
Algorithms for Rationalizability and CURB Sets

Michael Benisch, George Davis and Tuomas Sandholm
School of Computer Science
Carnegie Mellon University

{mbenisch, gbd, sandholm}@cs.cmu.edu

ABSTRACT
Significant work has been done on computational as-
pects of solving games under various solution con-
cepts, such as Nash equilibrium, subgame perfect
Nash equilibrium, correlated equilibrium, and (iter-
ated) dominance. However, the fundamental concepts
of rationalizability and CURB (Closed Under Ratio-
nal Behavior sets have not, to our knowledge, been
studied from a computational perspective. First, for
rationalizability we describe an LP-based polynomial
algorithm that finds all strategies that are rationalizable
against a mixture over a given set of opponent strate-
gies. Then, we describe a series of increasingly sophis-
ticated polynomial algorithms for finding all minimal
CURB sets, one minimal CURB set, and the smallest
minimal CURB set. Finally, we give theoretical results
regarding the relationships between CURB sets and
Nash equilibria, showing that finding a Nash equilib-
rium can be exponential only in the size of the smallest
CURB set. We show that this can lead to an arbitrar-
ily large reduction in the complexity of finding a Nash
equilibrium. On the downside, we also show that the
smallest CURB set can be arbitrarily larger than the
supports of the enclosed Nash equilibrium.

1. INTRODUCTION
For multi-agent systems, game-theoretic solution concepts help

agents choose strategies, help modelers predict system states, and
help mechanism designers guarantee properties of the games they
create. Significant attention has been given to algorithms for find-
ing equilibria according to the solution concepts of subgame perfect
Nash equilibrium (e.g., minimax search andα-β-pruning), Nash
equilibrium [1964 , 2004 , 2005], correlated equilibrium [1989],
and more recently, iterative dominance [1988 , 2005a] and related
concepts [2005b].

Nash equilibrium (under which no agent has incentive to de-
viate from its mixed strategy given that the other agents do not
deviate from theirs) remains the most important point-valued so-

To appear in the Proceedings of the American Association for Artificial
Intelligence (AAAI), July 2006, Boston.

lution concept. However, it has been recently shown that find-
ing a Nash equilibrium, even in two player normal-form games,
is PPAD-complete [2005], suggesting that no polynomial-time al-
gorithms exist for the problem.

However, there are other fundamental solution concepts that
have certain known advantages over Nash equilibrium, and—as
we will show—solutions according to those concepts can be found
in polynomial time even in the worst case. Specifically, we will
study the concept ofrationalizability and the concept of themini-
mal Closed Under Rational Behavior (CURB) set[1991] for two-
person normal-form games. A game can have multiple Nash equi-
libria, but each of those is a point, i.e., a strategy profile. In contrast,
in these concepts a solution is asetof strategies for each player.

The notion of rationalizability was introduced in [1984]
and [1984]. It has by now been used as a robust solution concept
in game theory, and in applications such as auctions (e.g., [2003
] [2005] [2001]). Its main insight is that rationality restricts play-
ers from ever playing strategies that are not best responses given
the beliefs they hold about their opponents; strategies that are not
best responses to any belief about opposing strategies are notratio-
nalizable. Formally, a strategy is rationalizable if and only if there
exists some mixture over opponent strategies for which it is a best
response.

Rationalizability is defined from one agent’s perspective. CURB
sets extend the same idea to multiagent settings. In short, a CURB
set consists of a set of pure strategies for each agent so that all of
the agents rationalizable strategies are included, given that the other
agents only mix over their rationalizable pure strategies. In other
words, a CURB set,S, is defined as a set of strategies that contains
the best responses to any mixture over itself: ifS is CURB and
players believe that no strategy outside ofS will be played with
positive probability by their opponents, then such strategies will
indeed not be played by rational players. Formally a CURB set is
defined by the following operators.

• βi(m): a function that returns playeri’s best responses to
the mixed strategym.

• M (S): a function that returns all possible mixtures with
supports inS.

• βi(S): a function that returns playeri’s best responses to
any mixture with supports inS,

βi(S) =
[

m∈M (S)

βi(m)

• β(S): the Cartesian product of the setsβi(S) over all play-
ers,i.

β(S) =
Y

i

βi(S)

Under this notation, a set,S, is CURB if β(S) ⊂ S. The entire
game is trivially CURB by this definition. [1991] distinguish a
minimalCURB set as a CURB set that does not contain any CURB
subsets.

The minimal CURB set solution concept has been motivated
from several perspectives, including the following:

• As is well known, nonstrict mixed Nash equilibria can be
highly unstable because a player is indifferent between (some
of) his pure strategies. Strict Nash equilibria would be sta-
ble but many games lack such equilibria. Minimal CURB
sets are the “nearest set-valued generalization of strict Nash
equilibria” (it is the smallest set of strategies that includes
all ways of choosing among the indifferences) and a solution
according to this concept is guaranteed to exist [1991]1.

• Any CURB set can be viewed as a subspace of strate-
gies within which any best-response dynamic (even a best-
response dynamic of mixed strategies) will stay within.
CURB sets have thus been examined as a solution concept
that describes the strategy subspace where iteratively adapt-
ing agents will eventually settle (e.g., [1995]).

• More recently, Voorneveldet.al. have enumerated properties
of minimal CURB sets that illustrate the advantages of set-
based solution concepts over point-valued concepts such as
Nash equilibria [2005].

A fast technique for finding CURB sets in extensive form games
by utilizing their additional structure has been presented [2003].
However, the literature to date suggests that finding minimal CURB
sets has been prohibitively complex in normal form games (e.g.,
[2003 , 2005]). We present, to our knowledge, the first compu-
tational treatment of CURB sets in normal form games. We show
that the complexity of finding CURB sets is polynomial even in the
worst case.

The rest of the paper is organized as follows. We present and
analyze a family of algorithms which compute, for a two player
normal form game, in time polynomial in the total number of pure
strategies, the set of all rationalizable strategies, all minimal CURB
sets, a single minimal CURB set, and the smallest minimal CURB
set. Finally, we discuss additional applications of our results, in-
cluding the potential of finding minimal CURB sets to bound the
computation involved in finding Nash equilibria.

2. FINDING RATIONALIZABLE STRATE-
GIES

Finding strategies which are rationalizable under specific beliefs
(i.e. against a mixture over a given set of opponent strategies) is
a problem of interest in its own right, and plays a central role in
our computation of CURB sets. In this section, we present a poly-
nomial time procedure,all rationalizable, which accom-
plishes this task.

In 2-player games, iterative removal of strategies strictly dom-
inated by (potentially mixed) strategies finds all rationalizable
strategies. However, it cannot distinguish between strategies that
are only globally rationalizable and strategies rationalizable under
specific beliefs. CURB sets are defined with regard to internally
consistent beliefs. Therefore, iterated dominance does not support
1A similar set-valued concept is the Set-Nash of Lavi and
Nisan [2005], which has been examined for mechanism design
but not from an algorithmic perspective. That concept differs from
CURB sets in that only strategies which are rationalizable against
pureopponent strategies within the set are included.

algorithms for CURB sets. The technique presented in this section
does (ourall rationalizable function conditions on given
beliefs).

The algorithm below is for the row player. The column player’s
algorithm is symmetric. The parameters to the procedure are a set
of row player strategies to consider,Sr, a set of column player
strategies they may be played against,Sc, and the row-player’s util-
ity function,ur. For each row strategy,sr ∈ Sr, a linear feasibility
problem (LFP) (i.e., a linear program with no objective) is con-
structed to find a mixture,psc , over column player strategies such
that sr is the row player’s best response. The constraints of the
LFP ensure that the mixture is valid (sums to1) and that the row
player’s utility by playingsr againstpsc is greater than or equal to
that of any other strategy inSr. If and only if the LFP has a feasible
solution,sr is added to the set of rationalizable strategies.

procedureall rationalizable(Sr, Sc, ur)

S∗

r ← ∅
for each row strategy,sr ∈ Sr do

let rationalizable← ⊤ iff there exists a feasible solu-
tion to the following linear feasibility problem:
find psc such that X

sc

psc = 1 (1)�
∀s′r ∈ Sr/{sr}

� X
sc

pscur(sr, sc) ≥X
sc

pscur(s
′

r, sc) (2)

if rationalizable then S∗

r ← S∗

r ∪ sr

return S∗

r

The computational complexity of the procedures described in
this paper depend on the total number of strategies in the game,
which we will denote byn, and the complexity of solving a linear
feasibility problem where the number of variables and the number
of constraints are bounded byn, which we will denote asLFP(n).
Linear feasibility problems can be solved in low-order polynomial
time even in the worst case. They are no slower to solve than lin-
ear programs (the fastest known algorithms for LFPs are faster, in
the worst case, than the fastest known linear programming algo-
rithms [2006]) because linear program solving involves solving a
linear feasibility program as the first phase to find a feasible solu-
tion, after which the linear program solver needs to still improve
that solution to reach an optimum. (In the experiments, we solve
the LFP using the simplex algorithm, which has worst-case expo-
nential complexity but is known to outperform polynomial linear
programming algorithms in practice.)

PROP. 1. all rationalizable returns all rationalizable
strategies, and nothing else. It isO(n)× LFP(n)2.

3. FINDING CURB SETS
We now turn our attention to the problem of finding CURB sets.

The procedure below finds a minimal set of strategies that both
1) contains a given seed strategy,sr, and 2) is CURB. (Note that
the returned set is not necessarily a minimal CURB set.) It alter-
nates between the players, calling theall rationalizable
procedure to identify strategies that have become rationalizable via
the addition of opponent strategies. If an iteration passes without
strategies being added, the algorithm has converged.
2We omit some proofs due to limited space.

procedure min containing CURB(sr, 〈Sr, Sc, u〉)

S∗

r ← {sr}, S∗

c ← ∅
converged← ⊥
while ¬converged do
converged← ⊤
for (p, o) ∈ [(c, r), (r, c)] do

S′

p ← all rationalizable(Sp \ S∗

p , S∗

o , up)
if S′

p 6= ∅ then
converged← ⊥
S∗

p ← S∗

p ∪ S′

p

return sub-game,G′ = 〈S∗

r , S∗

c , u〉

PROP. 2. min containing CURB is O(n2)× LFP(n).

THM . 1. Themin containing CURB algorithm iscorrect,
that is, the returned set,S∗, is a minimal set of strategies that both
1) contains the given seed strategy,sr, and 2) is CURB.

PROOF. We show thatS∗ is CURB by considering its state af-
termin containing CURB converges. The convergence of the
algorithm implies that no strategies outside ofS∗ are rationalizable
with respect toS∗. Therefore,β(S∗) ⊂ S∗, andS∗ is CURB.

To prove thatS∗ is the minimal containing CURB set ofsr (it
contains no CURB subsets that includesr), we will use induction
on the strategies added toS∗.

• Base Case:Initially S∗ contains onlysr andβc(sr). At this
point, S∗ is trivially the minimal containing CURB set of
sr because we cannot removesr and removing the column
player’s best response tosr breaks the CURB property.

• Inductive Step: Each time a new strategys∗ is added toS∗ it
is necessarily a best response to some mixture,m ∈M(S∗),
over the strategies already contained inS∗. Since strate-
gies are never removed fromS∗ during the execution of
min containing CURB, m will remain a valid mixture.
Therefore, no new strategys∗ can be removed fromS∗ with-
out breaking the CURB property.

We will now present three algorithms which use the above pro-
cedure to detect minimal CURB sets in a game. To facilitate under-
standing of these algorithms, we first present the following results
regarding CURB set structure.

THM . 2. If each of two intersecting strategy sets is CURB, then
their intersection is also CURB.

PROOF. Consider two CURB setsSA and SB with the non-
empty intersectionSI . For any mixture over strategies inSI be-
longing to (without loss of generality) the row player, there exists a
pure strategy which is column player’s best response,s∗c . Because
SA is CURB and also contains the row mixture,s∗c ∈ SA; likewise
s∗c ∈ SB . Therefores∗c is within their intersection,SI .

Since the intersection of two CURB sets must be CURB and con-
tained in both sets, we have the following.

COR. 1. Minimal CURB sets cannot overlap (i.e., share any
rows or columns).

COR. 2. Each row strategy belongs to at most one minimal
CURB set.

Finding All Minimal CURB Sets. The broadest query one can
make regarding the minimal CURB set structure of a game is to find
all minimal CURB sets. For one, this is useful in the adaptive agent
context, to identify regions of strategy space into which learning
agents may settle (e.g., [1995]). Theall MC procedure described
below answers this query.

To determine all of the minimal CURB sets, the
min containing CURB procedure can be executed with
each row strategy, in turn, as a seed. For the first seed, this call is
made with the parameter〈Sr, Sc, u〉 indicating the entire game.
However, the result above regarding CURB intersections shows
that each of the CURB sets returned bymin containing CURB
must contain the minimal containing CURB sets of each of its
members. Therefore, we can accelerate future calls by maintaining
a map between each strategy and the smallest CURB set in which
it has been discovered so far. We use the subgame restricted to
that strategy set as the parameter〈Sr, Sc, u〉 when that strategy is
used as the seed. Whenever such a call results in a smaller CURB
set, we eliminate the previous CURB set from consideration, as it
cannot be minimal. Once each strategy has been used as a seed,
all MC terminates and returns the CURB sets that have not been
eliminated.

From the corollary above, the fact thatall MC executes
min containing CURB on each row strategy, and the fact that
no superset CURB sets remain, we have the following.

PROP. 3. all MC finds all minimal CURB sets, and nothing
else. It isO(n3)× LFP(n).

Finding One Minimal CURB Set. Rather than finding all mini-
mal CURB sets in a game, it may be desirable to quickly find any
single minimal CURB set. To complete this query, we can use
the min containing CURB procedure with a random strategy
as the seed. Since the discovered CURB set might not be mini-
mal, we recur within it by choosing as a seed a contained strat-
egy that has not yet been used as a seed. We repeat this until
all strategies in the current set have been used as seeds, at which
point we terminate and return the remaining set. This constitutes
theone minimal CURB algorithm.

If the game has more than one CURB set,one MC will be faster
thanall MC because it will never leave the smallest CURB set
within which it ever chooses a seed. The exact speed ofone MC
depends on the first seed chosen. If it happens to be in a small
CURB set,one MC runs faster. In the worst case where the en-
tire game is the only CURB set,one MC executes all of the same
steps asall MC. Due to this fact, and the fact that the returned set
has been confirmed to be the minimal containing CURB set for all
strategies within it, we have the following.

PROP. 4. one MC returns a minimal CURB set, and isO(n3)×
LFP(n).

Finding the Smallest Minimal CURB Set. As a different type of
query, one may be interested in finding asmallestminimal CURB
set. This is important, for example, if the CURB set is used for
future computations (e.g., for Nash equilibrium finding as we will
discuss later in the paper) and the complexity of those future com-
putations increases with the size of the CURB set.

We find the smallest minimal CURB set using a pseudo-
parallelization ofall MC, wherein we expand a candidate set only
when it is one of the smallest currently available. First, we con-
struct a candidate set for each row strategy containing only that
strategy. We insert the sets into a priority queue where sets con-
taining the fewest strategies receive highest priority. We repeatedly

pop the smallest candidate set from the queue and add all the ra-
tionalizable strategies to that set usingall rationalizable.
If new strategies were added, the resulting set is inserted back into
the queue, and prioritized based on its new size. The algorithm ter-
minates when a candidate set is removed from the queue that fails
to admit any new rationalizable strategies. That set is returned,
and it is a smallest minimal CURB set. We call this algorithm
small MC.

The smallest CURB set in any game must be minimal, and all
other candidates in the queue are of size greater or equal to the
returned set. The complexity ofsmall MC is bounded by the total
number of strategies in the smallest CURB set, which we denote by
nSC. Since each call toall rationalizable must add at least
one strategy untilsmall MC terminates, we have the following.

PROP. 5. small MC returns a minimal CURB set that is a
smallest minimal CURB set in the game, and it isO(nSC n2) ×
LFP(n).

3.1 Experimental Results
We examined the runtime performance of our algorithms on

two game distributions provided by theGAMUT instance genera-
tors [2004]:random games, andcovariant games. Figure 1 shows
how each minimum CURB finding algorithm scales with game size
on a dataset of over 1000 random, square normal form games with
total number of strategiesn between 20 and 80.small MC is
faster thanall MC. This is consistent with theirO-complexities,
considering that many random games have small CURB sets.
While theO-complexity ofone MC andall MC is the same, ex-
perimentallyone MC is faster because it only needs to find one
minimal CURB set. (On any game with more than one minimal
CURB set,one MC is faster thanall MC.)

 20 30 40 50 60 70 80

Random Game Size (n)

all_MC
one_MC

small_MC

 20 30 40 50 60 70 80

Covariant Game Size (n)

all_MC
one_MC

small_MC

Figure 1: Scalability of our algorithms in game size (the curves
on the right overlap).

We observed that the performance illustrated on random games
in Figure 1 was typical of that of many other instance distributions
provided by theGAMUT instance generators as well. However,
to show potentially differing performance, we also experimented
with the covariant game class, in which payoffs for both players
are drawn from the same distribution with a specified covariance.
In our experiments we used a covariance parameter of−0.5. That
class and that setting have been shown to be particularly challeng-
ing for Nash equilibrium finding (with the Lemke-Howson algo-
rithm and the Porter-Nudelman-Shoham algorithm) [2004]. Fig-
ure 1 shows that theall MC algorithm scales similarly on random
and covariant games, while the other two algorithms lose their rel-
ative speed advantages when applied to the covariant class.

Most random games have small smallest CURB sets (in fact, of-
ten sets of size 2, i.e., pure-strategy equilibria), and those that do
not, tend to have very large smallest CURB sets (Figure 2). On the
other hand, covariant games tend to have almost no small small-
est CURB sets and often have large smallest CURB sets. (This is

consistent with the observed hardness of these games for support
enumeration-based Nash equilibrium finding algorithms that try to
find equilibria with small supports first [2004].) The disparity ex-
plains the lowered performance on covariant games for both the
two minimal CURB finding algorithms, which are affected by the
size of the smallest minimal CURB set.

 0 5 10 15 20

Small CURB size (n = 20)

Covariant
Random

 0 5 10 15 20 25 30 35 40

Small CURB size (n = 40)

Covariant
Random

Figure 2: Distribution of Smallest CURB set size in random
and covariant (r = −0.5) games, wheren = 20 and n = 40
(3,000 games for each distribution and value ofn).

To better understand how the minimal CURB finding algorithms
scale with the size of the smallest CURB set, we bucketed then =
20 games from above according to the size of the smallest CURB
set. (Forn = 40 games the buckets for medium sized small CURB
sets were nearly empty, making it impossible for us to estimate
mean runtimes with sufficient accuracy.) Figure 3 plots the average
runtime for each bucket. On games with very small CURB sets,
small MC is fastest, but it is outperformed by bothone MC and
all MC as the smallest CURB set grows. The surprising average-
case efficiency of the latter two algorithms is due to their leverag-
ing of information across calls tomin containing CURB with
different seeds. Becausesmall MC performs all the searches in
parallel, this information is unavailable.

The results shown in Figure 1 are unintuitive because most
random and covariant games have tiny CURB sets, which are
the special case under whichsmall MC outperformsone MC. If
smallness of CURB sets were known in advance, one could use
small MC to accomplish the task ofone MC more efficiently, but
generally this is slower. To get the best of both, one can timeslice
between the two algorithms. The runtime of this hybrid is at most
twice the runtime of the faster of the two (plus the length of a slice
and the slicing overhead).

 0 5 10 15 20

Random Smallest Min CURB

all_MC
one_MC

small_MC

 0 5 10 15 20

Covariant Smallest Min CURB

all_MC
one_MC

small_MC

Figure 3: Average runtime on games weren = 20, with varying
smallest CURB set sizes.

4. CURB SETS AND NASH EQUILIBRIA
Both minimal CURB sets and Nash equilibria model strategy

subspaces which are mutually reinforced given the rationality of
agents and their common knowledge. A CURB set with only one
row and one column strategy isnecessarilya pure strategy Nash

equilibrium. Furthermore, any minimal CURB set contains the
supports for at least one Nash equilibrium in mixed strategies [1991
]. We observe that this result suggests a secondary use for finding
minimal CURB sets: our algorithms can be used to preprocess a
game so that a Nash equilibrium finding algorithm needs to only
operate on a minimal CURB set rather than the entire game. This
can yield an arbitrarily large reduction of the search space, as The-
orem 3(a) will show.

The most common prior preprocessing technique for Nash equi-
librium finding, iterated removal of dominated strategies, attempts
to eliminate strategies that cannot be played with any probabil-
ity in any Nash equilibrium [1988], [1993]. The same is true
of a recent preprocessing technique, the generalized eliminability
method [2005b]. One comparative advantage of minimal CURB
set-based elimination is that it can eliminate strategies that are
played in some equilibria, while guaranteeing that the resulting set
still contains the supports of at least one equilibrium.

Our CURB set-based preprocessor can reduce search space size
by an arbitrary amount (i.e. to a CURB set of almost any dimen-
sion) even on games where no prior preprocessing technique can
eliminate anything.

THM . 3. For anyr ≥ 2, c ≥ 2 andr′, c′ such that1 < r′ ≤ r
and1 < c′ ≤ c (or r′ = c′ = 1), there exists at least oner × c
normal-form game, where

a) the game has anr′ × c′ smallest CURB set.

b) iterated elimination of dominated strategies (even domina-
tion by mixed strategies) cannot eliminate any strategies,

c) the recent recursive preprocessing technique (thatcan elim-
inate strategies that belong to some equilibrium as long as
some other equilibrium remains) [2006] cannot eliminate
any strategies, and

d) if r′ + c′ ≤ r+c
2

(i.e., the smallest CURB set is not huge), the
general eliminability method [2005b] cannot eliminate any
strategies. (Even if the smallest CURB set is huge, the gen-
eral eliminability technique cannot eliminate more strategies
than our CURB set-based technique.)

PROOF. We first present the following family,Γ, of games.
Let Γr′c′ denote such a game of sizer′ × c′. The following
generator produces such a game wherer′, c′ ≥ 2. Assign the
payoffs u(sr1

, sc1) = u(sr2
, sc2) = (0, 1) and u(sr1

, sc2) =
u(sr2

, sc1) = (1, 0). Then, fori ∈ [2, r′ − 1], setu(sri+1
, sc1) =

(r′
−i

r′ , 1) andu(sri+1
, sc2) = (i

r′ , 0). Next, for j ∈ [2, c′ − 1],

setu(sr1
, scj+1

) = (0, c′−j

c′
) andu(sr2

, scj+1
) = (1, j

c′
). For all

payoffs still unassigned, setu(sri
, scj

) = (−i,−j).
For example, the gameΓ3,4 is as follows.

Γ3,4 sc1 sc2 sc3 sc4

sr1
0,1 1,0 0,1

2
0, 1

4

sr2
1,0 0,1 1,1

2
1,3

4

sr3

1
3
, 1 2

3
,0 -3,-3 -3,-4

Any game generated in this way has a Nash equilibrium where
the row player mixes between his first two strategies and the col-
umn player mixes among all his strategies. It also has an equilib-
rium where the column player mixes between his first two strate-
gies and the row player mixes among all his. Thus, every strategy in
Γr′c′ is part of some equilibrium. Additionally each column strat-
egy is a best response to a mixture over the first two row strategies
(and, to any column strategy, one of those two is a best response),

and vice versa. Thus,Γr′c′ has a single minimal CURB set and it
includes the entire game.

We now construct anr×c game with a minimally CURBr′×c′

subset by putting the gameΓr′c′ in the top left and the game
Γ(r−r′)(c−c′) in the bottom right. All other payoffs are set to neg-
ative random noise. The resulting game is irreducible by (iterated)
dominance and by general eliminability because every strategy par-
ticipates in some Nash equilibrium. The game is irreducible by the
recursive preprocessor because the row player’s payoffs are distinct
within each column and the column player’s payoffs are distinct
within each row. (IfΓr′c′ is thesmallestminimal CURB set and
r′ + c′ > r+c

2
, we instead construct a game by starting withΓr′c′

and including additional row and column strategies that are neither
dominated nor part of any minimal CURB set. It is easy to generate
such strategies, but they might not be part of any Nash equilibrium.
Thus the general eliminability method may be able to eliminate
those additional strategies.)

However, three factors curb the promise of minimal CURB set
algorithms as powerful preprocessors for Nash equilibrium finding.
First, the fastest Nash equilibrium finding algorithms, while requir-
ing exponential time in the worst case, tend to run faster than (at
least the current implementations of) the CURB set finding algo-
rithms on many instance distributions. Second, by Theorem 3(a),
the smallest CURB set can be arbitrarily large (up to the size of
the entire game, in which case the preprocessor does not eliminate
any strategies from consideration). Third, even after the smallest
minimal CURB set has been identified, the remaining search space
(CURB set size) can be arbitrarily larger than the size of the sup-
ports of a contained Nash equilibrium:

THM . 4. A Nash equilibrium with supports consisting of two
strategies for each player can be the only Nash equilibrium in an
arbitrarily large minimal CURB set.

PROOF. Consider the following family of games that contain
large minimal CURB sets and small-support equilibria. For any in-
tegerk > 0, we define the gameΩk as follows. As in the previous
proof, assign the payoffsu(sr1

, sc1) = u(sr2
, sc2) = (0, 1) and

u(sr1
, sc2) = u(sr2

, sc1) = (1, 0). Then, fori ∈ [3, 2 + k],

• u(sri
, sc1) = (−∞, ǫ), u(sr1

, sci
) = (ǫ,−∞),

• u(sri
, sci

) = (0, 0),

• u(sri
, sci−1

) = (1 + ǫ, 0), u(sri−1
, sci

) = (0, 1 + ǫ), and

• for all j > i + 1 andj ≤ 2 + n,

u(sri
, scj

) = (0,−∞), andu(srj
, sci

) = (−∞, 0)

For example, the gameΩ2 is as follows.

Ω2 sc1 sc2 sc3 sc4

sr1
0,1 1,0 ǫ,−∞ ǫ,−∞

sr2
1,0 0,1 0,1+ǫ 0,−∞

sr3
−∞,ǫ 1+ǫ,0 0,0 0,1 + ǫ

sr4
−∞,ǫ −∞, 0 1+ǫ,0 0,0

PROP. 6. Ωk has a single minimal CURB set and it includes the
entire game.

PROP. 7. In Ωk, the only Nash equilibrium is the the strategy
profile wheresr1

, sr2
, sc1 andsc2 are each played with probability

1
2
.

This completes the proof of the theorem.

The above results mean that minimal CURB set algorithms do
not always help in Nash equilibrium finding because the small-
est CURB set can be arbitrarily large (Theorem 3(a)) and it can
be arbitrarily loose around an enclosed Nash equilibrium (Theo-
rem 4). However, on any game instance that has a small CURB
setor a relatively tight minimal CURB set3, and on which stan-
dard equilibrium-finding algorithms run very slowly, our tech-
nique should yield a drastic speed improvement for Nash equi-
librium finding (the worst-case complexity of our preprocessor is
polynomial, while any equilibrium-finding algorithm has super-
polynomial run-time (unless PPAD=P)).

Furthermore, the existence of the polynomial-time algorithm for
detecting a game’s smallest CURB set (small MC) allows us to
offer the following theoretical result of potential general interest.

THM . 5. The complexity of finding a single Nash equilibrium
for a two-player normal form game is super-polynomial only in the
size of the game’s smallest CURB set. (If PPAD=P, then it is not
super-polynomial in anything.)

5. CONCLUSIONS AND FUTURE RE-
SEARCH

We presented the first algorithms for rationalizability and CURB
sets, two important set-valued solution concepts for normal-form
games. Our algorithms find all rationalizable strategies for a given
support of opponent’s strategies, all minimal CURB sets (all MC),
one minimal CURB set (one MC), and a smallest minimal CURB
set (small MC), all in polynomial time. The CURB algorithms use
techniques such as dovetailing with a priority queue, and exploit-
ing information across overlapping CURB sets, to further improve
speed.

Experiments on random games showed thatsmall MC is the
fastest,one MC is second, andall MC is the slowest of the three.
On covariant games, the speed advantage of the former two disap-
pears. The runtime of the algorithms is affected by the size of the
smallest CURB set. On games with small CURB sets,small MC
performed significantly better than the others, but the others (espe-
cially one MC) performed better on games containing only large
CURB sets.

We also examined the potential for using our algorithms as pre-
processors for Nash equilibrium finding algorithms. We proved that
our technique can eliminate an arbitrarily large portion of the game
from consideration while guaranteeing that the remaining strategies
contain a Nash equilibrium. This is the case even on games where
prior preprocessing techniques are powerless.

On the downside, we showed that the smallest CURB set can be
arbitrarily large and/or arbitrarily loose. Furthermore, on many dis-
tributions, current Nash equilibrium finding algorithms run faster
on average than the CURB set algorithms.

However, we showed that finding a Nash equilibrium is super-
polynomialonly in the size of the smallest CURB set of the game.
Taken together with our CURB set algorithms that are polynomial
even in the worst case, and the fact that Nash equilibrium finding al-
gorithms are super-polynomial in the worst case (unless PPAD=P),
this indicates that our preprocessing techniques will yield a drastic
speed improvement on hard games that have a smallor a relatively
tight minimal CURB set. As we showed, games with these two
properties do exist; future research involves determining whether
such games occur naturally.

3If the game has a relatively tight CURB set, a Nash equilibrium
can be found quickly by enumerating strategies of the CURB to be
left out from the supports.

The CURB set definition is for any number of players. In this
paper we considered the two-player case. For a larger number of
players, the obstacle is finding rationalizable strategies quickly as a
subroutine. The mathematical program we use is of degreed where
the number of players isd + 1; for two players it is an LFP but
for three players it is already quadratic. Our CURB set algorithms
can be trivially generalized to any number of players. Even the
generalized versions only make a polynomial number of calls to the
all rationalizable subroutine. Therefore, if future research
finds polynomial algorithms for finding rationalizable strategies for
more than two players in polynomial time, then our generalized
CURB set algorithms are also polynomial time.

6. ACKNOWLEDGMENTS
This material is based upon work supported by National Sci-

ence Foundation ITR grant 0205435, IGERT grant 9972762, and
IIS grants 0121678 and 0427858, as well as Office of Naval Re-
search grant N00014-02-1-0973, and a Sloan Fellowship. Addi-
tional support at Carnegie Mellon University was provided by the
Agent-Mediated Electronic Marketplaces Laboratory, the Center
for Computational Analysis of Social and Organizational Systems,
and the e-Supply Chain Management Laboratory. The views and
conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied of the National Science Foundation, the Of-
fice of Naval Research, or the U.S. government. We thank Vincent
Conitzer and Andrew Gilpin for their helpful input and guidance.

7. REFERENCES
Basu, K., and Weibull, J. W. 1991. Strategy subsets closed
under rational behavior.Economics Letters36(2):141–146.
Battigalli, P., and Siniscalchi, M. 2003. Rationalizable bidding
in first-price auctions.Games and Economic Behavior
45(1):38–72.
Bernheim, B. D. 1984. Rationalizable strategic behavior.
Econometrica52(4):1007–28.
Chen, X., and Deng, X. 2005. Settling the complexity of
2-player Nash-equilibrium. Technical Report TR05-140,
Electronic Colloquium on Computational Complexity.
Cho, In-Koo. 2005. Monotonicity and Rationalizability in a
Large First Price Auction.Review of Economic Studies
72(4):1031–55.
Conitzer, V., and Sandholm, T. 2005a. Complexity of (iterated)
dominance. InProceedings of EC’05, 88–97.
Conitzer, V., and Sandholm, T. 2005b. A generalized strategy
eliminability criterion and computational methods for applying
it. In Proceedings of AAAI’05, 483–488.
Conitzer, V., and Sandholm, T. 2006. A technique for reducing
normal form games to compute a Nash equilibrium. InAAMAS.
Dekel E., and Wolinsky A. 2001. Rationalizable outcomes of
large independent private-value first-price discrete auctions.
Northwestern University, Center for Mathematical Studies in
Economics and Management Science, Discussion Paper 1308
Gilboa, I., and Zemel, E. 1989. Nash and correlated equilibria:
Some complexity considerations.Games & Economic Behavior
1:80–93.
Gilboa, I.; Kalai, E.; and Zemel, E. 1993. The complexity of
eliminating dominated strategies.Mathematics of Operations
Research18(3):553–565.
Hurkens, S. 1995. Learning by forgetful players.Games and
Economic Behavior11(1):304–329.

Knuth, D.; Papadimitriou, C.; and Tsitsiklis, J. 1988. A note on
strategy elimination in bimatrix games.Operations Research
Letters7(3):103–107.
Lavi, R., and Nisan, N. 2005. Online ascending auctions for
gradually expiring items. InProceedings of SODA’05.
Lemke, C., and Howson, J. 1964. Equilibrium points of
bimatrix games.Journal of the Society of Industrial and
Applied Mathematics12:413–423.
Nudelman, E.; Wortman, J.; Shoham, Y.; and Leyton-Brown,
K. 2004. Run the GAMUT: A comprehensive approach to
evaluating game-theoretic algorithms. InProc. of AAMAS,
880–887.
Pearce, D. G. 1984. Rationalizable strategic behavior and the
problem of perfection.Econometrica52(4):1029–50.
Porter, R.; Nudelman, E.; and Shoham, Y. 2004. Simple search
methods for finding a Nash equilibrium. InAAAI, 664–669.
Pruzhansky, V. 2003. On finding CURB sets in extensive
games.International Journal of Game Theory32(2):205–210.
Sandholm, T.; Gilpin, A.; and Conitzer, V. 2005. Mixed-integer
programming methods for finding Nash equilibria. InAAAI.
Voorneveld, M.; Kets, W.; and Norde, H. 2005. An
axiomatization of minimal CURB sets.International Journal of
Game Theory33(4):479–490.
Ye, Y. 2006. Improved complexity results on solving
real-number linear feasibility problems.Mathematical
Programming106(2):339–363.

8. APPENDIX

PROP. 1. all rationalizable returns all rationalizable
strategies, and nothing else. It isO(n)× LFP(n).

PROOF. For any strategy to be rationalizable, by definition,
there must be a mixture over opponent strategies for which that
strategy is a best response. By inspection, the linear program in
all rationalizable will return true iff such a mixture exists.
Sinceall rationalizable runs this program on all strate-
gies, and includes them in the return set only if the linear program
is feasible, it must be correct. Since the linear program is executed
once for each strategy, and the size of the linear program is bounded
by n, all rationalizable has complexity as shown.

PROP. 2. min containing CURB is O(n2)× LFP(n).

PROOF. Every two calls made toall rationalizable
must add a strategy to the return set, or else
min containing CURB must terminate. Since at most
n strategies can be added this way, the complexity of
min containing CURB is O(n2)× LFP(n).

THM . 1. Themin containing CURB procedure iscorrect,
that is, the returned set,S∗, is a minimal set of strategies that both
1) contains the given seed strategy,sr, and 2) is CURB.

Proof in main text.

THM . 2. If each of two intersecting strategy sets is CURB, then
their intersection is also CURB.

Proof in main text.

COR. 1. Minimal CURB sets cannot overlap (i.e., share any
rows or columns).

PROOF. Consider minimal CURB setsSA andSB which share
non-empty overlapSC . By the containment theorem,SC must also
be CURB. Since, by the definition of intersection,SC ⊂ SA, this
contradicts our predicate thatSA is minimal.

COR. 2. Each row strategy belongs to at most one minimal
CURB set.

PROOF. This is trivially true from Corollary 1.

PROP. 3. all MC finds all minimal CURB sets, and nothing
else. It isO(n3)× LFP(n).

PROOF. By Corollary 1, the minimal CURB set for any strat-
egy must either equal or be contained by any other CURB set in
which the strategy is found. Therefore Theorem 1 holds even when
min containing CURB is called on a smallest CURB set in
which a strategy has been found so far. By this and Corollary 2,
the main loop ofall MC must discover all minimal CURB sets
in the game. Since any CURB set which is not minimal must
have contained one of the minimal CURB sets discovered, it is re-
moved when the smaller CURB set is discovered (or not added if
the smaller set was previously discovered). Thereforeall MC re-
turns all, and only minimal CURB sets. In the worst case,all MC
must callmin containing CURB n times, with the full game as
a parameter, giving time complexityO(n3)× LFP(n).

PROP. 4. one MC returns a minimal CURB set, and isO(n3)×
LFP(n).

PROOF. If there are no other minimal CURB sets, then the entire
game is minimally CURB and will be therefore returned, according
to Proposition 3. If there are any other minimal CURB sets, one
of them will be discovered when a strategy inside it is used as a
seed. In the worst case (when the whole game is minimally CURB),
one MCmust callmin containing CURB n times, with the full
game as a parameter, giving time complexityO(n3)×LFP(n).

PROP. 5. small MC returns a minimal CURB set that is a
smallest minimal CURB set in the game, and it isO(nSC n2) ×
LFP(n).

PROOF. At the time small MC terminates,
all rationalizable has been called on all row and
column strategies in the set, with no new rationalizable strategies
being discovered. Therefore, the returned set is CURB. Since all
other candidate sets on the queue must be as large, or larger than
the returned set, (and future exploration can only add strategies to
these sets) this set is at least as small as the smallest CURB set in
the game. The smallest CURB set must also be a minimal CURB
set.

Whenever a candidate set is fathomed, at least one new strategy
must be added orsmall MC will terminate. Since there aren can-
didate sets, andnSC strategies in returned set, at mostn× nSC sets
have been fathomed at termination. Each examination of a candi-
date set involves a call toall rationalizable the complexity
of small MC is as given.

THM . 3. For anyr ≥ 2 andc ≥ 2, there existsr × c normal-
form games, where

a) the smallest CURB set can be of any shape1 × 1 or r′ × c′

(s.t.1 < r′ ≤ r and1 < c′ ≤ c),

b) iterated elimination of dominated strategies (even domination
by mixed strategies) cannot eliminate any strategies,

c) the recent recursive preprocessing technique (thatcan elim-
inate strategies that belong to some equilibrium as long as
some other equilibrium remains) [2006] cannot eliminate
any strategies, and

d) if r′ + c′ ≤ r+c
2

(i.e., the smallest CURB set is not huge), the
general eliminability method [2005b] cannot eliminate any
strategies. (Even if the smallest CURB set is huge, the general
eliminability technique cannot eliminate more strategies than
our CURB set-based technique.)

Proof in main text.

THM . 4. A Nash equilibrium with supports consisting of two
strategies for each player can be the only Nash equilibrium in an
arbitrarily large minimal CURB set.

Proof in main text.

PROP. 6. Ωk has a single minimal CURB set and it includes the
entire game.

PROOF. sr1
, sr2

, sc1 , sc2 must be included in some minimal
CURB set, as they each form best responses to each other in the
subgame containing them, and this subgame admits no pure strat-
egy NE. To prove that all other strategies in the game are also in the
minimal CURB set, we introduce the following Lemma.

LEMMA 1. For i > 2 the row (column) player’s strategysri

(sci
) is a best response to the column (row) player’s strategysci−1

(sri−1
). The best response to the row (column) player’s edge strat-

egysrn+2
(scn+2

) is sc1 (sr1
).

Lemma 1 holds based on the construction of theΩ game, the
strategies in question provideǫ more utility than any others. Based
on this Lemma, we can see that wheni = 3, the row (column)
player’s strategysr3

(sc3) is a best response to the column (row)
player’s second strategy. This forces the third strategy of each
player into the minimal CURB set containing the first two strategies
of each player, and inductively each additional strategy is added in
the same way.

PROP. 7. In Ωk, the only Nash equilibrium is the the strategy
profile wheresr1

, sr2
, sc1 andsc2 are each played with probability

1
2
.

PROOF. Suppose that this is not the case, i.e. there exists a mix-
ture,m∗

r , over the rowsM∗

r , comprising the row player’s profile in
a Nash equilibrium, andsr1

/∈ M∗

r . Along with our assumption,
the definition of NE implies that there must exist a mixture,m∗

c ,
over columnsM∗

c such thatβr(m
∗

c) = M∗

r andβc(m
∗

r) = M∗

c .
Sincesr1

is not inM∗

r by assumption, there existsi > 1 such that
sri

is the lowest numbered support inM∗

r , and the definition ofΩ
specifies the outcome,u(sri

, scj
) = (0,−∞), whenj > i + 1.

The column player’s NE supports cannot contain any suchscj
,

because placing any positive probability on this strategy will lead
to an expected payoff of−∞ and playing the pure strategysc1 pro-
vides guaranteed payout of at least 0. If we exclude these strategies,
sci+1

(the highest remaining column strategy) is the only remain-
ing strategy, other thansc1 , which provides non-zero utility against
mixtures on rows≥ i. In other words, it dominates all column
strategies on the row player’s supportsM∗

r , aside from one:sc1 .
Since dominated strategies cannot be played in equilibrium,M∗

c

is constrained to a subset of{sc1 , sci+1
}. If M∗

c containssc1 , M∗

r

must not include anysrj
with j > 2, due to the−∞ expected pay-

off of any mixture including such strategies (as discussed above).

In this case, the only remaining possible row NE mixture is the pure
strategysr2

, the best response to which issc3 . Since, by Corollary
2, Ωn has no pure NE, this cannot constitute and equilibrium, con-
tradicting our assumption. Alternatively, ifM∗

c does not include
sc1 , thenm∗

c must be the pure strategysci+1
, and Lemma 2 pro-

vides a pure strategy best response to any pure strategy withi > 2.
This would, again, form a pure strategy NE, which we have shown
does not exist.

The reasoning in this proof can also be inverted to show that a
contradiction is caused by the assumption thatM∗

c does not contain
sc1 .

THM . 5. The complexity of finding a single Nash equilibrium
for a two-player normal form game is super-polynomial only in the
size of the game’s smallest CURB set. (If PPAD=P, then it is not
super-polynomial in anything.)

PROOF. This is clear given the existence of the polynomial time
small MC algorithm for finding the smallest minimal CURB in
a game, and the fact that every minimal CURB set contains the
support for at least one Nash equilibrium [1991].

