si
psi

rsi
≤

∑1
i=0

∑

si∈Si
δ(psi

)rsi
,

which equals the objective value of Formulation 2.
4ε-equilibria have also been studied before. There always ex-

ists anε-equilibrium where both players randomize over at most
12 ln n

ε2
strategies (wheren is the number of an agent’s pure strate-

gies). Thus one can find anε-equilibrium (by searching over all
such small supports) innO(ln n) time—for agiven fixedε (Lipton,
Markakis, & Mehta 2003).

Proposition 3 In a feasible solution to Formulation 3 with
objective valueε/U , the sum of the players’ regrets is at
mostε, whereU = max{U0, U1}.
Proof: The sum of the regrets is

∑1
i=0

∑

si∈Si
psi

rsi
≤

∑1
i=0

∑

si∈Si
psi

δ(rsi
)U , which is U times the Formula-

tion 3 objective.

Proposition 4 In a feasible solution to Formulation 4 with
objective value(ε/U) + |S0|+ |S1|, the sum of the players’
regrets is at mostε, whereU = max{U0, U1}.
Proof: The sum of the regrets is

∑1
i=0

∑

si∈Si
psi

rsi
≤

∑1
i=0

∑

si∈Si
min{psi

, rsi
/U}U , which is at mostU times

the value obtained by subtracting|S0| + |S1| from the For-
mulation 4 objective.

Finding an optimal Nash equilibrium
Finding an equilibrium may not be satisfactory: we may
want to optimize someobjectiveover the space of equilib-
ria. Perhaps the most natural objective issocial welfare, i.e.,
the sum of the agents’ utilities. (Note that any social wel-
fare maximizing equilibrium is also Pareto optimal within
the space of Nash equilibria.) Other objectives are also pos-
sible: we may wish to maximize one of the players’ utilities,
maximize the minimum utility between the agents, minimize
the support sizes of the equilibrium strategies, etc. (Each
of those problems isNP-complete (Gilboa & Zemel 1989;
Conitzer & Sandholm 2003).) In this section we show how
MIP Nashcan be used to find an optimal Nash equilibrium.

Optimizing using Formulation 1
Formulation 1 is especially well-suited to optimizing objec-
tives because it does not have an objective of its own. Thus,
for social welfare, we can simply add the objectivemaxi-
mize u0 + u1. Other linear objectives are similarly easy to
optimize.

Some nonlinear objectives, such as the minimum of two
expressions or the absolute value of an expression, can be
used. For example, the minimum utility between the agents
can be maximized by adding the constraintsr ≤ u0 andr ≤
u1, and maximizingr. As another example, the difference
between the players’ utilities can be minimized (to minimize
envy) by adding the constraintsr ≥ u0−u1 andr ≥ u1−u0,
and minimizingr.

The objective does not have to be concerned with utilities.
It can also involve support sizes, probabilities of strategies
being played, etc., and nonlinear objectives involving these
variables (analogous to those just discussed involving utili-
ties). Formulation 1 can be used to optimize these as well.

Optimizing using Formulations 2, 3, and 4
Formulations 2, 3, and 4 are not as well suited to optimiz-
ing an objective because they already use the MIP objective
in the specification of equilibrium. One solution is to add
the desired objective to the existing objective with a small
coefficient. For example, we may change the objective of
Formulation 2 to

minimize

1
∑

i=0

∑

si∈Si

fsi
− Uibsi

 − w(u0 + u1),

for some constantw, in an attempt to maximize social wel-
fare over the space of equilibria. However, ifw is not chosen
small enough, the solver may choose to sacrifice the equilib-
rium property (shifting to anε-equilibrium instead) to obtain
higher social welfare. One technique for dealing with this is
to repeatedly decrease (say, halve) the value ofw until an
equilibrium is produced by the solver. Once an equilibrium
is obtained by this method, it must indeed optimize the de-
sired objective (because all equilibria have the same value
for the formulation’s original objective). However:

Proposition 5 To optimize social welfare in Formulations
2, 3, or 4 using the technique described above, arbitrarily
small settings ofw can be required (even in2 × 2 games).

Experiment on finding an optimal equilibrium
This section studies howMIP Nash (Formulation 1) per-
forms compared to the prior algorithms on finding an opti-
mal equilibrium. NeitherLemke-Howsonnor PNSwere de-
signed to optimize an objective. There are, however, meth-
ods of using these algorithms to find all equilibria, from
which the optimal one can be selected. We configuredPNS
to search all supports (which results in an algorithm similar
to Dickhaut-Kaplan (Dickhaut & Kaplan 1991)).5 To evalu-
ateLemke-Howson, we use a variant, by Mangasarian, that
enumerates all equilibria (Mangasarian 1964) (we refer to it
as M-Enum). Table 3 shows thatMIP Nashoutperforms the
other algorithms by 2-3 orders of magnitude.

actions M-Enum PNS MIP Nash

10 2.21 (0%) 26.45 (3.7%) 0.001 (0%)
25 429.14 (66.7%) 600 (100%) 3.01 (0%)
50 425.07 (66.7%) 600 (100%) 30.44 (4.2%)

Table 3:Average time (in seconds), over all GAMUT distributions
(6 instances of each), for finding a welfare-maximizing equilibrium.
The percentage of timeouts (limit here was 600s) is in parentheses.

Conclusions and future research
We presented MIP formulations for finding Nash equilibria
in two-player games. We studied different design dimen-
sions of search algorithms that are based on those formula-
tions. On the problem of finding one (any) equilibrium,MIP
NashoutperformsLemke-Howsonbut notPNSon GAMUT
data. We argued that experiments should also be conducted
on games with equilibria with medium-sized supports only,
and presented a methodology for generating such games. On
such gamesMIP Nashdrastically outperformsPNSbut not
Lemke-Howson. MIP NashFormulations 2, 3, and 4 also
yield anytime algorithms forε-equilibrium, with provable
bounds. Another advantage ofMIP Nash is that it can be
used to find anoptimal equilibrium (according to various
objectives). The prior algorithms can be extended to that
setting, but they are orders of magnitude slower.

Future research includes developing MIP-based search al-
gorithms for restricted games and for structured representa-
tions of games. Future research also includes extending the

5Actually, when a pair of supports has multiple equilibria asso-
ciated with it, PNS will only find one. Correcting for this would
increase the search time even further.

MIP approach to games with more than two players. This
is not straightforward even for Nash equilibrium, and fur-
thermore, solution concepts that take coalitional deviations
into account (Aumann 1959; Bernheim, Peleg, & Whinston
1987) may be more appropriate in that context.

References
Antipin, A. 2003. Extragradient approach to the solution of two
person non-zero sum games.Optimization and Optimal Control,
World Scientific. 1–28.

Aumann, R. 1959. Acceptable points in general cooperative
n-person games. volume IV ofContributions to the Theory of
Games. Princeton University Press.

Bernheim, B. D.; Peleg, B.; and Whinston, M. D. 1987.
Coalition-proof Nash equilibria: I concepts.Journal of Economic
Theory42(1):1–12.

Conitzer, V., and Sandholm, T. 2003. Complexity results about
Nash equilibria. InIJCAI-03, 765–771.

Dickhaut, J., and Kaplan, T. 1991. A program for finding Nash
equilibria. The Mathematica Journal87–93.

Gilboa, I., and Zemel, E. 1989. Nash and correlated equilibria:
Some complexity considerations.Games and Economic Behavior
1(1):80-93.

ILOG Inc. 2003. CPLEX 9.0 User’s Manual.

Khamisov, O. 2003. A global optimization approach to solving
equilibrium programming problems.Optimization and Optimal
Control. World Scientific. 155–164.

Lemke, C., and Howson, J. 1964. Equilibrium points of bimatrix
games.Journal of the Society of Industrial and Applied Mathe-
matics12:413–423.

Lipton, R.; Markakis, E.; and Mehta, A. 2003. Playing large
games using simple strategies. InACM-EC, 36–41.

Mangasarian, O. 1964. Equilibrium points in bimatrix games.
Journal of the Society for Industrial and Applied Mathematics
12(4):778–780.

McKelvey, R. D.; McLennan, A. M.; and Turocy, T. L. 2004.
Gambit: Software tools for game theory, version 0.97.1.5.

McLennan, A., and Berg, J. 2005. The asymptotic expected num-
ber of Nash equilibria of two player normal form games.Games
and Economic Behavior. Forthcoming.

Myerson, R. 1991.Game Theory: Analysis of Conflict. Harvard
University Press, Cambridge.

Nash, J. 1950. Equilibrium points in n-person games.Proc. of
the National Academy of Sciences36:48–49.

Nemhauser, G., and Wolsey, L. 1999.Integer and Combinatorial
Optimization. John Wiley & Sons.

Nudelman, E.; Wortman, J.; Leyton-Brown, K.; and Shoham, Y.
2004. Run the GAMUT: A comprehensive approach to evaluating
game-theoretic algorithms. InAAMAS-04.

Padberg, M., and Rinaldi, G. 1987. Optimization of a 532-city
symmetric traveling salesman problem by branch and cut.Oper-
ations Research Letters6:1–7.

Papadimitriou, C. 2001. Algorithms, games and the Internet. In
STOC, 749–753.

Porter, R.; Nudelman, E.; and Shoham, Y. 2004. Simple search
methods for finding a Nash equilibrium. InAAAI-04, 664–669.

Savani, R., and von Stengel, B. 2004. Exponentially many steps
for finding a Nash equilibrium in a bimatrix game. InFOCS.

