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ABSTRACT
We designed and built the Gates Hillman Prediction Market (GHPM)
to predict the opening day of the Gates and Hillman Centers, the
new computer science buildings at Carnegie Mellon University.
The market ran for almost a year and attracted 169 active traders
who placed almost 40,000 bets with an automated market maker.
Ranging over 365 possible opening days, the market’s event par-
tition size is the largest ever elicited in any prediction market by
an order of magnitude. A market of this size required new ad-
vances, including a novel span-based elicitation interface. The re-
sults of the GHPM are important for two reasons. First, we uncov-
ered two flaws of current automated market makers: spikiness and
liquidity-insensitivity, and we develop the mathematical underpin-
nings of these flaws. Second, the market provides a valuable corpus
of identity-linked trades. We use this data set to explore whether the
market reacted to or anticipated official communications, how self-
reported trader confidence had little relation to actual performance,
and how trade frequencies suggest a power law distribution. Most
significantly, the data enabled us to evaluate two competing hy-
potheses about how markets aggregate information, the Marginal
Trader Hypothesis and the Hayek Hypothesis; the data strongly
support the former.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; I.2.11 [Distributed
Artificial Intelligence]: Multiagent systems; H.1.2 [User/Machine
Systems]: Human factors

General Terms
Economics, Experimentation, Design, Theory

Keywords
Prediction Markets, Automated Market Making, Elicitation, Exper-
imental Studies, Data Analysis
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Prediction markets are powerful tools for aggregating informa-
tion. Most prediction markets in use today, however, only generate
a single data point. For simple binary events, like the probability
of a sports team winning its next match, this is entirely satisfactory.
However, for more complex events, this can be inappropriate. Con-
sider a prediction market to estimate the expected number of US
casualties in Afghanistan over the next year. Conceivably, market
participants could be split between a very low estimate and a very
high estimate. The resulting consensus of a middle value could be
an accurate estimate of the expectation, but would be misleading to
design policy around.

Recent theoretical work has suggested that eliciting interesting
distribution properties (like the element that has maximum prob-
ability) is as difficult as eliciting an entire distribution (Lambert
et al., 2008). In this paper, we discuss the design of a market, the
Gates Hillman Prediction Market, that generated a complete distri-
bution over a fine-grained partition of possibilities, while retaining
the interactivity and simplicity of a traditional market.

Fundamental to our design is an automated market maker (Han-
son, 2003). It has three primary benefits. First, the market maker
provides a rich form of liquidity: it guarantees that participants
can make any self-selected trade at any time. Second, it allows in-
stant feedback to traders, rather than delayed, uncertain, potential
feedback. A trader can always get actionable prices both on any
potential trade she is considering and on the current values of the
bets she currently holds. Third, the automated market maker ob-
viates the need to match combinations of user-generated buy and
sell orders—a problem that can be combinatorially complex (Fort-
now et al., 2003; Chen et al., 2008)—making a large event space
computationally feasible.

Equally important to the success of the GHPM was the user in-
terface of the trading platform. Traditional economic theory would
hold that all suitably complex interfaces are equivalent, but this is
not the case given well-documented shortcomings in human rea-
soning. In particular, a large event space implies that the average
probability of an event is small, and people have great difficulty dis-
criminating between small probabilities (e.g., Ali (1977)). To solve
this problem, the GHPM used a span-based interface with ternary
elicitation queries, which we discuss in Section 2.3.

As the first test of automated market making in a large predic-
tion market, the GHPM allowed us to discover two flaws in current
automated market makers, which will help focus future design of
market makers. Section 3 discusses the two flaws, spikiness and
liquidity-insensitivity, in detail and explores their theoretical roots.

The GHPM generated a rare large corpus of identity-linked trad-
ing data. In general one can obtain identity-linked data from lab-
oratory experiments, but those data sets are generally small due to
practical constraints like subject payments, training effort, and the



viable duration of an experiment. For example, Healy et al. (2008)
study behavior and prices in laboratory prediction markets in de-
tail, but their experiment only had three traders. Alternatively one
could examine data from large markets (such as stock markets), but
that data is not released with trader identities attached to events,
severely restricting the kinds of questions that can be studied. The
GHPM dataset is unique because it is large, detailed, and linked
to traders. In Section 4 we use this data set to explore questions
related to trader behavior and its impact on prices and information
aggregation.

2. MARKET DESIGN
The GHPM used a raffle-ticket currency tied to real-world prizes,

an automated market maker, and a novel span-based ternary elici-
tation interface. In the following sections we discuss each of these
in turn.

2.1 Incentives and setup
Due to legal concerns, the GHPM used raffle tickets as the cur-

rency rather than real money. Thanks to generous grants from Ya-
hoo! and other sources, we secured the equivalent of about $2,500
in prizes to distribute. These prizes were distributed by raffle af-
ter the market’s close, with the prizes allocated randomly propor-
tionally to the number of tickets each user amassed. This gives
(risk-neutral) participants the same incentives as if real money were
used—unlike the approach where the best prize is given to the top
trader, the second-best prize to the second-best trader, etc.

The GHPM was publicly accessible on the web at whenwill-
wemove.com, but trading accounts were only available to holders
of Carnegie Mellon e-mail addresses. For fairness, we did not allow
people with direct control over the building process (e.g., members
of the building committee) to participate. Upon signup, each user
received 20 tickets, and each week, if that user placed at least one
new trade, she would receive an additional bonus of two tickets. In
a market with real money, we would expect that traders more inter-
ested or knowledgeable would stake more of their personal funds in
the market. However, in a fake-money setting, we do not have this
option. For instance, a mechanism that asked users if they were
“very interested" in the market, and promised to give them extra
tickets if they answered affirmatively would obviously not be in-
centive compatible. The two ticket weekly bonus was intended to
simulate the impact of more interested traders having more influ-
ence.

One of the most challenging parts of running a prediction mar-
ket over real events is defining contracts so that it is clear which
bets pay out. For example, InTrade, a major commercial predic-
tion market, ran into controversy over a market it administered in-
volving whether North Korea would test missiles by a certain date.
When North Korea putatively tested missiles unsuccessfully, but
the event was not officially confirmed, the market was reduced to a
squabble over definitions. We set out to study when the Computer
Science Department would move to its new home in the Gates and
Hillman Centers (GHC), but move is a vague term. Does it indicate
boxes being moved? Some people occupying new offices? The last
person occupying a new office? The parking garage being open?
From discussions with Prof. Guy Blelloch, the head of the building
committee, we settled on using “the earliest date on which at least
50% of the occupiable space of the GHC receives a temporary oc-
cupancy permit". Temporary occupancy permits are publicly issued
and verifiable, must be granted before the building is occupied, and
are normally issued immediately preceding occupancy (as was the
case in the GHC).

The market was active from September 4th, 2008 to August 7th,

2009. On this latter date, the GHC received the first occupancy
permit, and it covered slightly over 50% of the space in the build-
ing. The price of a contract of August 7th, 2009 converged to 1
about five hours before the public announcement that the building
had received its permit.

In total, 210 people registered to trade and 169 people placed at
least one trade. 39,842 bets were placed. Following the conclu-
sion of the market, we conducted recorded interviews with traders
we deemed interesting about their strategies and impressions of the
GHPM. Excerpts of some of these conversations appear later in this
paper.

2.2 Automated market maker
In this section, we provide a brief discussion of the automated

market maker concept originated by Hanson (2003), and how we
applied it to the specific setting of the GHPM. This idea behind
automated market making has been widely applied in practice, in-
cluding at Inkling Markets, a prediction market startup company,
and (before its recent demise) Tradesports, a sports betting predic-
tion market company.

We began by partitioning the event space into n = 365 events,
one for each day from April 2, 2009 to March 30, 2010 with the
addition of “April 1, 2009 and everything before" and “March 31,
2010 and everything after", to completely cover the space of open-
ing days. To our knowledge, the GHPM is by far the largest mar-
ket (by event partition size) ever conducted. The largest prior pre-
diction markets are probably markets over candidates for political
nominations, where as many as 20 candidates could have contracts
(of course, only a handful of candidates in these markets are ac-
tively traded).

For the GHPM we applied the most widely-used automated mar-
ket maker for prediction markets, the logarithmic market scoring
rule (LMSR), originally designed by Hanson (2003). The market
maker operates according to a cost function C : Rn 7→ R, which
maps a vector of quantities q to a scalar representing how much
money has been paid into the system. Each entry qi in the vector
q represents how much money is to be paid out if the i-th event is
realized. The cost function for the LMSR is

C(q) = b log

(∑
i

exp(qi/b)

)
where b > 0 is a constant fixed a priori by the market adminis-
trator. As Pennock and Sami (2007) discuss, the b parameter can
be thought of as a measure of market liquidity, where higher val-
ues represent markets less affected by small bets. In the GHPM we
fixed b = 32, and since the LMSR has worst-case loss of b logn,
at most about 80 surplus tickets would be won from the market
maker by participating traders. (This is indeed the amount actually
transferred from the market maker to the participants because prob-
ability mass converged to the correct day before the market ended.)

Prices are defined by the gradient of the cost function, so that

pi(q) =
exp(qi/b)∑
j exp(qj/b)

is the price of the i-th event. The prices can also be directly thought
of as event probabilities. The generated prices define a probabil-
ity distribution over the event space: they sum to unity, are non-
negative, and exist for any set of events.

There has been a flurry of recent research involving automated
market makers (Chen and Pennock, 2007; Agrawal et al., 2009).
Regardless, of the particular market maker used, we can mandate



that all automated market makers should be strictly monotonic, so
that the price of an event increases in its payout quantity.

2.3 Span-based elicitation with ternary queries
In this section, we present the novel elicitation mechanism used

in the GHPM. A similar interface was developed independently and
contemporaneously by Yahoo! Research for Yoopick, an applica-
tion for wagering on point spreads in sporting events that runs on
the social network Facebook.

The major problem in implementing fine-grained markets in prac-
tice is one of elicitation: they are too fine for people to make reli-
able point-wise estimates. Consider the GHPM, which is divided
into 365 separate contracts, each representing a day of a year. Un-
der a traditional interaction model, traders would act over individ-
ual contracts. But with 365 separate contracts, the average estimate
of each event is less than .3%. People have great difficulty reliably
distinguishing between such small probabilities (Ali, 1977), and
problems estimating low-probability events have been observed in
prediction markets (Wolfers and Zitzewitz, 2006).

We solve this problem by simple span-based elicitation, which
makes estimation of probabilities easy for users. In our system, the
user can select a related set of events and gauge the probability for
the entire set. Spans are a natural way of thinking about large sets
of discrete events: people group months into years, minutes into
hours, and group numbers by thousands, millions, or billions. The
key here is that spans use the concept of distance between events
that is intrinsic to the setting.

For example, let the market be at state q0 = {q01 , . . . , q0n}.
(These are the quantities that will be paid out if each of the respec-
tive states is realized.) A user’s interaction begins with the selection
of an interval, from indices s to t. This partitions the indices into
(at most) three segments of the contract space: [1, s), [s, t], and
(t, n]. The user then specifies an amount, r, to risk. Our market
maker offers two alternative bets to the user:

• The “for" bet. The agent bets for the event to occur within
the contracts [s, t]. The user’s payoff if he is correct, πf , is
calculated from

C
(
q
0
1 , . . . , q

0
s−1, q

0
s + πf , . . . q

0
t + πf , q

0
t+1, . . . , q

0
n

)
= C(q

0
)+r

• The “against" bet. The agent bets against the event occurring
within the contracts [s, t]. The user’s payoff if he is correct,
πb, is calculated from

C
(
q
0
1 + πb, . . . , q

0
s−1 + πb, q

0
s , . . . , q

0
t , q

0
t+1 + πb, . . . , q

0
n + πb

)

= C(q
0
) + r

Solving for πf and πb is not generally possible in closed form.
These equations can be solved numerically using, for example,
Newton’s method. Depending on the specific cost function and
numerical solution method, there might be issues with solution in-
stability that should be addressed; for instance, the GHPM used
Newton’s method with a bounded step size at each iteration to dis-
courage divergence.

Given a selected set of events, the simplest way to represent a
bet for that set is to have each event in the set pay out an identical
amount if the event is realized, as we do in the two equations above.
This simplicity means we can significantly condense the language
we use when eliciting a wager from an agent. Instead of asking a
user whether he would accept an n-dimensional payout vector, we
need only present a single value to the user. A screenshot of the
elicitation process in the GHPM appears as Figure 1.

Yahoo! Research’s Yoopick does not have “against" bets, but the
GHPM does. From discussions with traders in the GHPM, against
bets were used frequently to bet against specific (single) contracts
they feel are overvalued. Several successful traders had a portfolio
consisting solely of bets against a large number of single contracts.
The success of these traders was likely a combination of the mis-
judging of small probabilities by other traders as well as the spiky
price phenomenon discussed in the next section.

There are several relevant pieces of information the market ad-
ministrator could provide the users for each potential bet:

• The agent’s direct payout if he is correct, πf (or πb). Both
Yoopick and the GHPM display this information.

• The averaged payout probability on the span, r/πf or 1 −
r/πb. Yoopick does not display this information. The GHPM
displays this as a ternary (three-way) query, where agents
can select whether their probability estimate lies in one of
three partitions, as in Figure 1. So, the user selects whether
his probability for the span is less than 1−r/πb, greater than
r/πf , or in-between. (By monotonicity of prices, r/πf ≥
1 − r/πb, with equality only in the limit as r → 0.) If an
agent’s belief lies in the middle partition, presumably they
could reduce their bet size or find another span on which to
gamble.

• The marginal payout probability, which is the sum of the
prices on the relevant span after the πf or πb of additional
quantity. Since agents who are acting straightforwardly will
not want to move marginal prices beyond their private valu-
ation, marginal prices could be more informative to decision
making. Neither the GHPM nor Yoopick displays this infor-
mation. Early trials of the GHPM included marginal prices
in the interaction interface, but testers found the information
confusing when combined with the averaged payout prob-
abilities and so we removed the marginal payout probabili-
ties from later versions of the interface. Even though they
were not explicit in the interface, sophisticated traders could
still produce marginal prices either by explicitly knowing the
pricing rule or by making small tweaks in the number of tick-
ets risked and observing how prices changed. We feel that for
a market populated by mathematically adept traders, explicit
marginal prices would be a helpful tool.

Finally, the span-based elicitation scheme is arbitrarily expres-
sive. If the users are sophisticated enough to make discriminating
judgments over small probabilities, to the point that they can ex-
press their actionable beliefs over every contract, then they can still
express this sophistication using spans—e.g., by trading spans that
contain only one element (one day in the case of the GHPM).

3. PROBLEMS REVEALED
There are two key findings from our study. The first is a large

and interesting corpus of trades, which we analyze in Section 4.
The second is that we discovered two real-world flaws in the auto-
mated market-making concept. These were the spikiness inherent
in prices and the liquidity-insensitivity that made prices in the later
stages of the market change too much. We proceed to discuss these
flaws in the next two sections, respectively.

3.1 Spikiness of prices across similar events
A phenomenon that quickly arose in the GHPM was how spiky

the prices are across events at any snapshot in time. There was
extraordinary local volatility between days that one expects should



Figure 1: A screenshot of the elicitation query for a user-selected span in the GHPM. The query is ternary because it partitions the user’s
probability assessment into three parts. The GHC is the Gates and Hillman Centers, the new computer science buildings at Carnegie Mellon.
Because of legal concerns, the market used raffle tickets rather than money.

have approximately the same probability. This volatility is far more
than could be expected from a rational standpoint—e.g., betting
against weekends—and it persisted even in the presence of profit-
driven traders whose inefficiency-exploiting actions mitigate the
most egregious disparities. Figure 2 is a screenshot of the live
GHPM. Spiky prices are clearly evident.

Figure 2: A screenshot of the GHPM that shows the spikiness of
prices. The x-axis ranges over a set of potential opening days. The
y-axis displays prices (as percentages; e.g., 1% means a price of
0.01).

Why did spikiness occur? Would there have been an automated
market maker with a different cost function that would have re-
sulted in a market where prices were not spiky? In this section, we
show that on the one hand, spikiness was a consequence of using
the LMSR. On the other hand, we show that any market maker that
does not induce spikes causes a different problem. Specifically, we
show that there is an inherent tension between a quality called un-
lockability and the ability of the market maker to not induce spiky
prices. We prove that any market maker is either lockable or spike
inducing (or both).

3.1.1 Why were prices spiky?
First, we must formalize what we mean by spikiness. From ex-

amining transactional data in the GHPM, we observed that spiky
prices arose when agents’ bets amplified small differences between
individual days with low prices. These small differences arise nat-

urally by agents selecting slightly different intervals to wager on.
Recalling that in our market, bets offer agents an identical pay-
out for each day in a selected span, this kind of amplification is
entailed if the market maker’s price response is convex. This is
because for (strictly) convex f(·), if a < b and x > 0, then
f(b) − f(a) < f(b + x) − f(a + x). We provide a definition
of what it means for a market maker to not induce spiky prices
by that market maker providing a concave response to input in the
limit. (Our definition avoids addressing obscure cases where the
limit does not exist.) For simplicity, we assume that price functions
are twice differentiable (the LMSR is differentiable an infinite num-
ber of times). We are interested in spikiness at low prices because
with a large event space the price of any one event tends to be low.

Definition 1. A pricing rule is not spike inducing (at low prices)
if for all i and all q−i, the price response is concave in the limit as
prices approach 0. Formally,

lim
pi→0

∂2

∂q2i
pi (qi,q−i) ≤ 0

One advantage of using the LMSR in the GHPM was that it is
unlockable. Recall that a cost function maps a vector of payout
quantities to a scalar representing how much traders in aggregate
have risked. The pre-image of some cost functions does not cover
all of Rn. If this is the case, then at the boundaries of the defined
region the market maker has to force the market not to exit the de-
fined region. The natural way to accomplish this is to “lock" prices
at those boundaries, forcing the prices to stay between 0 and 1 and
thus maintaining the correspondence between prices and probabil-
ities. With a lockable market maker, additional code needs to be
executed to check every interaction, both trades and price quotes,
to ensure that prices never go below 0 or above 1. This adds sub-
stantial overhead to the market maker.

Definition 2. A market using a cost function with bounded pre-
image is lockable. A market using a cost function with unbounded
pre-image is unlockable.

PROPOSITION 1. Every market maker is either lockable or spike
inducing (or both).

PROOF. Suppose a market that is both unlockable and not spike
inducing. Fix an arbitrary index i and q−i. Because the market is
unlockable, qi is unbounded in the negative direction, and because
pricing rules are strictly monotonically increasing in their elements,
there exists a direct correspondence between qi and pi. As a result,



we can rewrite the not spike-inducing limit condition as

lim
qi→−∞

∂2

∂q2i
pi (qi,q−i) ≤ 0

Now select arbitrary ε > 0. Then by this limit condition there
exists some Q such that

∂2

∂q2i
pi(q

′
i,q−i) < ε for all q′i ≤ Q

Let z = ∂
∂qi

pi(Q,q−i). We have z > 0 by monotonicity.
Now, consider the space of all pricing rules pi(q,q−i), q <

Q′, pi ∈ C2 with the property that p′i(Q,q−i) = z and p′′i (q,q−i) <
ε (over all relevant q). On their domains, no pricing rules maps to
higher values than the simple quadratic function f(q) which is de-
fined by f ′′(Q) = ε, f ′(Q) = z and f(Q) = pi(q,q−i). But by
the quadratic formula, this function is less than 0 for any q less than

−z + εQ−
√

(z − εQ)2 − 2ε(pi(Q,q−i)− zQ+ εQ2)

ε

Since this quadratic function maps to values at least as large as
every pricing rule meeting the conditions on the first and second
derivatives of the cost function, we know that pi must be smaller
than 0 for qi less than the above value. Since prices go below 0, qi

is not unbounded. Thus the market is lockable, a contradiction.

Lockable market makers have been regarded as inferior because
of the overhead involved in locking the market comes without any
advantage (Pennock and Sami, 2007)). To our knowledge, this re-
sult is the first argument for choosing a lockable market maker over
an unlockable market maker like the LMSR.

Spikiness represents a problem because it impacted trader behavior—
not only were traders aware of spikiness, but this knowledge influ-
enced their actions. In the next section, we discuss and analyze
interviews with traders which suggest that spikiness played a large
role in determining the way agents behaved in the GHPM.

3.1.2 Impact on trader behavior
Several successful traders based their strategies entirely around

betting against spikes. Rob, a PhD candidate in the Computer Sci-
ence Department ended with about 256 tickets, finishing in fourth
place overall. In our interview with him, he described his strategy
as follows:

I knew that the market was presumably figuring out
the probabilities of events, and early on, those predic-
tions were very uneven. I supposed some people were
setting all their money down on a single day or small
set of days, and that this was causing the probability
graph to be very “spiky." I bet against the spikes.

Presuming (and I was correct) that as new people
entered the market, the spikes would change radically
and I’d cash out on the old spikes (making money) and
bet against the new spikes.

Of course, on the other side of Rob’s actions were traders like
Jeff (a pseudonym). Jeff is another PhD student in the Computer
Science Department with a background in finance; he worked as
a quantitative analyst at a hedge fund before coming to graduate
school. A frequent trader, Jeff finished with enough tickets to place
himself in the top 15 traders. Of his experience, he said:

It seemed like every time I would make a trade the
value [of the bet] would fall a little bit...it was frustrat-
ing, like everything I was doing was wrong.

Jeff’s bets would fall in value because they would create spikes,
which speculators like Rob would quickly sell.

Spiky prices are a problem because they create a disconnect be-
tween the user and the elicitation process. Users feel that the spiky
prices they observe after interacting with the market maker do not
reflect their actual beliefs. This is because users agree only to a
specified potential payoff rather than to an explicit specification of
prices after their interaction.

Moreover, because the difference between spiky prices and (pu-
tatively) efficient prices is so small, traders have little incentive to
tie up their capital in making small bets to correct spikiness; there
is almost certainly another interval where their actionable beliefs
diverge more from posted prices. Our interview with Brian, a PhD
student in the Machine Learning Department and the market’s best-
performing trader, was informative. He described a sophisticated
strategy where he would check the future prospects of his current
holdings against what he viewed as a risk-free rate of return—for
instance, by betting against the building opening on a weekend.
If the risk-free rate of return was higher, he would sell his in-the-
money holdings and buy into the risk-free asset. So once a spike
is small enough, damping it out can be less lucrative than other
opportunities.

Finally, to bet against a spike, a trader accepts an equal payout
on every other day. But moving the price function by an equal
scalar is what caused spiky prices in the first place; that is, every
bet against a spiky price has the tendency to amplify other spikes.
In summary, in a spike-inducing market, spiky prices are easy to
create and virtually impossible to eliminate.

3.2 Liquidity-insensitivity
Recall that the cost function used in the GHPM was

C(q) = b log

(∑
i

exp(qi/b)

)
and that prices are given by the gradient of this function

pi(q) =
exp qi/b∑
j exp qj/b

Defining 1 ≡ (1, 1, . . . , 1), it is evident by inspection that

pi(q) = pi(q + α1)

for scalar α. Hanson (2003) and Chen and Pennock (2007) present
this relation as a property of any arbitrage-free market maker, be-
cause it ensures that

C(q + α1) = C(q) + α

so that buying a guaranteed return of α regardless of the realized
outcome should cost α.

A practical interpretation of this result is that the market maker is
liquidity insensitive, so that quoted responses do not respond to the
level of activity seen in the market. This implies that prices change
exactly the same amount for a one dollar bet placed at the start of
the market (say, at q = (0, 0, . . . , 0)) as after the market maker has
matched millions of dollars (q = (1000000, . . . , 1000000)).

This is not the way we think of markets in the real world, op-
erated by humans, as working. As markets grow larger with more
frequent trading, they become deeper so that small bets have van-
ishingly small impact on prices. Liquidity-insensitivity is therefore
a failure of current automated market makers.

3.2.1 Impact on trader behavior
Liquidity insensitivity had an impact on traders in the GHPM,



but unlike spikiness, which was publicly visible and a source of fre-
quent consternation, it appears that only the most active and savvy
traders were aware of liquidity insensitivity. Brian, the market’s
best trader, said this about the way he approached the market in its
final weeks:

One thing I noticed was that at the end, these small bets
would still make big jumps in the prices. So I would
try to keep the amount that I bet really small...to try
and minimize what would happen to the prices.

So, at least the savviest traders were aware of the disconnect be-
tween the automated market maker and the way a traditional market
would function.

3.2.2 Relation to spikiness
Though spikiness and liquidity-insensitivity appear quite differ-

ent, they are actually related. A market maker that is sensitive to
liquidity would be able to temper spikiness, because in more liq-
uid (deeper) markets, the market maker could move prices less per
each dollar invested. Since spikes are the product of discrepancies
in the amount that prices move, if prices move less, spikiness will
be diminished.

4. TESTING HYPOTHESES
The large corpus of trades linked to user accounts is a valuable

product of the GHPM. In this section, we use this data set to ex-
plore questions related to trader behavior and performance, and its
impact on prices and information aggregation.

4.1 The GHPM both predicted and reacted to
official communications (and lack thereof)

A key question in prediction markets—and one of our driving
motivations for developing the GHPM—is whether the market would
have predictive power beyond official public communications. In
this section, we discuss how the market both reacted to, but also
anticipated, the official public communications. We also argue that
the market responded to the lack of official communications.

Figure 3 shows how the distribution of prices changed over time
and Table 1 shows the officially communicated moving dates. As
we explained earlier, the moving day provides an upper bound on
the issuance of the occupancy permit because people are not al-
lowed to move into a building without a permit.

Date of Communication Moving Day Medium
October 15, 2008 July Blog
February 14, 2009 August 3rd E-mail
July 23, 2009 August 3rd E-mail
July 28, 2009 Approx. August 10th E-mail

Table 1: Officially communicated moving dates.

We can provide a rough narrative of the market from these two
sources. Following some initial skepticism, market prices moved
towards the correct prediction, becoming very prescient by the end
of November. By then, the exterior framing of the buildings was
complete. Over the next several months, the outside appearance
of the buildings did not improve measurably, and there were no
official communications during this period. Prices reflected this
apparent lack of progress.

The weather may have further reinforced traders’ beliefs in a
delay; the winter of 2008-09 was particularly cold in Pittsburgh
and featured the lowest temperatures in fifteen years. Pittsburgh’s

average temperature in January 2009 was 22 degrees, six degrees
colder than the historic average of 28 degrees. As Figure 4 shows,
the market’s probabilities for the building opening in early August
peaked in late November and steadily fell throughout December
and January.
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ing day. The x-axis ranges over days the market was open. The
lines indicate the mass of spans around the opening day on each
trading day; upper line is for August 2 to 12, the lower line for
August 5 to 9.

The e-mail of February 14th dramatically shifted market prices,
lowering their volatility and bringing them close to the correct open-
ing date. It is clear from examining Figure 3 that the market did not
anticipate this e-mail.

The GHPM did, however, predict the e-mail of July 28th that
announced a delay in the structure. This was despite official as-
surances, including an e-mailed moving schedule, that affirmed the
August 3rd date. The day before the e-mail announcing the delay
arrived, more than 90% of the mass of prices was after August 3rd.
So, in July, anyone interested in finding out the opening date would
have been better off relying on the predictions from the GHPM than
relying on the official communications.

4.2 Self-declared savviness
When traders signed up, they were asked “How savvy do you

think you are relative to the average market participant?". They
were given five choices, “Much less savvy", “Less savvy", “About
the same" (the default selection), “More savvy", and “Much more
savvy". Participants were informed that their answer to this ques-
tion would not impact their payouts or the way they interacted with
the market.

Because people are usually over-confident in various settings—
and in prediction markets in particular (Forsythe et al., 1999; Graefe
and Armstrong, 2008)—it was our expectation that traders would
be over-confident in their own abilities relative to others. Instead,
we found the opposite.

4.2.1 Background
Prior studies have suggested that overconfidence causes trade

in prediction markets. In the standard setting (without a market
maker) and with perfectly rational agents, theory provides no-trade
results (Milgrom and Stokey, 1982), that are problematic because
in real prediction markets trade does occur. Briefly, the no-trade
argument is as follows: Speculative trade is zero-sum. A perfectly
rational agent knows that no other perfectly rational agent would
offer a trade with positive expected value, and so no trade occurs.
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One way around the no-trade results is to assert that trade is not
speculative but rather a risk-hedging tool. However, stakes in cur-
rent prediction markets are too small to provide serious hedging
opportunities (Wolfers and Zitzewitz, 2006). No traders we spoke
to mentioned hedging as a motivation for participating.

A perhaps more plausible explanation of trade in prediction mar-
kets is for agents to not be perfectly rational. In particular, if an
agent is overconfident in her beliefs or abilities, she may see mar-
ket prices as errors that she can profitably correct. This was the
explanation offered by Forsythe et al. (1999) for traders’ actions in
the Iowa Electronic Market, the longest-running prediction market.
It is further backed up by Graefe and Armstrong (2008), who found
that traders (incorrectly) believed they could achieve higher payoffs
by adjusting consensus market-price estimates in laboratory exper-
iments.

4.2.2 Reported under-confidence
Based on previous studies of over-confidence in markets, we

would expect to see most traders rate themselves as at least compa-
rable to the average trader in the market. Table 2 shows our survey
results. 77 traders described themselves as less or much less savvy
than average, while only 13 traders described themselves as more
savvy than average. Most surprisingly, not a single trader listed
themselves as much more savvy than the average trader.

Why did we find traders under-confident, instead of over-confident,
in their own abilities? Recent research by Moore and Healy (2008)
on confidence sheds some light on this issue. They find that

Self-Declared Savviness Number of Traders
Much Less than Average 30 (17.8%)
Less than Average 47 (27.8%)
Average 79 (46.7%)
More than Average 13 (7.7%)
Much More than Average 0

Table 2: Self-assessment of savviness.

On difficult tasks, people...mistakenly believe that they
are worse than others; on easy tasks, people...mistakenly
believe they are better than others.

A novel market setting, such as the web-based automated market
maker with span-based elicitation we used in the GHPM, is unfa-
miliar enough to a new trader as to seem potentially difficult. Prior
market studies, because they have used traditional market interfaces
that even the most casual participant is familiar with, would seem
potentially less difficult and therefore would be susceptible to over-
confidence.

4.2.3 Traders poorly predicted their own performance
We found that traders’ self-reported savviness relative to other

traders had little bearing on their relative performance. Table 3
groups traders by self-reported savviness and displays the group
medians. The median over all traders was 17.46 tickets, identical
to the least-savvy group and within a ticket of the two next-savvy



groups. Ironically, traders identifying themselves as more savvy
than the average trader performed more than 10 tickets worse than
any other group.

Self-Declared Savviness Median Tickets
Much Less than Average 17.46
Less than Average 16.78
Average 18.36
More than Average 6.05
Much More than Average N/A

Table 3: Traders who self-identified as “more savvy than the av-
erage participant" in the market had dramatically lower median
performance than other traders, while those traders identifying as
“much less savvy than the average participant" had the same over-
all median performance as the general population.

4.3 Trade frequencies suggest a power law
The numbers of bets made by traders appear to closely fit a power

law distribution. Figure 5 shows the relationship in terms of the
probability of a trader having more than a certain number of trades
from our data set, and the best-fitting power law distribution. (We
also tried a log-normal distribution and the fit was poor.)
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Figure 5: A log− log plot showing the relationship between
traders and the number of trades they placed. The straight line
shows a power law fit for α = .51.

Unfortunately, with only 169 traders we can not assert an appro-
priate level of statistical significance, so we cannot rule out the data
being generated by other distributions. However on a log-log plot,
the data does appear to snugly fit the canonical straight line of a
power law distribution.

Why might one expect a power law distribution of trade fre-
quency? It seems reasonable to suggest that a trader both makes
new bets and sells old bets in proportion to the number of bets she
has currently outstanding, with the constraint that she never go un-
der one bet outstanding (in order to collect her two free tickets each
week). As Mitzenmacher (2004) discusses, this type of generative
model yields a power law distribution.

4.4 Trading by a bot
Conventionally, when we think about prediction markets, we

think about a collection of individuals making probability judg-
ments. This is a quality distinct from traditional exchanges, in
which automated trading is common and frequent. But as Berg
et al. (2001) discuss, trading bots make up a large fraction of the

observed volume in the Iowa Electronic Markets, and must be con-
sidered in any sort of qualitative summary of the properties of pre-
diction markets. We found that trade in the GHPM was also domi-
nated by a bot.

This was surprising because we did not make automated trading
easy. The GHPM did not use an API, so any trading bot would
have to come up with a way to parse the web page and simulate its
user’s actions on the page. Jim, a graduate student in the Computer
Science Department, took two days to write a trading bot which
operated on fitting the market data to a mixture of Gaussian dis-
tributions and identified trading opportunities based on deviations
from the fit.

The bot made 68.5% of the trades in the market (27,311 of 39,842).
The median number of trades placed for all traders was five.

Jim’s bot did well in the market; at its peak it was the second-
highest-valued trader. Jim turned his bot off after the e-mail of
February 14th and began trading manually. He ended up losing the
bulk of his tickets by betting on the building opening earlier than it
actually did, finishing 158th of the 210 registered users and 117th
out of the 169 traders.

4.5 The Marginal Trader Hypothesis versus
the Hayek Hypothesis

How do markets incorporate information and generate good prices?
Two competing hypotheses about how markets work are the Marginal
Trader Hypothesis (MTH) and the Hayek Hypothesis (HH). In this
section, we discuss how the results of our market support the MTH
over the HH.

4.5.1 Background
The MTH holds that a small fraction of market traders are re-

sponsible for setting good prices. The other traders have nega-
tive expectation and essentially subsidize the experts. The MTH
was formulated by the team of researchers responsible for the Iowa
Electronic Markets to explain why their 1988 and 1992 presiden-
tial election markets worked well (Forsythe et al., 1999; Berg et al.,
2001; Oliven and Rietz, 2004). They argued that marginal traders
were able to ignore any personal biases they had towards the can-
didates and act objectively within the markets, setting good prices.

The trade-level data from the IEM is closely held by that re-
search team, so independent verification or analysis of the data is
not possible. However, an argument against the MTH being a fac-
tor in other markets is that the IEM markets involve political events
that people feel strongly about. It seems reasonable that people
feel much less strongly about a building opening in August or Oc-
tober than about a presidential election. As a result, there may
not be any biases to cloud the judgment of participants, suggest-
ing that the MTH may not be relevant to the GHPM. Furthermore,
the 1996 IEM vote-share market failed miserably, with prices di-
verging sharply from accurate values over the last few weeks of
the market (Berg et al., 2001). Where were the marginal traders in
1996?

The Hayek Hypothesis (HH) derives from the work of Smith
(1982) analyzing the ideas of Hayek (1945) that markets could
function informatively despite the general ignorance of participants
in trading environments. Later computational studies have taken
this idea literally, populating both continuous double auctions (Gode
and Sunder, 1993) and prediction markets (Othman, 2008) with
zero-intelligence agents that do not learn or optimize. Surpris-
ingly, these two studies showed that markets composed of zero-
intelligence trading bots produced results qualitatively similar to
markets composed of human traders. Of course, simply suggesting
that markets could function without marginal traders is much dif-



ferent than showing that they do function without marginal traders.
The HH has been supported only by computer simulations, not
large-scale market experiments with real people.

4.5.2 What would each hypothesis entail?
We can use the GHPM data to test these two hypotheses. In this

section we will discuss what kind of data each of the hypotheses
would generate, and in the next section we show what we actually
found in the data.

The two hypotheses involve the informational content of markets
(how prices become good), rather than their speculative content.
Both information provisioning and speculation can affect the fi-
nal distribution of wealth among the participants. Therefore, “total
tickets" is not necessarily a good measure of a trader’s provisioning
of information. Tickets could be accumulated by adding valuable
information to the market, like from buying the correct span or sell-
ing against an incorrect peak. But they could also be accumulated
simply by placing a bet each week, or through purely speculative
activities that do not increase the amount of (good) information in
the market. Consider the following sequence of events:

1. The speculator buys an incorrect span.

2. Another trader buys the same span. This increases the value
of the speculator’s bet.

3. The speculator sells their original bet.

The speculator ends without a net position but with an increase of
tickets.

Since looking at accumulated tickets alone might not be indica-
tive of the quality of information injected into the market, we came
up with another measure, which we dub Information Addition Ra-
tio (IAR). This measure attempts to separate a trader’s return from
speculative activities from a trader’s return from information-adding
activities. It answers the question “If we see a trader making a one-
ticket bet, what is her expected return if she were to hold that bet
until the market closes?". A return of one ticket on each ticket in-
vested is always available to a trader by betting on the entire range
of exhaustive contracts. Traders who inject valuable information
into the market will have an IAR greater than one, while traders
who have a deleterious impact on information will have an IAR of
less than one. Essentially, IAR measures how much each trader
pushed the price of August 7th, the correct opening day, higher.
IAR is an attempt to compress a complex concept into a scalar,
and such an enormous dimensionality reduction is inherently lossy.
IAR places a focus exclusively on rewarding traders for making
bets that raised the price of the correct opening day.

We can gauge how skewed a distribution is at a glance by mea-
suring its Gini coefficient, a standard measure of inequality. As-
suming we have the data points x1 ≤ x2 ≤ . . . ≤ xn, the Gini
coefficient, G, of the sample is given by

G =
2
∑

i ixi

n
∑

i xi
− n+ 1

n

The Gini coefficient ranges from zero to one and can be thought
of as a measure of how unequal drawn samples are, with particular
sensitivity to large outliers.

The MTH entails a very skewed distribution of IARs (a high
Gini coefficient) and for the median trader to have an IAR of much
less than one. This is because, according to the MTH, the mass of
traders subsidizes a small, elite cadre of knowledgeable traders.

The HH entails a more balanced distribution of IARs (a lower
Gini coefficient), and for the median trader to have an IAR of about
one. If every trader is essentially the same, some traders should

inject correct information and other traders incorrect information,
and the median trader should be close to breaking even.

4.5.3 Data supports the MTH
Figure 6 displays the distribution of IARs, and Table 4 displays

the Gini coefficients for the GHPM in context with other distribu-
tions. Both the distribution of tickets and the distribution of IARs
was heavily skewed and unequal. The median trader had a return
of .16 tickets per ticket bet, and 79 traders (47%) did not place a
single bet on a span including the correct date, August 7th. This is
surprising for several reasons. First, a return of one ticket per ticket
bet was always available to traders by betting on the entire span.
Second, in the ternary elicitation interface, one of the bets offered
will always include August 7th, and the other will not, so there
was no inherent bias against traders making correct bets. Finally,
the median number of bets per trader was five, meaning that the
mass of traders made poor judgements several times, not just once.
Taken as a whole, these results indicate that the majority of market
participants consistently made judgements that hurt the accuracy
of the GHPM. On the other side, there was clearly a small and se-
lect group of traders responsible for actually making the GHPM
produce meaningful prices. Only 37 traders (22%) had an IAR of
more than one, and only 13 traders (8%) had an IAR of more than
two. Our results therefore strongly support the Marginal Trader
Hypothesis over the Hayek Hypothesis.
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Figure 6: The distribution of IAR of traders ordered by rank. The
straight line shows an IAR of 1 (one ticket expected per ticket wa-
gered).

Data Set Gini Coefficient
Normal Distribution µ = 5, σ = 1 .113

Denmark Income .247
Uniform Distribution .333
United States Income .408

Log-normal Distribution µ = 5, σ = 1 .521
GHPM Tickets .700
Namibia Income .743

GHPM IARs .762

Table 4: Gini coefficients are a standard measure of the degree of
inequality of a distribution. As this table shows, the distribution
of both information (IARs) as well as overall performance (tickets)
were extremely unequal. For reference, we include country income
inequality coefficients from the United Nations (2008); Denmark
had the lowest coefficient and Namibia the highest.



5. DISCUSSION
The Gates Hillman Prediction Market (GHPM) represents, to our

knowledge, the largest test faced by automated market making in
prediction markets. It was a long-lived market with hundreds of
participants, hundreds of events, and tens of thousands of trades.
By testing the boundaries of automated market making through ac-
tual implementation, we can get a better perspective on where new
research should be directed. The GHPM uncovered in practice two
significant shortcomings in current market maker designs:

• Spikiness of prices of similar events at any snapshot in time.
We proved that this is an unavoidable consequence of us-
ing an unlockable market maker. Future research should pay
more attention to lockable market makers which may be able
to avoid spiky prices. Also, new interaction interfaces could
be developed that lead traders to place bets that might better
reflect their beliefs while still being simple enough for unso-
phisticated users.

• Liquidity insensitivity that led to price volatility even in ma-
ture stages of the market. As we discussed, future market
makers should be liquidity sensitive: they should make prices
“stiffer" (i.e., the price changes less as a function of the amount
that is bet) in markets where lots of trade volume has been
(and will be) placed. One such market maker is discussed in
Othman et al. (2010).

From an experimental perspective, our real-world study comple-
ments (and is arguably more valuable than) laboratory studies, es-
pecially in light of a recent strain of experimental economics which
has called into question the reliability of laboratory experiments.
Researchers have found that often the behavior seen in the lab, un-
der scrutiny, does not mirror the way people behave outside of the
lab (Levitt and List, 2008). We believe that the GHPM was able
to avoid these issues because it was long running, and had large
numbers of unsupervised participants.

With this unique data set, we were able to provide in-depth study
of the market’s microstructure. We showed that the market both
predicted and reacted to official communications—and lack thereof.
While over-confidence has been suggested as the reason that no-
trade theorems get circumvented in prediction markets, we actu-
ally found that traders were under-confident. Furthermore, self-
confidence did not predict performance; greater-than-average con-
fidence was actually negatively correlated with performance. The
data also suggests that the trade frequency across traders follows
a power law distribution, and that a trading bot was active and
successful. Most significantly, we were able to take two compet-
ing hypotheses about how markets work to aggregate information,
the Marginal Trader Hypothesis and the Hayek Hypothesis, discuss
what one should expect to observe under each hypothesis, and then
examine our data to determine that it strongly supports the Marginal
Trader Hypothesis.

The GHPM yielded a valuable data set, which we plan to release
openly to the community. There are interesting questions about
trader behaviors in the market that we only scratched the surface
of in this paper. We are especially interested in the application of
machine learning techniques towards the data set, studying whether
we can reliably cluster and categorize traders from seeing snapshots
of their behaviors.
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