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Abstract 

Sourcing professionals buy several trillion dollars worth of 
goods and services yearly.  We introduced a new paradigm 
called expressive commerce and applied it to sourcing.  It 
combines the advantages of highly expressive human 
negotiation with the advantages of electronic reverse 
auctions.  The idea is that supply and demand are expressed 
in drastically greater detail than in traditional electronic 
auctions, and are algorithmically cleared.  This creates a 
Pareto efficiency improvement in the allocation (a win-win 
between the buyer and the sellers) but the market clearing 
problem is a highly complex combinatorial optimization 
problem.  We developed the world’s fastest tree search 
algorithms for solving it.  We have hosted $19 billion of 
sourcing using the technology, and created $2.1 billion of 
hard-dollar savings.  The suppliers also benefited by being 
able to express production efficiencies and creativity, and 
through exposure problem removal.  Supply networks were 
redesigned, with quantitative understanding of the tradeoffs, 
and implemented in weeks instead of months. 

Historical Backdrop on Sourcing   
Sourcing, the process by which companies acquire goods 
and services for their operations, entails a complex 
interaction of prices, preferences, constraints, and many 
non-price attributes.  The buyer's problem is to decide how 
to allocate the business across the suppliers.   
 Traditionally, sourcing decisions have been made via 
manual in-person negotiations.  The advantage is that there 
is a very expressive language for finding, and agreeing to, 
win-win solutions between the supplier and the buyer.  The 
solutions are implementable because operational 
constraints can be expressed and taken into account.  On 
the downside, the process is slow, unstructured, and 
nontransparent.  Furthermore, sequentially negotiating with 
the suppliers is difficult and leads to suboptimal decisions.  
(This is because what the buyer should agree to with a 
supplier depends on what other suppliers would have been 
willing to agree to in later negotiations.)  The 1-to-1 nature 
of the process also curtails competition.   
 These problems have been exacerbated by a dramatic 
shift from plant-based sourcing to global corporate-wide 
(category-based rather than plant-based) sourcing since the 
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mid-1990’s.  This transition is motivated by a 
corporation’s desire to leverage its spend across plants in 
order to get better pricing and better understanding and 
control of the supply chain while at the same time 
improving supplier relationships.  (See, e.g., (Smock 
2004).)  This transition has yielded significantly larger 
sourcing events that are inherently more complex. 
 During this transition, there has also been a shift to 
electronic sourcing where suppliers submit offers 
electronically to the buyer.  The buyer then decides, using 
the software, how to allocate the business.  Advantages of 
this approach include speed of the process, structure and 
transparency, global competition, and simultaneous 
negotiation with all suppliers (which removes the 
difficulties associated with the speculation about later 
stages of the negotiation process, discussed above). 
 The most famous class of electronic sourcing systems - 
which became popular in the mid-1990s through vendors 
such as FreeMarkets (now Ariba), Frictionless Commerce, 
and Procuri - is a reverse auction.  The buyer groups the 
items into lots in advance, and conducts an electronic 
descending-price auction for each lot. The lowest bidder 
wins.  (In some cases “lowness” is not measured in terms 
of price, but in terms of an ad hoc score which is a 
weighted function that takes into account the price and 
some non-price attributes such as delivery time and 
reputation.) 
 Reverse auctions are not economically efficient, that is, 
they do not generally yield good allocation decisions.  This 
is because the optimal bundling of the items depends on 
the suppliers' preferences (which arise, among other 
considerations, from the set, type, and time-varying state of 
their production resources), which the buyer does not know 
at the time of lotting.  Lotting by the buyer also hinders the 
ability of small suppliers to compete.  Furthermore, reverse 
auctions do not support side constraints, yielding two 
drastic deficiencies: 1) the buyer cannot express her 
business rules; thus the allocation of the auction is 
unimplementable and the “screen savings” of the auction 
do not materialize in reality, and 2) the suppliers cannot 
express their production efficiencies (or differentiation), 
and are exposed to bidding risks.  In short, reverse auctions 
assume away the complexity that is inherent in the 
problem, and dumb down the events rather than embracing 
the complexity and viewing it as a driver of opportunity.  It 
is therefore not surprising that there are strong broad-based 
signs that reverse auctions have fallen in disfavor.   



The New Paradigm: Expressive Commerce 
In 1997 it dawned on me that it is possible to achieve the 
advantages of both manual negotiation and electronic 
auctions while avoiding the disadvantages.  The idea is to 
allow supply and demand to be expressed in drastically 
more detail (as in manual negotiation) while conducting 
the events in a structured electronic marketplace where the 
supply and demand are algorithmically matched (as in 
reverse auctions).  The new paradigm, which we call 
expressive commerceTM (or expressive competitionTM), was 
so promising that I decided to found CombineNet, Inc. to 
commercialize it.   
 The finer-grained matching of supply and demand yields 
Pareto improvements (i.e., win-win solutions) between the 
buyer and the suppliers.  However, matching the drastically 
more detailed supply and demand is an extremely complex 
combinatorial optimization problem.  We developed the 
world’s fastest algorithms for optimally solving it.  These 
algorithms are incorporated into the market-clearing engine 
at the core of our flagship product, the Advanced Sourcing 
Application Platform (ASAP). 
 Expressive commerce has two sides: expressive 
biddingTM and expressive allocation evaluation (also called 
expressive bid takingTM) (Sandholm and Suri 2001). 

Expressive Bidding 
With expressive bidding, the suppliers can express their 
offers creatively, precisely, and conveniently using 
expressive and compact statements that are natural in the 
suppliers’ business.  Our expressive bidding takes on 
several forms.   ASAP supports the following forms of 
expressive bidding, among others, all in the same event. 
• Bidding on an arbitrary number of self-constructed 

packages of items (rather than being restricted to 
bidding on predetermined lots as in basic reverse 
auctions).  The packages can be expressed in more 
flexible and more usable forms than what is supported 
in vanilla combinatorial auctions.  

• Rich forms of discount schedules.  (Simpler forms of 
discount schedules have already been addressed in the 
literature (Sandholm and Suri 2001a, Sandholm and 
Suri 2002, Hohner et al. 2003).) 

• Conditional discount offers.  The trigger conditions and 
the effects can be specified in highly flexible ways. 

• A broad variety of side constraints - such as capacity 
constraints (Sandholm and Suri 2001a). 

• Multi-attribute bidding (Sandholm and Suri 2001a).  
This allows the buyer to leave the item specification 
partially open, so the suppliers can pick values for the 
item attributes - such as material, color, and delivery 
date - in a way that matches their production 
efficiencies.  This is one way in which the suppliers 
can also express alternate items. 

• Free-form expression of alternates.  This fosters 
unconstrained creativity by the suppliers. 

• Expression of cost drivers.  In many of our events, the 
buyer collects tens or hundreds of cost drivers from 
the suppliers. 

All of these expressive bidding features of ASAP have 
been extensively used by CombineNet’s customers.  ASAP 
supports bidding through web-based interfaces and through 
spreadsheets.  In some cases, catalog prices from databases 
have also been used.   
 CombineNet’s expressive bidding is flexible in the sense 
that different suppliers can bid in different ways, using 
different offer constructs.  In fact, some suppliers may not 
be sophisticated enough to bid expressively at all, yet they 
can participate in the same sourcing events using 
traditional bidding constructs in the same system.  This 
paves a smooth road for adoption, which does not assume 
sudden process changes at the participating organizations. 
Benefits of Expressive Bidding. The main benefit of 
expressive bidding is that it leads to a Pareto improvement 
in the allocation.  In business terms, it creates a win-win 
between the buyer and the suppliers.  There are several 
reasons for this. 
 First, because the suppliers and the buyer can express 
their preferences completely (and easily), the market 
mechanism can make better (economically more efficient 
and less wasteful) allocation decisions, which translates to 
higher societal welfare.  In other words, the methods yields 
better matching of supply and demand because they are 
expressed in more detail.  The savings do not come from 
lowering supplier margins, but from reducing economic 
inefficiency.  With expressive bidding, the suppliers can 
offer specifically what they are good at, and at lower prices 
because they end up supplying in a way that is economical 
for them.  (They can consider factors such as production 
costs and capacities, raw material inventories, market 
conditions, competitive pressures, and strategic initiatives.)  
This creates a win-win solution between the suppliers and 
the buyer.  For example, in the sourcing of transportation 
services, a substantial increase in economic efficiency 
comes from bundling multiple deliveries in one route 
(back-haul deliveries and multi-leg routes).  This reduces 
empty driving, leading to lower transportation costs and 
yielding environmental benefits as well: lower fuel 
consumption, less driver time, less frequent need to replace 
equipment, and less pollution. 
 Second, suppliers avoid exposure risks.  In traditional 
inexpressive markets, the suppliers face exposure problems 
when bidding.  That makes bidding difficult.  To illustrate 
this point, consider a simple auction of two trucking tasks: 
the first from Pittsburgh to Los Angeles, and the second 
from Los Angeles to Pittsburgh.  If a carrier wins one of 
the tasks, he has to factor in the cost of driving the other 
direction empty.  Say that his cost for the task then is $1.60 
per mile.  On the other hand, if he gets both tasks, he does 
not have to drive empty, and his cost is $1.20 per mile.  
When bidding for the first task in an inexpressive auction, 
it is impossible to say where in the $1.20 - $1.60 range he 
should bid, because his cost for the first task depends on 
whether he gets the second task, which in turns depends on 



how other carriers will bid.  Any bid below $1.60 exposes 
the carrier to a loss in case he cannot profitably win the 
second task.  Similarly, bidding above $1.20 may cause 
him to lose the deal on the first task although it would be 
profitable to take on that task in case he wins the second 
task.  In an expressive auction, the buyer can price each of 
the tasks separately, and price the package of them 
together, so there is no exposure problem.  (For example, 
he can bid $1.60 per mile for the first task, $1.60 per mile 
for the second task, and $1.20 per mile for the package of 
both tasks.  Of course, he can also include a profit margin.)  
Therefore bidding is easier: the bidder does not have to 
speculate what other suppliers will bid in the later auctions.  
Also, the tasks get allocated optimally because no bidder 
gets stuck with an undesirable bundle, or misses the 
opportunity to win when he is the most efficient supplier.  
Furthermore, when there is an exposure problem, the 
suppliers hedge against it by higher prices.  Removal of the 
bidders’ exposure problems thus also lowers the buyer’s 
procurement cost. 
 Third, by expressive bidding with side constraints (such 
as capacity constraints), each supplier can bid on all 
bundles of interest without being exposed to winning so 
much that handling the business will be unprofitable or 
even infeasible.  This again makes bidding easier because – 
unlike in inexpressive markets – the supplier does not have 
to guess which packages to commit his capacity to.  (In an 
inexpressive market, making that guess requires 
counterspeculating what the other suppliers are going to 
bid, because that determines the prices at which this 
supplier can win different alternative packages.)  This also 
leads to Pareto improvements in the allocation compared to 
inexpressive markets because in those markets each bidder 
needs to make guesses as to what parts of the business he 
should bid on, and those parts might not be the parts for 
which he really is the most efficient supplier.  
Expressive bidding allows more straightforward 
participation in markets because the strategic 
counterspeculation issues that are prevalent in non-
combinatorial markets are removed, as discussed above.  
This leads to wider access of the benefits of ecommerce 
because less experienced market participants are raised to 
an equal playing field with experts.  This yields an increase 
in the number of market participants, which itself leads to 
further economic efficiency and savings in sourcing costs.  
Broader access also stems from the buyer not lotting the 
items and thus facilitating competition from small 
suppliers as well. 
 Fourth, in basic reverse auctions, the buyer has to pre-
bundle items into lots, but he cannot construct the optimal 
lotting because it depends on the suppliers' preferences.  
With expressive commerce, items do not have to be pre-
bundled.  Instead, the market determines the optimal 
lotting (specifically, the optimizer determines the optimal 
allocation based on the expressive bids and the expressions 
from the buyer).  This way, the economically most 
efficient bundling is reached, weeks are not wasted on pre-
bundling, and suppliers that are interested in different 

bundles compete.  As a side effect, small suppliers' bids 
together end up competing with large suppliers. 
 Fifth, expressive bidding fosters creativity and 
innovation by the suppliers.  This aspect is highly prized 
by both the suppliers and buyers. 
 Overall, expressive bidding yields both lower prices and 
better supplier relationships.  In addition to the buyers (our 
customers), also suppliers are providing very positive 
feedback on the approach.  They especially like 1) that 
they also benefit (unlike in traditional reverse auctions 
where their profit margins get squeezed), 2) that they can 
express their production efficiencies, and 3) that they can 
express differentiation and creative offers.  In fact, 
suppliers like expressive commerce so much that they 
agree to participate in expressive commerce even in events 
that they boycotted when basic reverse auctions had been 
attempted.  Furthermore, perhaps the best indication of 
supplier satisfaction is the fact the suppliers are 
recommending the use of CombineNet to buyers. 
 The benefits of expressiveness can be further enhanced 
by multiple buyers conducting their sourcing in the same 
event.  This provides an opportunity for the bidders to 
bundle across the demands of the buyers, and also 
mitigates the exposure risks inherent in participating in 
separate events.  As an example, in Spring 2005 
CombineNet conducted an event where P&G and its two 
largest customers, Walmart and Target, jointly sourced 
their North America-wide truckload transportation services 
for the following year.  This enabled the carriers to 
construct beneficial backhaul deliveries and multi-leg 
routes by packaging trucking lanes across the demand of 
the three buyers.  (This was a huge event.  P&G’s volume 
alone exceeded $885 million.) 

Expressive Allocation Evaluation 
The second half of expressive commerce is expressive 
allocation evaluation, where the buyer expresses 
preferences over allocations using a rich, precise, and 
compact language (and which is natural in the buyer’s 
business).  It can be used to express legal constraints, 
business rules, prior contractual obligations, and strategic 
considerations.  
 In our experience, different types of side constraints are 
a powerful form of expressiveness for this purpose.  For 
example, the buyer can state: “I don't want more than 200 
winners (in order to avoid overhead costs),” “I don't want 
any one supplier to win more than 15% (in order to keep 
the supply chain competitive for the long term),” “I want 
minority suppliers to win at least 10% (because that is the 
law),” “Carrier X has to win at least $3 million (because I 
have already agreed to that),” etc.  ASAP supports 
hundreds of types of side constraints. 
 ASAP also has a rich language for the buyer to express 
how item attributes (such as delivery date or transshipment 
specifications) and supplier attributes (such as reputation) 
are to be taken into account when determining the 
allocation of business (Sandholm and Suri 2001b).   



 A professional buyer - with potentially no background in 
optimization - can set up a scenario in ASAP by adding 
constraints and preferences through an easy-to-use web-
based interface.  To set up each such expression, the buyer 
first chooses the template expression (e.g., “I don’t want 
more than a certain number of winners,” or  “I want to 
favor incumbent suppliers by some amount”) from a set of 
expressions that have been deemed potentially important 
for the event in question.  He then selects the scope to 
which that expression should apply: everywhere, or to a 
limited set of items, bid rounds, product groups, products, 
sites, and business groups.  Finally, he selects the exact 
parameter(s) of the constraint, e.g., exactly how many 
winners are allowed.  Constraints and preferences can also 
be uploaded from business rule databases.  Once the buyer 
has defined the scenario consisting of side constraints and 
preferences, he calls the optimizer in ASAP to find the best 
allocation of business to suppliers under that scenario.   
 ASAP takes these high-level supply and demand 
expressions, automatically converts them into an 
optimization model, and uses sophisticated tree search 
algorithms to solve the model.  CombineNet has faced 
scenarios with over 2.6 million bids (on 160,000 items, 
multiple units of each) and over 300,000 side constraints, 
and solved them to optimality. 
Benefits of Expressive Allocation Evaluation 
Through side constraints and preference expressions, the 
buyer can include business rules, legal constraints, 
logistical constraints, and other operational considerations 
to be taken into account when determining the allocation.  
This makes the auction's allocation implementable in the 
real world: the plan and execution are aligned because the 
execution considerations are captured in the planning.  
 Second, the buyer can include prior (e.g., manually 
negotiated) contractual commitments into the optimization.  
This begets a sound hybrid between manual and electronic 
negotiation.  For example, he may have the obligation that 
a certain supplier has to be allocated at least 80 truckloads.  
He can specify this as a side constraint in ASAP, and 
ASAP will decide which 80 truckloads (or more) are the 
best ones to allocate to that supplier in light of all other 
offers, side constraints, and preferences.  This again makes 
the allocation implementable.  (A poor man’s way of 
accomplishing that would be to manually earmark some of 
the business to the prior contracts.  Naturally, allowing the 
system to do that earmarking with all the pertinent 
information in hand yields better allocations.) 
 Third, the buyer obtains a quantitative understanding of 
the tradeoffs in his supply chain by conducting what-if 
scenario navigation, that is, by changing side constraints 
and preferences and reoptimizing, the buyer can explore 
the tradeoffs in an objective manner.    For example, he 
may add the side constraint that the supply base be 
rationalized from 200 to 190.  The resulting increase in 
procurement cost then gives the buyer an understanding of 
the tradeoff between cost and practical implementability.  
As another example, the buyer might ask: If I wanted my 
average supplier delivery-on-time rating to increase to 

99%, how much would that cost?  As a third example, the 
buyer might see what would happen if he allowed a 
supplier to win up to 20% of the business instead of only 
15%.  The system will tell the buyer how much the 
procurement cost would decrease.  The buyer can then 
decide whether the savings outweighs the added long-term 
strategic risks such as vulnerability to that supplier’s 
default and the long-term financial downside of allowing 
one supplier to become dominant.  In ASAP, the buyer can 
change/add/delete any number of side constraints and 
preferences in between optimizations. 
 Fourth, quantitative understanding of the tradeoffs also 
fosters stakeholder alignment on the procurement team, 
because the team members with different preferences can 
discuss based on facts rather than opinions, philosophies, 
and guesswork. 

Time to contract in expressive commerce 
The time to contract is reduced from several months to 
weeks because no manual lotting is required, all suppliers 
can submit their offers in parallel, what-if scenarios can be 
rapidly generated and analyzed, and the allocation is 
implementable as is.  This causes the cost savings to start 
to accrue earlier, and decreases the human hours invested. 

Expressive Commerce as a Generalization of 
Combinatorial Auctions 
A relatively simple early form of expressive commerce 
was a combinatorial reverse auction (Sandholm et al. 
2002), where the only form of expressiveness that the 
suppliers have is package bidding, and the buyer has no 
expressiveness.  A predecessor of that was a combinatorial 
auction where the bidders are the buyers (and there is only 
one unit of each item and no side constraints).  
Combinatorial auctions (Rassenti et al. 1982, Sandholm 
1993, Sandholm 2002b, Ledyard et al. 1997, Rothkopf et 
al. 1998, Kwasnica et al. 2005, Sandholm et al. 2005, 
Sandholm and Suri 2003, Hoos and Boutilier 2000, 
Boutilier 2002, and deVries 2003), enable bidders to 
express complementarity among items (the value of a 
package being more than the sum of its parts) via package 
bids.  Substitutability (the value of a package being less 
than the sum of its parts) can also be expressed in some 
combinatorial auctions, usually using different languages 
for specifying mutual exclusivity between bids (Sandholm 
2002a, Fujishima et al. 1999, Sandholm 2002b, Nisan 
2000, and Hoos and Boutilier 2001).   
 Expressiveness leads to more economical allocations of 
the items because bidders do not get stuck with partial 
bundles that are of low value to them.  This has been 
demonstrated, for example, in auctions for bandwidth 
(McMillan 1994 and McAfee and McMillan 1996), 
transportation services (Sandholm 1993, Sandholm 1996, 
Sandholm 1991, and Caplice and Sheffi 2003), pollution 
rights, airport landing slots (Rassenti et al. 1982), and 
carrier-of-last-resort responsibilities for universal services 
(Kelly and Steinberg 2000).   



 However, package bids and exclusivity constraints are 
too impoverished a language for real-world sourcing.  
While any mapping from bundles to real numbers can be 
expressed in that language in principle, the real-world 
preferences in sourcing cannot be easily, naturally, and 
concisely expressed in it.  Starting in 1997, we tackled this 
challenge and generalized the approach to expressive 
commerce, with the language constructs discussed above.  
Similar approaches have recently been adopted by others, 
but only for drastically less complex (orders of magnitude 
smaller and less expressive) events (Hohner et al. 2003, 
Metty et al. 2005). 

Tree Search to Enable Expressive Commerce 
A significant challenge in making expressive commerce a 
reality is that the expressiveness makes the problem of 
allocating the business across the suppliers an extremely 
complex combinatorial optimization problem.  
Specifically, the clearing problem (aka winner 
determination problem) is that of deciding which bids to 
accept and reject (and to what extent in the case of partially 
acceptable bids) so as to minimize sourcing cost (adjusted 
for preferences) subject to satisfying all the demand and all 
side constraints.  Even in the vanilla combinatorial reverse 
auction where the only form of bidding is package bidding, 
and no side constraints or preferences are allowed, the 
clearing problem is NP-complete and inapproximable in 
the worst case in polynomial time (Sandholm et al. 2002).  
Expressive commerce is a much richer problem; thus the 
NP-hardness and inapproximability carry over.  (Müller et 
al. (2006) review the worst-case complexity of the clearing 
problem of different variants of combinatorial auctions.)  
Thus sophisticated techniques are required.   
 In fact, prior to ASAP, no technology was capable of 
solving clearing problems of the scale and expressiveness 
that our customers wanted to be able to support; for 
example, Hohner et al. (2003) found integer programming 
techniques to be effective for problems only as large as 500 
items and 5,000 bids.  In 2001, P&G gave us a trial 
instance of trucking services sourcing that took a 
competing optimization product 30 minutes to solve.  
ASAP solved it optimally in 9 seconds.  While that was 
already a decisive speed difference, since that time our 
technology development has yielded a further speed 
improvement of 2-3 orders of magnitude. 
 There is significant structure in the expressive 
commerce problem instances, and it is paramount that the 
optimizer be able to take advantage of the structure.  
Mixed integer programming (MIP) techniques for tree 
search are quite good at this, and ASAP takes advantage of 
them.  However, the techniques embodied in the leading 
general-purpose MIP solvers are not sufficient for the 
clearing problem. 
 ASAP uses sophisticated tree search to find the optimal 
allocation.  Given that the problem is NP-complete, in the 
worst-case the run-time is super-polynomial in the size of 
the input (unless P=NP).  However, in real-world sourcing 

optimization the algorithms run extremely fast: the median 
run-time is less than a second and the average is 20 
seconds, with some instances taking days.  The algorithms 
are also anytime algorithms: they provide better and better 
solutions during the search process.   
 I began the algorithm development in 1997, and 
CombineNet now has 16 people working on the 
algorithms, half of them full time.  The team has tested 
hundreds of techniques (some from the AI and operations 
research literature and some invented at CombineNet) to 
see which ones enhance speed on expressive commerce 
clearing problems.  Some of the techniques are specific to 
market clearing, while others apply to combinatorial 
optimization more broadly.  We published the first 
generations of our search algorithms (Sandholm 2002a, 
Sandholm and Suri 2003, and Sandholm et al. 2005).  The 
new ideas in these algorithms included  
• different formulations of the basic combinatorial auction 

clearing problem (branching on items (Sandholm 
2002a), branching on bids (Sandholm and Suri 2003 
and Sandholm et al. 2005), and multi-variable 
branching (Gilpin and Sandholm 2006)),  

• upper and lower bounding across components in 
dynamically detected decompositions (Sandholm and 
Suri 2003 and Sandholm et al. 2005),  

• sophisticated strategies for branch question selection 
(Sandholm 2006, Sandholm 2002a, Sandholm and 
Suri 2003, and Sandholm et al. 2005),  

• dynamically selecting the branch selection strategy at 
each search node (Sandholm 2006 and Sandholm et al. 
2005),  

• the information-theoretic approach to branching (Gilpin 
and Sandholm 2006),  

• sophisticated lookahead techniques (Gilpin and 
Sandholm 2006 and Sandholm 2006),  

• solution seeding (Sandholm 2006),  
• primal heuristics (Sandholm 2006 and Sandholm et al. 

2005),  
• identifying and solving tractable cases at nodes 

(Sandholm and Suri 2003, Sandholm et al. 2005, 
Sandholm 2006, and Conitzer et al. 2004),  

• techniques for exploiting part of the remaining problem 
falling into a tractable class (Sandholm 2006 and 
Sandholm and Suri 2003),  

• domain-specific preprocessing techniques (Sandholm 
2002a),  

• fast data structures (Sandholm 2002a, Sandholm and 
Suri 2003, and Sandholm et al. 2005),  

• methods for handling reserve prices (Sandholm 2002a 
and Sandholm and Suri 2003), and  

• incremental winner determination and quote 
computation techniques (Sandholm 2002a).   

Sandholm (2006) provides an overview of the techniques. 
 We have also invented a host of techniques in the search 
algorithms that we have decided to keep proprietary, at 
least for now.  They include different formulations of the 
clearing problem, new branching strategies, custom cutting 
plane families, cutting plane generation and selection 



techniques, and machine learning methods for predicting 
what techniques will perform well on the instance at hand 
(for use in dynamically selecting a technique), etc. 
 While the literature on combinatorial auctions has 
mainly focused on a variant where the only form of 
expressiveness is package bidding (sometimes 
supplemented with mutual exclusion constraints between 
bids), in our experience with sourcing problems the 
complexity is dominated by rich side constraints.  Thus we 
have invested significant effort into developing techniques 
that deal with side constraints efficiently.  CombineNet has 
faced several hundred different types of real-world side 
constraints.  ASAP supports all of them.  We abstracted 
them into eight classes from an optimization perspective so 
the speed improvements that we build into the solver for a 
type of side constraint get leveraged across all side 
constraint types within the class. 
 The resulting optimal search algorithms are often 10,000 
times faster than others’.  The main reason is that 
CombineNet specializes on a subclass of MIP problems 
and has 32,000 real-world instances on which to improve 
its algorithms.  The speed has allowed our customers to 
handle drastically larger and more expressive sourcing 
events.  The events have sometimes had over 2.6 million 
bids (on 160,000 items, multiple units of each) and over 
300,000 side constraints. 
 The state-of-the-art general-purpose MIP solvers are 
inadequate also due to numeric instability.  They err on 
feasibility, optimality, or both, on about 4% of the sourcing 
instances.  We have invested significant effort on stability, 
yielding techniques that are significantly more robust. 

Hosted Optimization For Sourcing 
Professionals 

CombineNet’s backend clearing engine, ClearBox, is 
industry-independent, and the interface to it is through our 
Combinatorial Exchange Description Language (CEDL), 
an XML-based language that allows ClearBox to be 
applied to a wide variety of applications by CombineNet 
and its partners. See Figure 1. 

 
Figure 1. Advanced Sourcing Application Platform 
(ASAP).  The platform is hosted on a server farm with 
multiple instantiations of each component.  ASAP also 
includes modules for clearing management, server farm 
management, secure databases, etc. (not shown). 
 

 Intuitive web-based interfaces designed for the buyer 
and for the suppliers bring the power of optimization to 
users with expertise in sourcing, not in optimization.  The 
users express their preferences through interfaces that use 
sourcing terminology.  The interfaces support simple click-
through interaction rather than requiring the user to know 
any syntax.  The approach allows sourcing professionals to 
do what they are best at (incorporating sourcing knowledge 
such as strategic and operational considerations) and the 
optimizer to do what it is best at (sifting through huge 
numbers of allocations to pick the best one). 
 For every event, separate front-ends are instantiated that 
support only those bidding and allocation evaluation 
features that are appropriate for that event.  This makes the 
user interfaces easier and more natural to use by sourcing 
professionals.  User training typically takes a few hours.  
New front ends typically take a few days or weeks to go 
from project specification to deployment. 
 The user interfaces feed CEDL into ClearBox, and 
ClearBox then automatically formulates the optimization 
problem for the search algorithms.  This contrasts with the 
traditional mode of using optimization, where a consultant 
with optimization expertise builds the model.  The 
automated approach is drastically faster (seconds rather 
than months) and avoids errors.   
 Our web-based products and application service 
provider (ASP) business model make optimization 
available on demand.  No client-side software installation 
is necessary.  This also avoids hardware investments by 
customers.  We buy the hardware and leverage it across 
customers, each with temporary load.  (On many instances 
the search trees exceed 2 gigabytes of RAM, rendering 32-
bit architectures unusable and requiring a 64-bit 
architecture.)  The ASP model allows us to quickly and 
transparently tune our algorithms, and to provide 
enhancements to all customers simultaneously.  We also 
offer the technology through consulting firms. 

Market Design 
While we attribute the bulk of the savings to the 
application of optimization to sourcing, another important 
factor is market design: what forms of expressiveness are 
allowed, what forms of feedback is given to bidders during 
the event, etc.  ASAP supports sealed bid events (winners 
are determined at the end), events that have a (usually 
small) number of rounds (winners are determined and 
feedback provided at the end of each round), and “live” 
events (winners are determined and feedback provided 
every time any participant expresses anything new). 

Scenario Navigation 
The buyer is typically not an individual but an organization 
of several individuals with different preferences over 
allocations.  Finance people want low sourcing cost, plant 
managers want small numbers of suppliers, marketing 



people want a high average carrier-delivery-on-time rating, 
etc.  ASAP enables the organization to better understand 
the available tradeoffs.  Once the bids have been collected, 
the buyer conducts scenario navigation.  At each step of 
that process, the buyer specifies a set of side constraints 
and preferences (these define the scenario), and runs the 
optimizer to find an optimal allocation for that scenario.  
This way the buyer obtains a quantitative understanding of 
how different side constraints and preferences affect the 
sourcing cost and all other aspects of the allocation. 
 CombineNet has found that a buying organization will 
navigate an average of 100 scenarios per sourcing event.  
(The maximum seen to date had 1107.)  To navigate such 
large numbers of scenarios, fast clearing is paramount. 
 Rapid clearing allows scenario navigation to be driven 
by the actual data (offers).  In contrast, most prior 
approaches required the scenario (side constraints and 
preferences, if any) to be defined prior to analysis; there 
were insufficient time and expert modeling resources to try 
even a small number of alternative scenarios.  Data-driven 
approaches are clearly superior because the actual offers 
provide accurate costs for the various alternative scenarios. 
 The next generation of ASAP will also support  
automated scenario navigation.  Compared to basic 
scenario navigation, discussed above, it enables a more 
systematic and less wasteful navigation of the scenario 
space.  The system queries the sourcing team about their 
preferences, using, for example, tradeoff queries (“how 
much hassle would an extra supplier be in dollars? - give 
me an upper or lower bound”) and comparison queries 
(“which of these two allocations do you prefer?”).  The 
system decides the queries to pose in a data-directed way 
so as to only ask the team to refine its preferences on an 
as-needed basis. (This is desirable because internal 
negotiation in the team is costly in terms of time and 
goodwill.)  Specifically, based on all the offers that the 
suppliers have submitted, and all answers to previous 
queries, the system strives to minimize maximum regret.  
At each iteration of automated scenario navigation, the 
system finds a robust solution that minimizes maximum 
regret (the regret is due to the fact that the sourcing team 
has not fully specified its preferences, so for some 
preferences that are still consistent with the answers so far, 
the system’s recommended allocation is not optimal).  As 
the other step of each iteration, the system poses a query to 
refine the team’s preferences in order to be able to reduce 
the maximum regret further.  The maximum regret also 
provides a quantitative measure of when further 
negotiation within the team is no longer worth it, and the 
team should implement the current robust allocation.  
CombineNet pioneered automated scenario navigation, 
including its different design dimensions and algorithms 
(Boutilier et al. 2004).  The optimization problem of 
finding the most robust allocation is even more complex 
than the clearing problem discussed in most of this paper.  
We have developed a prototype of automated scenario 
navigation, and will solicit customer feedback soon. 

Impact 
The new sourcing paradigm and technology has already 
had significant impact.  The technology development 
began in 1997 and CombineNet was founded in 2000.  
Between December 2001 and now (March 2006), 
CombineNet has used ASAP to host around 250 highly 
combinatorial procurement events, totaling a spend of $19 
billion.  The 60 buyer companies were mostly among the 
Global 1000, and the individual events ranged from $2 
million to $1.6 billion, representing the most complex 
combinatorial auctions ever conducted.  They spanned a 
broad range of categories such as transportation (truckload, 
less-than-truckload, ocean freight, dray, bulk, intermodal, 
small parcel, air freight, train, and fleet), chemicals, 
packaging, ingredients, advertising, displays, printed 
materials, security cameras, computers, services (e.g., pre-
press, temp labor, shuttling/towing, warehousing, legal), 
office supplies, and industrial materials/parts (e.g., bulk 
electric, fasteners, filters, leased equipment, MRO, 
pipes/valves/fittings, pumps, safety supplies, and steel).   
 On the $19 billion spend, CombineNet delivered savings 
of $2.1 billion to its customers in lowered procurement 
costs.  The savings were measured compared to the prices 
that the buyer paid for the same items the previous time the 
buyer sourced them (usually 12 months earlier).  The 
savings figure is remarkable especially taking into account 
that during the same time period, the prices in the largest 
segment, transportation, generally increased by 6-9%. 
 The savings number does not include the savings 
obtained by suppliers, which are harder to measure because 
the suppliers’ true cost structures are proprietary.  
However, there is strong evidence that the suppliers also 
benefited, so a win-win was indeed achieved: 1) suppliers 
that have participated in expressive commerce events are 
recommending the use of that approach to other buyers, 2) 
on numerous occasions, suppliers that boycotted reverse 
auctions came back to the “negotiation table” once 
expressive commerce was introduced, and 3) suppliers are 
giving very positive feedback about their ability to express 
differentiation and provide creative alternatives.   
 The savings number also does not include savings that 
stem from reduced effort and compression of the event 
timeline from months to weeks or even days. 
 The cost savings were achieved while at the same time 
achieving the other advantages of expressive commerce 
discussed above, such as better supplier relationships (and 
better participation in the events), redesign of the supply 
chain, implementable solutions that satisfy operational 
considerations, and solutions that strike the tradeoffs in a 
data-driven way and align the stakeholders in the buying 
organization.  See also Sandholm et al. (2006) and case 
studies at www.CombineNet.com.  
 Today CombineNet employs 105 full time (half of them 
in engineering) and a dozen academics as advisors.  The 
company is headquartered in Pittsburgh, USA, with 
European headquarters in Berlin.  It also has 
representatives in Brussels, California, China, and Taiwan. 
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