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Designing optimal—that is, revenue-maximizing—combinatorial auctions (CAs) is an important elusive problem. It is
unsolved even for two bidders and two items for sale. Rather than pursuing the manual approach of attempting to charac-
terize the optimal CA, we introduce a family of CAs and then seek a high-revenue auction within that family. The family is
based on bidder weighting and allocation boosting; we coin such CAs virtual valuations combinatorial auctions 4VVCAs5.
VVCAs are the Vickrey-Clarke-Groves (VCG) mechanism executed on virtual valuations that are affine transformations
of the bidders’ valuations. The auction family is parameterized by the coefficients in the transformations. The problem
of designing a CA is thereby reduced to search in the parameter space of VVCA—or the more general space of affine
maximizer auctions.

We first construct VVCAs with logarithmic approximation guarantees in canonical special settings: (1) limited supply
with additive valuations and (2) unlimited supply.

In the main part of the paper, we develop algorithms that design high-revenue CAs for general valuations using samples
from the prior distribution over bidders’ valuations. (Priors turn out to be necessary for achieving high revenue.) We
prove properties of the problem that guide our design of algorithms. We then introduce a series of algorithms that use
economic insights to guide the search and thus reduce the computational complexity. Experiments show that our algorithms
create mechanisms that yield significantly higher revenue than the VCG and scale dramatically better than prior automated
mechanism design algorithms. The algorithms yielded deterministic mechanisms with the highest known revenues for the
settings tested, including the canonical setting with two bidders, two items, and uniform additive valuations.1

Keywords : combinatorial auction; optimal auction; revenue maximization; automated mechanism design (AMD);
parametric mechanism design.

Subject classifications : games/group decisions: bidding/auctions; marketing: pricing; computer science: artificial
intelligence.
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1. Introduction
Combinatorial auctions (CAs), where bidders can bid on
bundles of items, are nowadays popular mechanisms for
allocating items (goods, tasks, resources, services, etc.).
They are desirable in settings where the bidders’ valua-
tions exhibit complementarity and/or substitutability in the
items. In such settings CAs have numerous advantages over
traditional auctions. For example, they tend to yield bet-
ter allocations and remove the bidders’ exposure problems.
The interested reader can find out more about CAs in a
modern textbook on the topic (Cramton et al. 2006).

Perhaps the most important and elusive open problem in
CAs (and the whole field of mechanism design) is design-
ing optimal auctions, that is, auctions that maximize the
seller’s expected revenue (Vohra 2001). Astonishingly, this
problem is unsolved even for auctions with just two distinct

items on sale (e.g., a TV and a VCR) and two bidders.
A historical advance on the problem was the design of the
optimal one-item auction (Myerson 1981). In that auction,
instead of determining the winner and the payment based
on bids, they are determined based on virtual valuations,
which are transformations of the bids in a way that makes
weak bidders (i.e., bidders who are likely to have low valu-
ations) artificially more competitive. Myerson’s auction was
later extended to the case of selling multiple copies of the
same item (Maskin and Riley 1989). Hartline and Karlin
(2007) provide an overview of revenue-maximizing mech-
anism design. However, the characterization of revenue-
maximizing multi-item auctions has been obtained only for
special cases of the two-item two-bidder setting (bidders
drawing valuations for the items from the same binary dis-
tribution) (Avery and Hendershott 2000, Armstrong 2000).
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While it might be surprising that the revenue-maximizing
CA is unknown, we observe that this is actually what one
should expect once one views the problem through a com-
putational lens. Conitzer and Sandholm (2004) proved that
the problem of finding a revenue-maximizing CA (among
all deterministic CAs with discrete types) is NP-complete.
Therefore, it is unlikely that a concise characterization of
revenue-maximizing (deterministic) CAs can even exist.

Consequently, we deviate from the classical manual
mechanism design approach of looking for a characteri-
zation and instead proceed down a different avenue. We
introduce a broad parameterized family of CAs—virtual
valuations combinatorial auctions 4VVCAs5—and develop
algorithms that search for a high-revenue CA within that
family. Even though it is well known that randomization
can increase revenue in CAs, we focus on deterministic
CAs, because in many applications, randomization is not
palatable and very few, if any, randomized CAs are used in
practice.

The bundling literature is also closely related to optimal
CA design. That literature is concerned with bundling deci-
sions by the seller, and the effect they have on revenue,
in the context of catalog offers by the seller to the buyers.
For example, Palfrey (1983) proved that in certain models,
the seller obtains higher expected revenue by bundling the
items together when the number of bidders is small, and
he should auction the items separately when the number of
bidders increases.

In designing algorithms for generating high-revenue
CAs, we will use ideas from the optimal auction litera-
ture and the bundling literature. Specifically, we adapt the
idea of artificially making weak bidders more competitive
using virtual valuations (from Myerson’s one-item auction,
except that we use a different transformation to get from
bids to virtual valuations) and ideas on tweaking the alloca-
tion rule (from bundling research). These techniques beget
our parametric family of CAs, which we call VVCAs.

A classic CA design—and a benchmark we will use—
is the Vickrey-Clarke-Groves 4VCG5 mechanism (Vickrey
1961, Clarke 1971, Groves 1973) (aka Generalized Vickrey
Auction), which in the one-item case is the second-price
sealed-bid auction (aka Vickrey auction). The VCG allo-
cates the items in a way that maximizes the social welfare
(SW) of the bidders (sum of their valuations for the allo-
cated items), and each winning bidder pays the minimal
amount that she would have had to bid on the bundle she
won in order to win it (not considering competition from
any other bundles that she herself may have bid on). In this
mechanism, each bidder’s (weakly) dominant strategy is to
bid their true valuations.

The rest of the paper is organized as follows. In the first
part of §2, we review the CA setting, introduce notation,
review the needed basics of mechanism design, discuss the
VCG mechanism along with reasons for its revenue defi-
ciency, and draw ideas from Myerson’s single-item auction.

In §2.5, we discuss how revenue can be increased over
the VCG by weighting bidders and boosting allocations.
We introduce our VVCA family of auctions. A VVCA is
a VCG run on virtual valuations that are affine transforma-
tions of the bidders’ actual valuations. The coefficients of
these transformations parameterize the family of VVCAs;
we prove that incentive compatibility precludes more gen-
eral transformations of the valuations (except potentially a
greater weight for some bidders on the grand bundle). We
also review the more general family of affine maximizer
auctions 4AMAs5.

In §2.6, we design particular randomized VVCAs that
yield a logarithmic worst-case approximation and determin-
istic VVCAs that yield a logarithmic average-case approxi-
mation to the optimal auction, for the canonical settings of
(1) items in limited supply and additive valuations (no com-
plementary or substitutable items) and (2) items in unlim-
ited supply and general valuations. These results suggest
that VVCAs are a reasonably powerful class of CAs for
revenue maximization, and thus provide justification for our
use of VVCAs as one of the mechanism classes we will use
in automated mechanism design (AMD) later in the paper.
These results may also be of independent interest, and gen-
eralize earlier results on prior-free mechanism design.

In the main part of the paper, §3, we pursue the approach
of designing high-revenue auctions automatically—for gen-
eral valuations. Our algorithms always design for the spe-
cific setting at hand—specifically, seller’s prior over the
bidders’ valuations. (It turns out that one cannot obtain high
revenue in a prior-free way.) Our approach is a form of
AMD (Conitzer and Sandholm 2002). In prior AMD work,
the types of bidders had to be discretized and an optimal
mechanism was searched for using general-purpose integer
programming algorithms. Thus that AMD work only scales
to tiny CAs (Conitzer and Sandholm 2003). Our approach
turns out to be significantly more scalable for at least two
reasons. First, it does not assume that a complete prior is
given as input. Rather, only samples from the prior are
used, which enables sparse sampling. Second, economic
insights and results are used to guide the search for high-
revenue CAs. Although our approach may not construct an
optimal auction, it yields significant revenue improvement
over the VCG and provides high-revenue mechanisms for
settings for which none were known.

We prove several properties of the problem to help
guide our design of appropriate algorithms. We then present
a sequence of increasingly sophisticated algorithms for
searching for parameters within the VVCA family and
the AMA family. Some of the algorithms use economic
insights to navigate the search space efficiently in order to
enhance computational speed. The experiments (§3.4) show
that our algorithms create mechanisms that yield signifi-
cantly higher revenue than the VCG, that our algorithms
scale significantly better than the prior AMD algorithms,
and that the more sophisticated ones of our algorithms tend
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to outperform the more obvious ones in absolute run-time
and anytime performance.

The generated mechanisms are, to our knowledge,
the highest-revenue mechanisms known to date for their
respective settings. For example, for the well-studied
canonical setting of two bidders, two items, and uniformly
drawn additive valuations, we generated the highest rev-
enue mechanism to date. Experiments suggest that it is an
optimal AMA within the precision used.

Section 4 overviews additional related research. Sec-
tion 5 presents conclusions, and §6 lays out future research
directions.

2. Framework and Contributions on the
Way to the Main Results

We study a setting with one seller (index 0 refers to the
seller), a set N of n bidders, and a set G= 4g11 0 0 0 1 gm5 of
heterogeneous indivisible items for sale.

In an auction, the bidders submit bids for the bundles
of items and the auction rules determine the allocation a
and the payments t, where ai is the bundle of goods that
Bidder i receives and ti is the payment by Bidder i.

2.1. Utilities and Valuations

We make the standard assumption that each Bidder i has
a quasi-linear utility function ui = vi4a5 − ti, where vi is
the valuation of Bidder i for allocation a. Each bidder’s
true valuations are private information. We also make the
following standard assumptions (Lavi et al. 2003):

1. no externalities: the valuation of any Bidder i for each
allocation a depends only on the bundle ai that Bidder i
receives, not on how the items that i does not receive get
allocated,

2. free disposal: the value of a subset of a bundle is less
than or equal to the value of a bundle (∀b′ ⊂ b, vi4b

′5 ¶
vi4b5), and

3. each bidder’s valuation for the empty bundle is zero,
i.e., vi4�5= 0.

In a CA, the valuation function for Bidder i is given by
the vector 4vi4b151 0 0 0 1 vi4b2m55, where each number speci-
fies the value that Bidder i attaches to a certain bundle of
items from G (there are 2m bundles). Let Vi denote the set
of all possible valuation functions for Bidder i. V denotes
×i=110001nVi. Unless explicitly stated, we make the following
standard assumptions throughout the paper:

1. Vi is a convex compact subset of <�2m�.
2. Each valuation function vi is generated from a con-

tinuous density fi, and fi is positive on all Vi.
3. The valuations of different bidders are drawn inde-

pendently of each other.
In terms of the distributions from which valuations are

drawn, two classes of models are typically considered in
literature. In the symmetric case, fi = fj for all Bidders i
and j . In the asymmetric case, valuations of different bid-
ders are drawn from different fi. We will consider both
cases.

2.2. Mechanism Design Principles

Each bidder’s valuation function is private information—
although the auctioneer and other bidders may know the
distribution from which it is drawn. Thus a concern is that
a bidder might not reveal her true valuation function when
bidding—she might be able to obtain higher utility by sub-
mitting a different valuation function. A key goal in mecha-
nism design is to incentivize the bidders to tell the truth (by
the revelation principle (for a review, see Krishna 2002)
this is without loss of generality: any social choice function
that can be implemented using an arbitrary mechanism can
also be implemented using a truth-promoting mechanism).
As is common in much of mechanism design, especially
within computer science, we focus on ex post incentive
compatible mechanisms, that is, mechanisms where each
bidder maximizes her utility by bidding truthfully, regard-
less of what valuations the other bidders reveal. Such mech-
anisms are also called dominant strategy mechanisms. They
are robust in the sense that the bidders cannot benefit from
counterspeculating each others’ valuations and rationality:
each bidder has an optimal strategy regardless of other bid-
ders’ strategies. This also means that we do not need any
assumptions about the bidders’ knowledge of each others’
valuation functions. In particular, we do not need the unre-
alistic assumption of common knowledge of priors, which
underlies work on Bayes-Nash implementation.

As usual, we also require that the mechanism be ex post
individually rational: each bidder is no worse off by par-
ticipating than not participating, for all possible valuation
revelations of the other bidders.

2.3. VCG Mechanism and Reasons Why It Does
Not Maximize Revenue

A classic example that satisfies the above conditions is
the following mechanism (Vickrey 1961, Clarke 1971,
Groves 1973).

Definition 2.1 (VCG Mechanism). Each Bidder i sub-
mits a valuation function vi. The allocation, a, is computed
to maximize SW

SW4v5=

n
∑

i=1

vi4a5 (1)

The payment by Bidder i is

ti =

[

∑

j 6=i

vj4a−i5−
∑

j 6=i

vj4a5

]

1

where

a−i = arg max
a

∑

j 6=i

vj4a5

is the allocation that is optimal among the allocations where
Bidder i does not receive any items. The SW of allocation
a−i is

6SW−i74v5=
∑

j 6=i

vj4a−i50 (2)
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One can also interpret ti as the minimum valuation for ai

(the bundle won by i), which i would have had to bid in
order to win ai.

The VCG maximizes the welfare of the bidders. How-
ever, it can yield arbitrarily poor revenue to the seller com-
pared to a revenue-maximizing mechanism (Conitzer and
Sandholm 2006). There are several different reasons why
the VCG can yield poor revenue:

1. Bundling effect. The following well-known simple
example shows that bundling decisions of the seller may
affect the revenue (even when there is no complementarity
or substitutability).

Example 2.1. Consider an auction with k items for sale
(g11 0 0 0 gk), and two bidders. Say that the bidders’ valua-
tions for the individual items are drawn independently and
uniformly from some interval, and a bidder’s valuation for a
bundle is the sum of her valuations for the individual items
in the bundle. The VCG would sell each item separately to
the higher bidder, collecting payment equal to the valuation
of the lower bidder for each item. Therefore the revenue is
∑m

j=1 mini∈81129 vi4gj50 However, should the seller decide to
bundle all the items together and sell them as a whole via a
Vickrey (second-price) auction, she would receive revenue
mini∈811296

∑m
j=1 vi4gj57, which is greater.

2. Asymmetry of valuation distributions. In the asymmet-
ric case, it may happen that the distribution of valuations of
Bidder i for some bundle b is concentrated around higher
values than (or even stochastically dominates) the distribu-
tions of other bidders (such bidders are called “strong” and
“weak,” respectively). Higher revenue can be obtained by
favoring weak bidders, as does the Myerson auction dis-
cussed shortly. As an extreme example, consider a one-item
auction where the valuation of Bidder 1 is surely higher
than the valuations of the other bidders. The VCG would
charge the second highest bid price, whereas it would be
easy to improve revenue beyond that by charging (at least)
the lowest possible valuation of the strong bidder.

3. No reserve prices. Even if the valuation distribu-
tions are symmetric (or even if there is only one bidder),
expected revenue can be improved by setting reserve prices.
They force the bidders to bid at least that much in order
to win.

In this paper, we will design mechanisms that yield sig-
nificantly greater revenue than the VCG mechanism in
CAs. But before that, we will review one more classic
mechanism, namely, Myerson’s optimal one-item auction.
We do this because we will adapt some ideas from it
to CAs.

2.4. Ideas from Myerson’s One-Item Auction

For increasing revenue in CAs, we will draw some ideas
from the optimal one-item auction (Myerson 1981).

Definition 2.2 (Myerson’s one-Item Auction). Each
Bidder i submits her valuation vi for the item. The mecha-
nism computes virtual valuations for the bidders:

ṽi4vi5= vi −
1 − Fi4vi5

fi4vi5
0 (3)

(Fi is the cumulative distribution function corresponding
to fi.) The allocation is computed to maximize the follow-
ing objective:

SW4v5=

n
∑

i=1

ṽi0 (4)

Thus the item is given to the bidder with highest virtual
valuation.2 Therefore the allocation rule is the same as in
the VCG (Definition 2.1), except that virtual valuations are
used in place of real valuations. The payment by the win-
ning bidder is equal to the minimum bid that she would
have had to make in order to win (that is, ṽ−1

i 4vj5, where vj
is the second-highest bid). The item is sold only if the vir-
tual valuation of the winning bidder is above 0 (in other
words, the mechanism also, in effect, uses reserve prices;
these can differ between bidders in the asymmetric setting).
Losing bidders pay nothing.

The intuition behind the mechanism is that it is biased
in favor of weak bidders, thus creating an artificial com-
petition between weak and strong bidders, and extracting
more revenue from strong bidders. It is easy to check that
the transformation (3) brings down the valuations of strong
bidders more than those of weak bidders. This mechanism,
in effect, enables the auctioneer to set a high sell price for
a strong bidder while motivating the bidder to stay truthful
(even if the bidder knows that her valuation is greater than
the valuations of all other bidders).

Drawing from this intuition, we propose increasing rev-
enue in CAs by designing certain virtual valuations, and
then running VCG on those valuations. We argue that
virtual valuations are capable of improving the VCG
with respect to bundling aspects, asymmetry handling, and
reserve pricing. In the next section, we discuss the forms
of virtual valuations that we use.

2.5. Techniques for Increasing Revenue in CAs

In this section, we introduce two families of CAs that
employ virtual valuations, and a hybrid family that com-
bines the two. We then analyze the restrictions that individ-
ual rationality and incentive compatibility impose on virtual
valuations.

2.5.1. Bidder Weighting Technique.

Definition 2.3 (Bidder-Weighted Auction). Each Bid-
der i submits a valuation function vi. An allocation, a, is
chosen that maximizes

SW�4v5=

n
∑

i=1

�ivi4a50 (5)
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The parameters, �, of the mechanism are positive real num-
bers. The payments by the bidders are

ti =
1
�i

[

∑

j 6=i

�jvj4a−i5−
∑

j 6=i

�jvj4a5

]

0

The mechanism effectively replaces the valuation func-
tion vi of Bidder i with �ivi. This is useful in asymmetric
cases when valuations of some bidders are concentrated
around higher values than those of other bidders. The proof
of incentive compatibility of this mechanism follows that
of the VCG.

In many cases, the same bidder can be strong with
respect to some bundle and weak with respect to another
bundle. It would thus seem to be helpful to allow the mech-
anism to assign a bidder different weights for different bun-
dles. However, it is easy to show that such a mechanism
would not be incentive compatible.

Theorem 2.1. No mechanism that chooses an allocation,
a, that maximizes SW�4a54v5 =

∑n
i=1 �i4ai5vi4a5 is incen-

tive compatible for all possible valuations in the CA
domain unless �i4ai5 is constant over ai. The only excep-
tion is that the grand bundle, G, can potentially have
a larger multiplier, �i4G5 (and the empty bundle can
have any multiplier since �i4�5 does not matter because
vi4�5= 0).

For readability of the body of this paper, all proofs are
presented in the appendix.

2.5.2. Allocation Boosting Technique. Theorem 2.1
shows that there does not exist a general bundle- and
bidder-specific multiplicative weighting mechanism. How-
ever, it turns out that it is possible to give a bidder-bundle-
specific advantage in an incentive compatible way by using
additive terms. Let �i4a5 = c8i1 b9 for all allocations a that
give Bidder i exactly bundle b (where b can be any bun-
dle of items, including the empty bundle). Here, the c8i1 b9
values (which we will sometimes write as �i4b5, �i4ai5, or
�8i1 b9) are real numbers that the auction designer sets. We
call this the allocation boosting technique.

One way to think about this technique is to consider it to
be an artificial bidder who has preferences over allocations
but does not actually take any items herself. This technique
addresses bundling and reserve pricing in full generality.

2.5.3. Bidder Weighting and Allocation Boosting.
Now, we define a mechanism that uses allocation boosting
and bidder weighting can be defined as follows.

Definition 2.4 (Virtual Valuations CA (VVCA)).
Each Bidder i submits a valuation function vi. The
mechanism computes an allocation a that maximizes the
weighted SW

SW�
�4a5=

n
∑

i=1

6�ivi4a5+�i4a570 (6)

Here, �i are positive and �i4a5 = c8i1b9 for all alloca-
tions that give Bidder i exactly bundle b (where b can be

any bundle of items, including the empty bundle). The �i

and c8i1b9 are parameters chosen by the auction designer.
The payment rule is

ti =
1
�i

[

∑

j 6=i

6�jvj4a−i5+�j4a−i57

−
∑

j 6=i

6�jvj4a5+�j4a57−�i4a5

]

0 (7)

VVCAs are a family of mechanisms, parameterized by
the vectors � and �. VCG is the special case where for
all Bidders i, �i = 1 and �i4 · 5 = 0. A VVCA can be
thought of as the VCG mechanism run on bidders’ virtual
valuations (by analogy to Myerson’s single-item auction)
rather than their actual valuations: the mechanism replaces
the valuation of Bidder i, vi4a5, with the virtual valua-
tion �ivi4a5 + �i4a5. In other words, �ivi4a5 + �i4a5 can
be viewed as a virtual valuation, 6ṽi7

�
� , of Bidder i for

allocation a. This technique allows one to apply qualita-
tive aspects of the ideas of Myerson’s revenue-maximizing
single-item auction to CAs: the revenue can be increased
by setting reserve prices and boosting the valuations of
weak bidders (that is, bidders who are likely to have low
valuations). Furthermore, the VVCA parameters enable the
designer to favor any desired form of bundling (via favoring
the allocations that exhibit such bundling), thereby cover-
ing also the third of the reasons listed above for why the
VCG does not maximize revenue. All of these levers can
increase competition in the auction and can increase the
seller’s expected revenue.

The VVCA mechanism adds c8i1 b9 to the value of the
objective on allocations where Bidder i gets bundle b.3

Obviously, the probability of Bidder i winning b is increas-
ing in c8i1 b9. The proof of incentive compatibility of VVCAs
follows that of the VCG.

Impossibility of nonlinear virtual valuations. In the
Myerson auction, a bidder’s virtual valuation can be a
nonlinear function of her valuation. However, we defined
VVCAs in a way where a bidder’s virtual valuation is
an affine transformation of the bidder’s valuation. Does
this unnecessarily restrict the space of mechanisms that we
should consider? The answer is no, as will now be shown.

Incentive compatibility imposes limitations on the virtual
valuations that can be used in a mechanism. In one-item
auctions, it is sufficient for the virtual valuations ṽi to be
increasing in vi (Myerson 1981). However, this is not suf-
ficient in CAs. Lavi et al. (2003) showed that under cer-
tain natural assumptions, every incentive compatible CA
is almost4 an affine maximizer. Affine maximizers were
introduced by Roberts (1979). He proved that they are the
only ex post incentive compatible mechanisms over unre-
stricted domains of valuations. The valuations in CAs are
not unrestricted because there are no externalities, there is
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free disposal, and vi4�5= 0. Therefore the seminal results
of Roberts do not apply here.

Definition 2.5 (Affine Maximizer Auction (AMA)).
Each Bidder i submits a valuation function vi. The alloca-
tion, a, is computed to maximize5

SW�
�4a5=

n
∑

i=1

�ivi4a5+�4a50 (8)

Here, �i are positive numbers and � is an arbitrary function
of allocation. The payments are

ti =
1
�i

[

∑

j 6=i

�jvj4a−i5+�4a−i5−
∑

j 6=i

�jvj4a5−�4a5

]

1

where

a−i = arg max
a

[

∑

j 6=i

�jvj4a−i5+�4a50

]

(9)

It is easy to see that VVCA mechanisms are a strict
subset of AMAs: a VVCA is an AMA with the restriction

�4a5=
∑

i

�i4ai50

The results of Lavi et al. (2003) imply that every “reason-
able” incentive compatible and individually rational gen-
eral CA mechanism is an AMA. (Non-AMAs might be
incentive compatible for some specific distributions of valu-
ations, but only AMAs are incentive compatible for all CA
settings.) Since AMAs transform allocation values affinely,
among mechanisms that are based on virtual valuations
(transformations of valuations rather than transformations
of allocation values) only those that use affine virtual val-
uations (ṽi affine in vi) are incentive compatible for all
CA settings. The VVCA family captures all such virtual
valuations, and is thus the most general class of incentive
compatible CA mechanisms that use virtual valuations.

Bidder-specific reserve prices. Despite the simple form
of VVCA, controlling the parameters 4�1�5 is a pow-
erful tool. For instance, it allows the auction designer
to enforce or prevent any bidder from receiving a cer-
tain bundle. Another important property of the VVCA is
that it allows for bidder-specific reserve prices. (Bidder-
specific reserve prices are, in effect, also used in Myerson’s
revenue-optimal one-item auction. Recall that the item is
sold only if the virtual valuation of the winning Bidder
i is above 0, which sets a reserve price for this bidder
to ṽ−1

i 405). However, the reserve price mechanism does not
generalize straightforwardly to arbitrary CAs. The standard
way to set reserve prices in CAs is to submit fake bids by
the seller. That approach does not support bidder-specific
reserve prices. In contrast, the VVCA does support bidder-
specific reserve valuations.

2.6. Logarithmic Approximations of the
Optimal CA for Restricted Valuations

The problem of designing high-revenue CAs can be ana-
lyzed in two different frameworks:

1. Average case analysis is the standard approach in
designing high-revenue auctions, in economics and com-
puter science. In this setup, we assume that the valuations
of the bidders are drawn from some underlying probability
distributions (not necessarily the same for different bid-
ders), and the auction designer knows the distributions (but
not the exact draws, i.e., valuations, of the bidders). We
do not assume that the bidders know each others’ distribu-
tions. In this framework, the goal is to construct an auction,
which yields high revenue on average with respect to the
distributions.

2. Worst-case analysis of the problem has sometimes
been used in computer science: in that framework, the
objective is to construct an auction with worst-case perfor-
mance guarantees (Goldberg et al. 2001, Guruswami et al.
2005). The advantage is that the design typically does not
require complete knowledge of the underlying distributions,
although the mechanisms are not completely prior free.
A disadvantage is lower expected revenue. An essential fea-
ture of auctions with worst-case performance guarantees is
randomization: in many cases, deterministic auctions per-
form far worse than randomized ones with respect to the
worst-case performance objective (Goldberg et al. 2001).
In this paper, we mainly take the more standard approach of
average-case analysis. However, in this section, we present
results for the average and worst cases.

Specifically, in this section, we study two important sub-
classes of CA setting: additive valuations and unlimited
supply. For each of the two settings, we derive VVCAs
that guarantee average-case and worst-case revenue that are
provably within a bound of optimal.

These results suggest that VVCAs are a reasonably pow-
erful class of CAs for revenue maximization, and as such
these results serve to further motivate the study of VVCAs
as one of the mechanism classes we will study for AMD
later in the paper. These results may also be of independent
interest, and generalize prior worst-case results.

2.6.1. Additive Valuations. In this section we study
the special case where valuations are additive (∀ i ∈ N ,
∀b ∈ 2G1 vi4b5 =

∑

g∈b vi48g95). In addition, we make the
following mild natural assumptions about the priors:

1. Define l to be the lowest possible valuation of any
bidder for any individual item. We assume l > 0, and that
the auction designer knows l.

2. Define h to be the highest possible valuation of any
bidder for any individual item. We assume that the auction
designer knows h.

We now construct a CA, which guarantees a frac-
tion 1/42 + 2�log 4h/l5�5 of the revenue of the opti-
mal CA, even in the worst case. This generalizes the result
of Guruswami et al. (2005), which was for bidders who
only demand one item each.
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Theorem 2.2. Consider VVCAk, which is a VVCA, where
the seller submits a bid of l · 2k for every item. Formally,
the VVCAk parameters are:

1. �i = 1 for all Bidders i and
2. �i4b5= −�b� · l ·2k for all bundles b (including single-

item bundles), where �b� is the number of items in b, for
all Bidders i.

Consider mechanism M that selects k uniformly at ran-
dom from 80111 0 0 0 1 �log 4h/l5�9 and runs VVCAk. M is ex
post incentive compatible, ex post individually rational, and
for every given set of valuations v yields expected revenue
at least

ROPT

2 + 2�log 4h/l5�
1

where ROPT is the revenue of the optimal CA.

The same bound can also be made to hold in the average-
case framework with a deterministic CA.

Corollary 2.1. There exists k such that VVCAk yields a
fraction 1/42 + 2�log 4h/l5�5 of the revenue of the optimal
auction on an expected revenue basis.

The right value of k can easily be found by enumeration
of all VVCAk and evaluating their expected revenues.

We obtained the logarithmic bounds in Theorem 2.2 and
Corollary 2.1 by comparing the revenue of our auctions
to the welfare of an efficient allocation, SW4aEFF5, which
obviously bounds the revenue of any individually rational
auction. This proof technique cannot get us past the loga-
rithmic approximation.

Theorem 2.3. For some additive-valuations auctions,

Ev6ROPT7

Ev6SW4aEFF57
¶
(

1 −
1
h/l

)

1
ln4h/l5

0

The above theorem is also of independent interest. It
shows how much of the surplus the designer is unable to
capture due to incomplete information about the bidders’
valuations, even if he had a prior over them (as OPT does
in the theorem).

2.6.2. Unlimited Supply. Another special case of the
optimal CA design problem is the case when items are
available in unlimited supply: the auctioneer is still selling
items g11 0 0 0 1 gm, but each item is now available in an infi-
nite number of copies. One classic example of unlimited
supply is the sale of digital goods: music files, video files,
electronic books, etc. There are other examples as well,
such as the nonexclusive licensing of patents.

In this setting, we assume that each bidder is interested
in at most one copy of every item. This is not a restrictive
assumption, since the preferences of a bidder who wants
several copies of the same item can be expressed by adding
these copies to the set of items G. As in §2.6.1, we assume
that the lowest and highest possible valuation (for any bid-
der for any bundle), l and h, are known by the auction
designer. We do not assume that valuations are additive.

Since items are available in unlimited supply, there is no
competition among the bidders: under the efficient alloca-
tion every bidder is allocated her most-wanted bid. Due to
free disposal, the allocation that allocates the grand bun-
dle G (i.e., the bundle that includes a copy of each item)
to each bidder is also efficient. This observation means
that the design is all about reserve pricing, which, in turn,
enables us to prove the following.

Theorem 2.4. Let VVCA′k be the VVCA with
1. �i = 1 for all Bidders i,
2. �i4G5= −l · 2k for all Bidders i, and
3. �i4b5= −� for all b ⊂G for all Bidders i.
Consider mechanismM ′ that uniformly randomly selects k

from 801 0 0 0 1 �log 4h/l5�9 and runs VVCA′k. M ′ is ex post
incentive compatible, ex post individually rational, and for
every given set of valuations, v yields expected revenue
at least

ROPT

2 + 2�log 4h/l5�
1

where ROPT is the revenue of the optimal auction.

Again, the same bound can be obtained with a determin-
istic mechanism in the average-case model:

Corollary 2.2. There exists k such that VVCA′k yields
fraction 1/42 + 2�log 4h/l5�5 of the revenue of the optimal
auction on an expected revenue basis.

The right value of k can easily be found by enumerating
all VVCA′k and evaluating their expected revenues.

3. Automated Design of High-Revenue
CAs for General Valuations

In §2.6, we designed auctions with logarithmic competi-
tive revenue ratios for settings, where the valuations had
particular special structure. On the positive side, the ran-
domized mechanisms in that section—unlike the Myer-
son auction—require no knowledge of the priors, fi, on
bidders’ valuations except a lower bound l and an upper
bound h on the support. On the negative side, logarith-
mic guarantees on revenue are quite weak from a practical
revenue-maximization perspective, and superior mecha-
nisms can be constructed if the designer has knowledge
about the priors—using the techniques we will develop in
this section.

In this section, we will study the design of high revenue
deterministic CAs for general valuations. We first prove
that any completely prior-free mechanism—which does not
even know l and h—can do arbitrarily poorly in terms of
revenue.6

Theorem 3.1. For every completely prior free, incentive
compatible, individually rational deterministic CA mecha-
nism M , and every � > 0, there exist distributions of valu-
ation functions V such that

Ev4RM4v55

Ev4OPT4v55
< �0
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Here, OPT4v5 denotes the revenue-optimal mechanism
and Ev denotes the expectation over V . This holds even for
auctions where there is only one item for sale.

Theorem 3.1 shows that in order to construct a high rev-
enue mechanism, we need to use some knowledge about
the priors over bidders’ valuations. Therefore we will focus
on mechanisms that are designed using information about
the prior.

In this section we suggest several automated approaches
for constructing such mechanisms. We focus on average-
case analysis.

We do not assume that the priors are given explicitly.
This is crucial in the CA setting because writing down
the complete prior explicitly is infeasible: even in the dis-
crete case the support of any bidder’s valuation distribu-
tion is doubly exponential (z2m where m is the number of
items and z is the number of possible values that the bid-
der might have for any given bundle). Our algorithms only
use samples from the prior, which enables sparse sampling.
This is in contrast to prior experiments on AMD for CAs
by Conitzer and Sandholm (2004, 2003) that assumed an
explicit representation of the prior and thus only scaled to
a couple of items and bidders, and most restrictively, only
a couple of possible types (valuation functions) per bidder.
Another point of deviation from that earlier work is that
we do not assume that the valuation space is discretized.
Furthermore, we present custom algorithms for the problem
while their setting, with the explicit prior, was amenable
to solving—in the small—by standard mixed-integer pro-
gramming packages.

3.1. Our Approach: Searching for Good
Auction Parameters

The main idea in our paper is that we search computation-
ally for good parameters of the auction within some class
of auctions, where every auction is incentive compatible
and individually rational. Thereby we simplify mechanism
design down to the task of finding good parameters.

VVCA and AMA define families of mechanisms, param-
eterized by 4�1�5. Depending on the value of the param-
eters, the seller’s expected revenue may be greater or less
than in the VCG. The seller’s revenue (given the valua-
tions v) in VVCA is

R4�1�1 v5=

n
∑

i=1

ti4�1�1 v5= −

( n
∑

i=1

1
�i

)

SW�
�4v5

+

n
∑

i=1

vi4a5+

n
∑

i=1

1
�i

6SW−i7
�
�4v51 (10)

In this section, we will discuss the problem of finding
parameters that yield high revenue in expectation.

To illustrate this idea, let us first consider general AMAs.
The expected revenue is a function of the AMA parameters.
Thus the problem of designing a high-revenue auction is

reduced to a search for the maximum of expected revenue
in the AMA parameter space.

In the experiments, we evaluate parameter vectors by
sampling valuations from the prior distributions (every
sample is one complete valuation function for each bid-
der). The expected revenue of the AMA with a given set
of parameters is estimated by running that AMA on each
sample and averaging. Our approach can also be used in
settings where the designer may not know—or may be
unable to fully communicate—the actual distributions, but
can provide samples.

3.2. Theory of Searching for Good
Auction Parameters

The following theorem states that Ev6R4�1�1 v57 is a “well-
behaved” function of 4�1�5.

Theorem 3.2. The expected revenue of the AMA (and con-
sequently VVCA) is continuous and almost everywhere dif-
ferentiable in � and �.

This suggests the use of numerical methods such as
hill climbing for estimating locally optimal values of those
parameters. That requires evaluating Ev6R4�1�1 v57 for
given 4�1�5, which can be estimated by sampling valua-
tions from the distributions fi.

Finding R4�1�1 v5 for a given set of valuations v
requires determining the AMA (6). Any optimal CA winner
determination subroutine can be used here: the affine max-
imization problem can be converted into the standard CA
winner determination problem by preprocessing the bids
with the multiplicative and additive terms. We will discuss
choices of winner determination subroutines in the context
of specific auction design algorithms in §3.3.7

The main problem in optimization is that the number of
parameters in 4�1�5 is exponential in the number of items
for sale: � is just a vector of size n, but the length of � is

n2m

in VVCA (for every bidder there is one parameter for every
bundle, including the empty bundle) and

4n+ 15m

in AMA (one parameter for every allocation).
It would be helpful if we could discard some choices of

�8i1b9 (by which we mean the variable �i4b5 corresponding
to a specific b in VVCA) from the search space in advance,
thereby simplifying the optimization process. Unfortu-
nately, the theorem below shows that there cannot exist a
polynomial-time algorithm capable of always determining
the optimal value for any �8i1b9, even if the valuations of
the bidders are given. Moreover, no polynomial-time algo-
rithm can always determine whether the mechanism with
�8i1b9 set to some particular value �1 yields higher revenue
than the mechanism with �8i1b9 set to �2.
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Figure 1. Three-dimensional projection of the expected
revenue surface in 4�1�5 space.
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Note. The details of the setup behind this figure are explained later in the
experimental section, §3.4.

Theorem 3.3. For any parameter �8i1 b9 in VVCA and
any pair of values of this parameter (�1 and �2), there
does not exist an algorithm that determines whether
R4�1 4�−8i1 b91�155 > R4�1 4�−8i1 b91�255 in polynomial time,
even if the valuations v of the bidders are given, unless
P =NP . (Here, �−8i1 b9 denotes the set of all � parame-
ters except for �8i1 b9.) The same is true for any parameter
in AMA.

Theorem 3.3 shows that there is no easy general method
to decide whether one set of parameters is better than
another. Therefore, there is no easy way to fix some of the
parameters up front without compromising optimality. Any
search algorithm that guarantees the optimum for every
distribution of valuations must run optimization over all
parameters.8

A related problem that also makes optimization compli-
cated is that the surface of Ev6R4�1�1 v57 is nonconvex
even in simple cases and can have ridges, see Figure 1.
Therefore, local search algorithms can get stuck in local
optima, which will be borne out in the experiments.

3.3. Viable Algorithms for Searching for
Good Auction Parameters

The theory above curtails the space of viable algorithms for
our task. In this section, we will introduce such algorithms.

If the number of items and bidders is small, we can run
grid enumeration over all parameters and find an auction
that is optimal (modulo grid discretization), as we will do
in the small-scale experiments later in the paper. In con-
trast, for larger problems, we only search for a local opti-
mum (because we are forced to search over the entire set of
parameters by Theorem 3.3). We conduct this search using
forms of hill climbing, suggested by Theorem 3.2.

We also tackle the complexity by introducing subfamilies
of AMAs that have fewer parameters to optimize over, but

which still produce high revenue as our large-scale experi-
ments will show.

We are now ready to present our first algorithm.

Algorithm 1 (BLAMA: Basic local optimization of AMA)
1. Sample the valuations from the prior distributions.
2. Start at some known AMA (typically the VCG or one

of the AMAs with average-case performance guarantees
from §2.6). Evaluate the mechanism at the sample points.

3. Run (Fletcher-Reeves conjugate) gradient ascent
[Stoer and Bulirsch 1980] in the AMA parameter space
from the starting point.

Algorithm 1 is still susceptible to the problem that we
may have a prohibitive number of optimization parameters.
For one, in order to compute the gradient for choosing the
direction of the climb at every step, the algorithm must
consider an exponential number of parameters.

To address this problem, we introduce new algorithms
that guess the climbing direction based on insights drawn
from the fact that we are in a CA domain. The idea of
the first of these algorithms is from Equation (9), that is,
the payment rule of AMA. If the payment, ti, of Bidder i
in allocation a is much lower than her valuation for a,
one should expect that the her payment could have been
increased.9 The payment can be increased directly only by
(1) decreasing �4a5, (2) increasing �4a−i5, or (3) modifying
the � parameters.

Algorithm 2 (ABAMA: Allocation boosting of AMA)
1. Sample the valuations from the prior distributions.
2. Start at some known AMA (typically the VCG or one

of the auctions from §2.6).
3. For every sample point, compute the revenue loss on

the winning allocation a (we call this variant of the algo-
rithm ABAMAa) or the second-best allocation (we call this
variant of the algorithm ABAMAb). (The revenue loss from
a bidder is the difference between the bidder’s valuation
and her payment. The revenue loss is the sum of the bid-
ders’ revenue losses.) Note that each allocation may be
associated with multiple samples. Let the revenue loss of an
allocation be the sum of the revenue losses of the samples
associated with the allocation. Make a list of allocations in
decreasing order of revenue loss.

4. Choose the first allocation, a, from the list. If the list
is empty, exit.

5. Run (Fletcher-Reeves conjugate) gradient ascent in
the 8�1�4a59 subspace of the AMA parameter space; leave
the other parameters unchanged. If the values of 8�1�4a59
did not change (i.e., we cannot further improve the revenue
by modifying 8�1�4a59), remove a from the list and go to
Step 4. Otherwise, go to Step 3.

The only parameters considered by Algorithm 2 at each
step are the � and � corresponding to the winning or
second-best allocations. In practice, the number of those
allocations is small, which dramatically decreases the num-
ber of parameters in consideration.
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A computational issue in algorithms that optimize over
the entire AMA parameter space is that in the input to the
winner determination, the parameter � can be different for
every possible allocation, necessitating the explicit enumer-
ation of all 4n+ 15m allocations in the winner determina-
tion. This further hinders the scalability.

To mitigate this problem, and to search in a smaller
number of parameters than the number of parameters that
AMAs have, we can focus on VVCAs instead (a VVCA has
“only” n2m parameters, one for every bidder-bundle pair).
The parameters of VVCA are valuation (and not alloca-
tion) specific, so they can simply be preprocessed in before
winner determination. Thus, any standard winner determi-
nation subroutine can be used: there is no need to explicitly
enumerate all allocations, so each iteration of the auction
design algorithm will run faster. For example, an integer
programming package such as CPLEX can be used. Alter-
natively, one could use the dynamic program of Rothkopf
et al. (1998), which runs in time O4n10595 time if the input
is represented in the flat way (one value for each bidder-
bundle pair) (Sandholm 2002).

Other than those differences, the design algorithm for
VVCAs is similar to Algorithm 2 for AMAs.

Algorithm 3 (BBBVVCA: Bidder-bundle boosting of
VVCA)

1. Sample the valuations from the prior distributions.
2. Start at some known VVCA (typically the VCG or

one of the auctions from §2.6).
3. For every sample point, compute the payments of

winning bidders. For every Bidder i winning bundle b and
paying ti, compute vi4b5− ti, i.e., the revenue loss for that
bidder-bundle pair. Sum up the revenue losses over the sam-
ple and make a list of bidder-bundle pairs in decreasing
order of the revenue loss.

4. Choose the first bidder-bundle pair, 8i1 b9, from the
list. If the list is empty, exit.

5. Run (Fletcher-Reeves conjugate) gradient ascent in
the 8�1 c8i1b99 subspace of the VVCA parameter space
(8i1 b9 is the bidder-bundle pair, which incurs the highest
revenue loss). Leave the values of all the other parameters
unchanged. If the new values of 8�1 c8i1b99 do not change
(i.e., we cannot improve the revenue further by modifying
8�1 c8i1b99), remove 8i1 b9 from the list and go to Step 4.
Otherwise, go to Step 3.

3.4. Experiments

We conducted computational experiments with our CA
design algorithms. In §3.4.1, we present experiments that
compare the revenue of the techniques to each other, to grid
search techniques, and to VCG. In §3.4.2, we present high-
accuracy experiments to design the best mechanism for
the canonical setting of two bidders, two items, and addi-
tive uniformly drawn valuations. In §3.4.3, we study the

scalability—in terms of computation time and revenue—
of the techniques to larger numbers of items and bid-
ders. Finally, §3.4.4 studies the anytime performance of the
design algorithms.

3.4.1. Revenue Compared to VCG and Iterated Grid
Search-Based Parameter Optimization. We compared
the four local search algorithms described in this paper—
BLAMA, allocation boosting AMA (ABAMA variants a
and b), and BBBVVCA—against the VCG and against iter-
ated grid search algorithms for optimizing the mechanism
parameters.

The first iterated grid search algorithm, AMA∗, opti-
mizes AMA parameters as follows. In the first iteration,
each dimension of the parameter space is discretized into
k values. The algorithm loops over all the grid points and
evaluates the auction at each point. Then, the grid search is
repeated but within a hyperrectangle that is centered around
the optimal point from the previous iteration, has one kth
the size in each dimension, and still has k discrete values
in each dimension. This process is repeated a given number
of times to narrow down on a good AMA parameter vector.

The second iterated grid search algorithm, VVCA∗, works
analogously but optimizes VVCA parameters instead.

In each iteration of a grid search, a training set of val-
uation vectors is drawn (each vector includes a valuation
function for each bidder), and each grid point is evaluated
on that training set. Once all the iterations of the increas-
ingly focused grid search have been completed, we evaluate
the final auction parameter vector on a separate larger test
set of valuation vectors.

One issue that these experiments uncovered is that the
mechanism design algorithm—be it grid search or one of
the local search methods—will eventually overfit the auc-
tion parameters to the training set. In fact, in the experi-
ments in this section, already around the third iteration of
grid search, the revenue of the auction stopped increasing
(and often decreased somewhat) when evaluated on the test
set. Increasing the size of the training set made this prob-
lem significantly less pronounced, as one would expect. In
contrast, the time it takes to evaluate a grid point grows
roughly linearly with the size of the training set. So, there
is a trade-off.

We ran the local search methods to local optimum on
the training set. A single training set throughout each run
of each local search was used, but different training sets
across different runs. Finally, we evaluated the mechanism
parameter vectors on the test set.

The experiments in this section have two items, g1 and
g2, and two bidders with valuation functions, v1 and v2,
respectively. Valuations v14g15 and v14g25 are independently
drawn from distribution F1. Valuations v24g15 and v24g25 are
independently drawn from distribution F2. The valuation of
Bidder 1 for the bundle of two items is given by v14g125=

v14g15+v14g25+c1, where c1 is a complementarity param-
eter drawn from distribution C. Analogously, v24g125 =
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v24g15+ v24g25+ c2, where c2 is also independently drawn
from C. The results for various distributions F1, F2, and C
are given in Table 1. The columns correspond to the three
different settings studied in this section. The first three rows
specify the setting (distributions F11 F2, and C) and the last
eight rows give the estimates of the expected revenue of
the mechanisms found by the different algorithms.

All of the algorithms find mechanisms that generate sig-
nificantly more revenue than the VCG—even in symmetric
settings. All four local search techniques get stuck in local
optima. Nevertheless, they close more than half of the rev-
enue gap between VCG and the best AMA. The four tech-
niques yield very similar revenue here, and have selective
superiority across the settings.

Reducing the dimensionality of the search problem by
fixing one � parameter and one � parameter—something
that can be done without loss of generality as was discussed
in §3.2—did not affect revenue much for the local search
methods or for the iterated grid search methods.

To provide visual insight into the problem, Figure 1 illus-
trates the AMA revenue surface as a function of the AMA
parameters in Setting I. To visualize the revenue surface
that is a function of two � parameters and nine � parame-
ters in just three dimensions, we fixed both �’s and all �’s
except for the following. The parameter �00 favors alloca-
tions where both items are kept by the seller, and �10 favors
allocations where item 1 is allocated to Bidder 1 and the
other item is kept. The analogous parameters �01 (referring
to Bidder 1 and item 2), �20 (Bidder 2 and item 1), and
�02 (Bidder 2 and item 2) are set equal to �10. The figure
shows revenue on the training set.

We also studied the design of a bidder-symmetric AMA,
that is, one where we force the additional equalities �01 =

�02, �10 = �20, �12 = �21, and �11 = �22. We call the algo-
rithm that searches through the remaining space of � and
� parameters—again using iterated grid search—AMA∗

bsym.
Here, fixing one of the remaining open lambda parameters

Table 1. Revenue performance of the algorithms.

Setting I Setting II Setting III

F1 U60117 U 61127 U 61127
F2 U60117 U 61127 U 61157
C 0 U6−1117 U 6−1117
VCG 2/3 ≈ 006667 20405 20847
AMA∗ 0.860 (0.847) 0.868 (0.864) 2.76 (2.73) 2.77 (2.76) 4.24 (4.17) 4.16 (4.14)
AMA∗

bsym 0.872 (0.863) 0.862 (0.858) 2.78 (2.75) 2.78 (2.71) 3.74 (3.69) 3.75 (3.72)
VVCA∗ 0.866 (0.860) 0.869 (0.865) 2.77 (2.76) 2.75 (2.74) 4.24 (4.20) 4.21 (4.20)
BLAMA 0.786 (0.767) 0.786 (0.780) 2.63 (2.61) 2.63 (2.59) 4.08 (3.83) 4.03 (3.97)
ABAMAa 0.786 (0.784) 0.786 (0.784) 2.63 (2.62) 2.63 (2.62) 4.01 (3.83) 4.00 (3.79)
ABAMAb 0.787 (0.780) 0.786 (0.783) 2.63 (2.63) 2.63 (2.63) 4.02 (3.89) 3.99 (3.95)
BBBVVCA 0.776 (0.774) 0.775 (0.773) 2.62 (2.61) 2.61 (2.61) 4.01 (3.99) 4.05 (4.01)

Notes. The highest expected revenue over 10 runs is reported and the average expected revenue is reported in parenthesis. Training set size was 1,000 and
test set size 10,000,000. In each of the grid searches (AMA∗, AMA∗

bsym, and VVCA∗), five consecutively finer grids were used, each being a hyperrectangle
around the optimal parameter vector from the previous grid. At each grid resolution, each search dimension used five grid points. The results in italics are
for the variant where we fixed �1 = 1 and the first � parameter to zero. (For the earlier, nonitalicized results, we used a slightly different setup. Training
set size was 400 and test set size 250,000. For AMA∗ and VVCA∗, we used five grid points on each dimension and four iterations. For AMA∗

bsym, we used
10 grid points on each dimension and 3 iterations.)

would not be without loss of generality because the sym-
metry constraints already reduce the degrees of freedom.
Therefore, in the variant that tries to fix some parameters to
reduce the dimensionality of the problem (italicized results
in Table 1 and parameter vectors in Table 2), we only fix
�1 = 1.

Table 2 contains the AMA parameters discovered by the
algorithms for each of the three settings. The parameters
found by the different algorithms differ widely. This sug-
gests that there are a wide variety of mechanisms that are
almost optimal.

3.4.2. High-Accuracy Experiment to Design the Best
Mechanism for the Canonical Setting (Setting I). There
has been significant interest in revenue maximization in
Setting I, a canonical setting. In this section, we will there-
fore study that setting in more detail.

Since Setting I has additive valuations (complementarity
parameter C = 0), we can compare the revenue to running a
separate Myerson auction for each item.10 That mechanism
generates revenue 5

6 ≈ 00833 (Tang and Sandholm 2012).
AMA∗, VVCA∗, and AMA∗

bsym generate higher revenue than
that (Table 1). This proves that our mechanisms outper-
form separate Myerson auctions even though there is no
complementarity or substitutability. While this may seem
surprising, it is what one should expect in light of known
results in bundle pricing in catalog offers (Adams and
Yellen 1976, McAfee et al. 1989, Bakos and Brynjolfsson
1999). Bakos and Brynjolfsson (1999) proceed to analyze
this phenomenon in a setting with a large number of items
for sale, and point out that “the law of large numbers
makes it much easier to predict consumers’ valuations for
a bundle of goods than their valuations for the individual
goods,” and thus the seller can capture more of the sur-
plus by bundling. In Setting I, bundling the two goods and
running a Myerson auction on the bundle yields revenue
0.839 (Tang and Sandholm 2012). Our best mechanisms
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Table 2. AMA parameters computed by the various algorithms.

Setting Algorithm �1 �2 �00 �01 �02 �10 �20 �12 �21 �11 �22

I AMA∗ 1 1.28 2 0 1016 0 1019 1072 0069 1019 0081
AMA∗

bsym 1 1 1015 0 0 0 0 0005 0005 0033 0033
VVCA∗ 1 1.09 1028 0066 0066 0072 0063 0009 0 0039 0030
BLAMA 1 1.00 0016 0016 0016 0016 0016 0 0001 0031 0032
ABAMAa 1 0.97 0005 0005 0005 0005 0005 0 0005 0033 0037
ABAMAb 1 0.99 0035 0035 0035 0035 0035 0 0003 0035 0036
BBBVVCA 1 1.00 0062 0044 0 0062 0062 0 0044 0070 0067

II AMA∗ 1 1 1025 1025 1025 1025 1025 0 0 0 0
AMA∗

bsym 1 1 2095 1053 1053 10485 1048 0027 0027 0044 0044
VVCA∗ 1 1.43 3050 2025 1088 2025 1088 0063 0063 1052 0
BLAMA 1 0.99 0028 0028 0028 0028 0028 0002 0 0056 0057
ABAMAa 1 1.03 0019 0019 0019 0019 0019 0008 0 0067 0057
ABAMAb 1 1.00 0060 0060 0060 0060 0060 0 0002 0060 0060
BBBVVCA 1 0.97 0092 0092 0 0092 0056 0 0056 0092 1006

III AMA∗ 1 0.72 1097 2016 1034 2009 1047 0 0002 1009 0034
AMA∗

bsym 1 1 5014 1070 1070 1070 1070 0060 0060 0003 0003
VVCA∗ 1 0.88 3088 2063 1038 2075 1025 0025 0 1088 0006
BLAMA 1 0.77 0030 0030 0030 0030 0030 0006 0005 1008 0
ABAMAa 1 0.62 1024 1024 1024 1024 1024 0 0081 1024 0097
ABAMAb 1 0.57 0044 0044 0044 0044 0044 0 0014 0054 0044
BBBVVCA 1 0.69 14076 14076 13046 14076 0 13046 0 14076 14027

Notes. The parameters computed by the variant that fixed �1 = 1 and the first lambda to zero are shown, that is, the solution corresponding to the italicized
revenue numbers from Table 1. Many parameter vectors had negative lambdas; for readability, we scaled the lambdas additively within each parameter
vector so the smallest lambda equals zero; this is without loss of generality as discussed earlier in the paper. (For AMA∗

bsym that would not be without loss
of generality, so there we did not fix any lambda. To make the AMA∗

bsym parameter vector readable and comparable to the others, we simply constrained
its lambdas to be nonnegative during the iterated grid search.)

yield higher revenue than that, so they do more than pure
bundling with an optimal reserve price.

In a mixed bundling auction (Jehiel et al. 2007), there is a
fake bidder who is only interested in the allocations where
the entire set of items is allocated to any one bidder. The
resulting auction works as if it gave a discount for a bid-
der who wins the grand bundle. The highest-revenue mixed
bundling auction for Setting I yields revenue 0.786. Mixed
bundling auctions can also be complemented with reserve
prices, which are defined by further including the seller into
consideration. This class is called a mixed-bundling auction
with reserve prices 4MBARP5 (Tang and Sandholm 2012).
In an MBARP, the seller submits a phantom bid of price a
on item 1, a phantom bid of price b on item 2, and a phan-
tom bid of price a+ b on the bundle; furthermore, there is

Table 3. AMA parameters and expected revenue in our high accuracy experiment for Setting I.

Expected
�1 �2 �00 �01 �02 �10 �20 �12 �21 �11 �22 revenue

Optimal MBARP 1 1 10154 00577 00577 00577 00577 0 0 00265 00265 008705
↓

ABAMAb 1 0098843 10154 0050890 0051606 0051280 0052273 0001729 0001842 0024118 0025692 008744
↓

Enforcing symmetries
and rounding 1 1 1015 005 005 005 005 0 0 0025 0025 008741

↓

Iterated grid search 1 1 10135 00500 00500 00500 00500 0 0 00225 00225 008744

Notes. For displaying in this table, we round double-precision floating-point variables to five decimals. Given the test set size, there may be some amount
of inaccuracy in the last reported digit of the expected revenue.

an extraneous preference of value c to allocate both items
together to either one of the bidders. MBARPs are a subset
of �-auctions, which are a subset of VVCAs, which are
a subset of AMAs. Tang and Sandholm (2012) derived an
analytical formula for MBARP revenue as a function of a,
b, and c, and found the optimal MBARP for Setting I. It is
shown in the first row in Table 3.

We conducted a high accuracy experiment with a train-
ing set of 40,000 and a test set of 40,000,000 in order to
find a high-revenue AMA for Setting I. We ran each of our
local search algorithms starting from the optimal MBARP
parameter vector. ABAMAb generated the highest-revenue
parameters. We then manually enforced certain equalities
(item and bidder symmetry) and did some rounding to
make the AMA “nicer,” as detailed in Table 3. As expected,
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this caused the expected revenue to drop slightly. Finally,
we conducted three rounds of iterated grid search, vary-
ing the three parameters �00, �01 = �02 = �10 = �20, and
�11 = �22 in each iteration (we kept �12 = �21 = 0 without
loss of generality). This brought the revenue back up to
what it was before we enforced the “niceness” (within the
precision measurable on the test set).

We then ran each of our four local search-based algo-
rithms on the final AMA parameters—without enforcing
any symmetry or niceness constraints. Some of them did
not change the parameter vector at all. Others improved the
parameter vector slightly with respect to the training set,
but decreased revenue on the test set. This suggests that we
have reached a local optimum (within precision used in our
algorithms), and the experiments from the previous section
suggest that there is no better solution in the entire AMA
search space. (Naturally, it may be possible to refine the
AMA parameters further by searching additional digits of
precision while using an even larger training and test set.
We ran the final grid search on the aforementioned three
lambda parameters down to changes of 0.005.)

We also ran an iterated grid search to find the highest-
revenue item-symmetric bidder-symmetric VVCA for Set-
ting I using the high-accuracy training and test sets. In
that experiment, �1 =�2 = 1, �14�5= �24�5= 0, and we
varied the two parameters �148195 = �248195 = �148295 =

�248295 and �14811295 = �24811295. In each run, we used
five consecutively finer grids, and in each grid, each dimen-
sion had nine grid points. Over 10 runs on different training
sets, the highest revenue on the test set was 0.8703 (the
associated AMA parameters are shown in Table 4, and are
very close to those of the optimal MBARP in Table 3)
and the average was 0.8702. These are slightly below the
best achieved with the optimal MBARP, but within numer-
ical tolerance given the sizes of the training and test sets.
At the same time, these are significantly lower than the
AMA revenue in Table 3, 0.8744. Interestingly, this suggest
that in Setting I, generalizing the mechanism design from
MBARPs to VVCAs does not yield additional revenue, but
generalizing further to AMAs does.

It is well known that in some CA settings, randomized
mechanism yield higher revenue than deterministic ones.
The best achievable revenue in Setting I is unknown. It is
bounded above by the revenue that the seller could extract
if she knew the bidders’ valuations exactly (that is, SW),
which is 4

3 ≈ 1033. In this paper, we focus on determinis-
tic AMAs, and the experiments suggest that we have suc-
ceeded in generating an optimal one within the numeric
accuracy used.

Table 4. AMA parameters for the highest-revenue item-
symmetric bidder-symmetric VVCA found.

�1 �2 �00 �01 �02 �10 �20 �12 �21 �11 �22

1 1 1.149 0.574 0.574 0.574 0.574 0 0 0.264 0.264

If our AMA is indeed optimal, that means that bidder
and item symmetry (�1 =�2, �01 = �02 = �10 = �20, �11 =

�22, and �12 = �21) can be simultaneously imposed on the
AMA design here without compromising revenue.

3.4.3. Scalability Experiments. We also tested the
scalability of the algorithms to larger problems. In the rest
of the experiments, we will focus solely on the local search-
based algorithms because the grid search-based algorithms
do not scale due to a combinatorial explosion.11

We generated the problem instances for the scalability
experiments as follows. Each single item gj is assigned
a value vi4gj5 drawn from U60117. Then, each bundle B
containing two or more items is assigned the value

v4B5= cB +
∑

j∈B

vi4gj51

where cB is drawn from U6−�B�/m1 �B�/m7. Recall that m
is the total number of items. In addition, we check that the
valuations satisfy monotonicity (free disposal). If mono-
tonicity does not hold for a bundle, we add random noise
to the valuation until monotonicity does hold. We do this
by drawing a random number uniformly from 601 1

2 7, and
repeating as many times as necessary.

As described above, the valuations are symmetric in that
the same procedure is used to generate the valuations vi
for each Bidder i. We also consider a simple asymmetric
version of the distribution in which the valuations of each
Bidder i are multiplied by i.

In each of the experiments below, the algorithms sam-
pled 10 valuation functions for each bidder from the prior.
The fact that the distributions are sampled, rather than mod-
eled precisely, causes some strictly increasing curves (such
as SW when the number of bidders increases) to appear
nonmonotonic.

Scalability with respect to the number of bidders. Our
first scalability experiment tests the algorithms’ ability to
scale as the number of bidders grows. We fixed the number
of items to three and varied the number of bidders from 2
to 30. Figure 2 Left shows how the algorithms scale on the
symmetric instances and Figure 2 Right is for the asymmet-
ric instances. The run-times are not affected by the sym-
metry of the distributions. In both settings, BBBVVCA is
by far the fastest algorithm. This is partially due to the fact
that it has the fewest parameters. Also, BBBVVCA uses
CPLEX (or could use dynamic programming) as the winner
determination subroutine while the other algorithms need
to use allocation enumeration as explained above. At 30
bidders, BBBVVCA is about an order of magnitude faster
than ABAMAa and ABAMAb, and about two orders of
magnitude faster than BLAMA.

We are also interested in the algorithms’ economic per-
formance. Figures 3 and 4 show the expected revenue that
the auctions designed by the algorithms generate for sym-
metric and asymmetric distributions, respectively. Each of
the two figures contains four plots. The first row reports
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Figure 2. (Color online) Scalability as the number of bidders increases.
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absolute revenue and the second row reports revenue as
a multiple VCG revenue. The second column contains a
“zoomed-in” version of the plot to the left for readability.
In these graphs, we also plot the expected revenue gener-
ated by the VCG, and the SW (which is an upper bound
that is not actually achievable by any mechanism because

Figure 3. (Color online) Revenue of the mechanisms found by the algorithms on the symmetric distribution.
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Note. Social welfare (SW) and VCG revenue are also shown. The graphs on the right are “zoomed-in” versions of the graphs on the left.

the designer has incomplete information about the bidders’
valuations).

All of the algorithms improve revenue over the VCG. The
relative improvement is greatest when the number of bid-
ders is small and when the valuation distributions are asym-
metric. Intuitively, as the number of bidders increases—
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Figure 4. (Color online) Revenue of the mechanisms found by the algorithms on the asymmetric distribution.
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especially in the symmetric setting—there is more compe-
tition, and the competition drives the VCG (or any other
reasonable auction for that matter) to achieve high revenue.
In fact, Monderer and Tennenholtz (2005) have proven that
in the symmetric case, the VCG revenue is asymptotically
optimal as the number of bidders goes to infinity. Our exper-
iments also exhibit that phenomenon.

The fastest algorithm, BBBVVCA, does well in terms of
revenue compared to the other algorithms when the number

Figure 5. (Color online) Scalability as the number of items increases.
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of bidders is small, especially in the symmetric setting.
However, its relative revenue performance becomes poor as
the number of bidders increases. ABAMAa and ABAMAb
yield comparable revenue to BLAMA and they are signifi-
cantly faster than BLAMA. Perhaps surprisingly, BLAMA
yields relatively poor revenue in the asymmetric case when
the number of bidders is very small.

Scalability with respect to the number of items. Figure 5
shows how the algorithms scale with the number of items.
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Figure 6. (Color online) Revenue of the mechanisms found by the algorithms on the symmetric distribution.
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We fixed the number of bidders to three and varied
the number of items from 2 to 10. Again, we see that
BBBVVCA is by far the fastest. It may seem that the
run-time increases rapidly, but recall that the input size
increases exponentially with the number of items.

Figures 6 and 7 show the expected revenue that the auc-
tions designed by the algorithms generate for symmetric
and asymmetric distributions, respectively. The fastest algo-
rithm, BBBVVCA, does well in terms of revenue only in
the asymmetric case when the number of items is less than
four; as the number of items increases, BBBVVCA yields
hardly any additional revenue over the VCG. ABAMAa
and ABAMAb yield comparable—or higher—revenue than
BLAMA and they are significantly faster than BLAMA.

3.4.4. Anytime Performance. The results above sug-
gest that some of the algorithms are faster and yield lower
revenue while others are slower and yield higher revenue.
One can potentially achieve better trade-offs between run-
time and revenue by not running an algorithm to comple-
tion, but by using an interim solution. All of the algorithms
that we designed have the anytime property: they have a
solution available at any time, and the more time is allo-
cated to the algorithm, the better the solution it finds (until
it terminates).

Figure 8 demonstrates the anytime performance of the
algorithms. Two test instances were used. Both have seven
items and seven bidders. The first has valuations drawn
from the symmetric distribution (Figure 8 Left). The sec-
ond has valuations drawn from the asymmetric distribution
(Figure 8 Right). For each algorithm, the expected revenue
of the best mechanism it has found so far is plotted against
time. The expected revenue generated by the VCG mecha-
nism is represented as a flat line. In the symmetric setting,
all of the algorithms have selective superiority: which one
should be selected depends on how much time is available.
In the asymmetric setting, BLAMA is dominated but the
other algorithms have selective superiority.

4. Additional Related Research
We discussed the most closely related research in the body
of the paper. Here, we will discuss some additional inter-
esting related work.

Levin (1997) also studies the problem of designing
revenue-maximizing CAs, but he limits his analysis to the
case where the buyers’ preferences are strictly complemen-
tary. Moreover, he makes the highly simplifying assump-
tion that the buyers’ valuations are parameterized by a
single type, in addition to satisfying a number of techni-
cal conditions on the valuation distributions. In contrast,
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Figure 7. (Color online) Revenue of the mechanisms found by the algorithms on the asymmetric distribution.
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Figure 8. (Color online) The algorithms’ anytime performance.
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the approaches presented in our paper use much milder
assumptions on the valuations.

Bartal et al. (2003) develop incentive compatible auc-
tions that are not affine maximizers, focusing on multi-unit
CAs, where bidders desire a small number of units of each
item. They work in the worst-case framework and their
objective is efficiency.

In parallel with our work and independently, Hitt and
Chen (2005) studied mechanism design in a combinatorial

market. Their setting differs from ours in a number of ways.
First, they assume that the seller knows the valuations of all
of the types of buyers (as well as the market proportion of
each type), and is interested in finding prices, one for each
type of buyer, to optimize revenue. A second difference is
that their paper restricts attention to mechanisms where the
buyers are only allowed to choose a fixed number of the
items for a single fixed price.
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There has also been interesting related work subsequent
to the conference versions of our work (Likhodedov and
Sandholm 2004, 2005), but prior to the submission of our
journal version in 2008. We will discuss that research in
what follows.

Ledyard (2007) finds the revenue-maximizing CA in the
restricted setting of known single-minded bidders, that is,
setting in which each bidder only has value for one bundle
and that bundle is known to the seller.

Balcan et al. (2008b) study item pricing (bundle pricing
not allowed) in a setting where buyers may have combina-
torial valuations. In the unlimited supply setting, they get
a revenue approximation of O4logn + logm5, where n is
the number of items and m is the number of bidders. They
do not place any assumptions on the valuations, includ-
ing not even requiring monotonicity (that is, free disposal).
In our paper, we get a 42 + 2�log4h/l5�5 approximation,
where h and l are the highest and the lowest possible val-
uation, respectively. This result requires monotonicity, and
our mechanism is more general than item pricing.

Virtual valuations have recently been used in mechanism
design in novel ways. Hartline and Roughgarden (2008) use
them in settings where monetary transfers are not possible.
Chawla et al. (2007) study multi-item pricing in a setting
where the seller has priors, buyers have unit demand, and
the buyers’ valuations for the different items are indepen-
dent random variables. They present a constant approx-
imation algorithm for this problem that makes use of a
connection between this problem and virtual valuations.

Balcan et al. (2008a) use techniques from sample com-
plexity in machine learning to reduce problems of incen-
tive compatible mechanism design to standard algorithmic
questions, for a class of revenue-maximization problems.
For those problems, their technique enables one to con-
vert an optimal (or �-approximation) algorithm for an
algorithmic pricing problem into a 41 + �5-approximation
(or �41 + �5-approximation) for the incentive compatible
mechanism design problem, as long as the number of bid-
ders is at least O4�/�25 times a measure of the complexity
of the class of allowable pricings. They apply the results
to the problem of auctioning a digital good, to the attribute
auction problem, which includes a variety of discrimina-
tory pricing problems, and to the problem of item pricing
in unlimited-supply CAs. The work is in the prior-free set-
ting. The idea of using samples of some bidders to price
on other bidders was, to our knowledge, first applied to the
multi-item prior-free setting by Goldberg et al. (2001). That
work is different from ours in many ways. For one, they
study unlimited supply. An overview of those and other
revenue-maximization techniques is given by Hartline and
Karlin (2007).

Recently, Wu et al. (2008) studied nonlinear mixed-
integer programming to find bundle prices. That work falls
within the AMD framework and is thus related to ours, but
the setting is posted pricing while ours is an auction. Their
setting is also more restricted than ours. For example, the

consumers are only allowed to choose up to N goods out
of a larger pool of J goods.

5. Conclusions
The design of optimal—that is, revenue-maximizing—CAs
(CAs) is an important recognized elusive research problem.
The characterization is open even for two items and two
bidders. Recent results show that the problem of finding
an optimal CA (among all deterministic CAs in the setting
with discrete types of agents) is NP-complete. That casts
doubts on whether the manual approach of characterizing
the optimal CA can succeed because a concise characteri-
zation is unlikely to exist.

Therefore, in this paper we developed a new approach to
the problem creating high-revenue CAs. Instead of attempt-
ing a full characterization, we developed methods for
modifying rich parametric auction mechanisms to obtain
high-revenue CAs.

We introduced a general family of auctions, based on
the techniques of bidder weighting and allocation boost-
ing, which we call virtual valuations combinatorial auc-
tions (VVCAs). All auctions in the family are based on
the VCG mechanism, executed on virtual valuations that
are affine transformations of the bidders’ valuations. The
VVCA family is parameterized by the multipliers and con-
stants in the transformations. The VVCA family is a subset
of a more general parametric family called affine maximizer
auctions (AMAs). Each auction in the family is ex post
individually rational and dominant strategy incentive com-
patible. (Recent theory suggests that AMAs are almost the
broadest family with this required property.) Therefore the
problem of designing high-revenue CAs reduces to search
in the parameter space of AMA or VVCA. AMA has many
more parameters; our VVCA family is the restriction where
the auction has to be based on virtual valuations—an idea
motivated by Myerson’s optimal single-item auction. We
proved that VVCAs are the most general family of virtual
valuations-based CAs (except that the grand bundle could
have higher special multipliers for some bidders).

We first studied the design of VVCAs in a setting where
the designer does not know the bidders’ valuation distri-
butions (aka priors), but only knows an upper and lower
bound on valuations. We designed randomized VVCAs that
yield a logarithmic worst-case approximation and deter-
ministic VVCAs that yield a logarithmic average case
bound from optimal revenue, for the canonical settings of
(1) items in limited supply and additive valuations (this
generalizes earlier results by others that were for single-
unit demand) and (2) unlimited supply. We also proved that
in the former setting, there is a logarithmic gap between
the revenue of the optimal unrestricted mechanism and SW:
the seller fails to capture that much of the surplus due to
incomplete information about the bidders’ valuations (even
if he knows the priors).

In the main part of the paper, we developed algorithms for
automatically designing high-revenue CAs for unrestricted
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valuations. The algorithms work by searching in the param-
eter space of VVCA or AMA. They use knowledge about
the priors. This is in fact necessary in order to achieve
high revenue: we proved that any (deterministic) mecha-
nism that is completely prior free can yield an arbitrar-
ily small fraction of the revenue that an optimal mecha-
nism yields. More recently, others have shown that with a
known upper and lower bound on valuations, a logarithmic
approximation can be achieved but no better. A logarithmic
bound is not meaningful from the perspective of practical
revenue maximization, so we wanted to achieve revenues
drastically higher than that. Therefore we use priors. Our
algorithms do not require explicit representation of the pri-
ors as input. Rather, only samples from the priors are used,
which enables sparse sampling. This is a significant devi-
ation point from prior research on AMD and is a key to
scalability, because in CAs, each prior is doubly exponen-
tial even in the discrete case.

Our design of the algorithms was guided by properties
of the problem that we proved. First, the revenue of VVCA
and AMA is a continuous and almost everywhere differen-
tiable function, suggesting the use of hill-climbing meth-
ods for parameter search. On the negative side, we proved
that the revenue surface is nonconvex and showed that it
has ridges. We also proved that it is NP-hard to determine
whether one setting of any of the additive parameters is
better than another. It follows that one has to search over all
those parameters if one is interested in finding a provably
optimal solution.

Despite those negative results, near-optimal parameters
for VVCA and AMA can be found in settings with few
items and bidders. Experiments on small auctions showed
that they yield a drastic increase in revenue over the VCG.

The generated mechanisms are, to our knowledge,
the highest-revenue mechanisms known to date for their
respective settings. For example, for the canonical setting
of two bidders, two items, and uniformly drawn additive
valuations, we generated the highest-revenue mechanism to
date. Experiments suggest that it is an optimal AMA within
the precision used. Furthermore, the mechanism achieves
that while honoring bidder and item symmetry.

With larger numbers of bidders and items, locally opti-
mal (or merely suboptimal) parameters can be used within
VVCA and AMA. This can be done in a way that guar-
antees that revenue is no worse than that of the VCG,
by starting the hill climbing in parameter space from the
VCG. The best of our hill-climbing algorithms use eco-
nomic insights to navigate the search space efficiently to
enhance computational speed and revenue lift. Experiments
showed that they yield significantly higher revenue than
the VCG, that they scale much better than prior AMD
algorithms (which assumed discretized type spaces and an
explicitly represented prior), and that the more sophisti-
cated methods indeed tend to outperform the more obvious
ones in absolute run-time and anytime performance.

6. Future Research
A wealth of interesting future research questions remain.
For example, how much—and exactly how—should one
sample from the actual valuation distribution to construct
the sample distribution used by our AMD algorithms? The
run-time of the algorithms increases roughly linearly with
the number of samples. In contrast, if too small a sam-
ple is used, overfitting occurs. The algorithms could use,
for example, cross-validation (see, e.g., Mitchell 1997) to
detect and deal with such overfitting.

Another direction involves developing sparse represen-
tations of priors that are nevertheless expressive enough
to capture the essence of the particular auction setting to
which AMD is being applied. Sparse representations are
important for scalability because, as we discussed, the flat
representation of the prior is doubly exponential even in
the discrete case. Furthermore, it would be desirable to
also have sparse representations for the samples (bidders’
valuations) that the algorithms draw from the prior. Our
algorithms use winner determination as a subroutine, and
modern scalable winner determination algorithms based on
tree search/integer programming take advantage of such
sparseness.12 They can optimally solve very large instances
in practice (for a review of optimal winner determination
algorithms, see Sandholm 2006, and for a perspective on
state-of-the-art scalability, see Sandholm 2007, 2013).

There is also interesting work left on the organiza-
tion of the search of the parameter space. Although we
proved that any algorithm that guarantees optimality must
run optimization in an exponential number of parame-
ters in general, for special applications or special priors,
there might be more efficient algorithms for optimizing the
parameters—or there might even be good simpler mecha-
nism families to optimize over. It also remains interesting
to try to design better algorithms for the general case.

It would be interesting to take this paradigm to real-
world applications: estimating priors, designing mecha-
nisms, and comparing the different design algorithms on
real data.

From a theoretical and practical perspective, it would be
interesting to see whether one can draw additional insights
or learn some principles for enhancing revenue by study-
ing the mechanisms that have been automatically designed.
This may require tools for visualizing those mechanisms in
order to better understand them.

It would also be desirable to extend the AMD approach
to other settings. For example, it would be desirable to
automatically create auction mechanisms on the fly for sell-
ing tail keywords (that have little or no competition) in
sponsored search. There is also recent work on optimizing
bundling and bundle discounts in catalog sales (Benisch
and Sandholm 2011) and work on bundling items when the
bundles will be sold in a VCG (Kroer and Sandholm 2015).
As a different type of example, in combinatorial exchanges
with multiple buyers and multiple sellers—such as spec-
trum exchanges and airport landing slot exchanges—the
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two-sided asymmetric information about valuations hurts
efficiency (Myerson and Satterthwaite 1983), and we
believe that automated design algorithms that use priors to
minimize the inefficiency would be desirable.
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Appendix A. Proofs

Proof of Theorem 2.1.
Step I. Suppose there exists a Bidder i and nonempty bundles

a1
i and a2

i such that �i4a
1
i 5 6= �i4a

2
i 5. Without loss of generality

assume �i4a
1
i 5 < �i4a

2
i 5. Here, in Step I, we analyze the Case

a1
i 6⊂ a2

i . We will construct a valuation space where the allocation
rule that maximizes SW�4a54v5 violates weak monotonicity (W-
MON) (which is a necessary condition for incentive compatibility,
proved by Lavi et al. 2003).

Definition A.1 (W-MON). Suppose the allocation chosen under
valuations 4vi1 v−i5 of Bidder i and other bidders is a, and the
allocation chosen under valuations 4ui1 v−i5 is ã. A mechanism
satisfies W-MON if

ui4ã5− vi4ã5¾ ui4a5− vi4a5

holds for all i, ui, vi, and v−i.

Denote �i4a
1
i 5 by �1 and �i4a

2
i 5 by �2. Set all the valuations

of all bidders except Bidder i to some small � > 0. For Bidder i,
set the valuations for a1

i and all supersets of a1
i to

vi4a
1
i 5=

2
�1

0

Also, set the valuations for a2
i and all supersets of a2

i , that are not
supersets of a1

i , to

vi4a
2
i 5=

1
�2

0

These valuations honor free disposal, no externalities, and
vi4�5= 0.

Take

� <
1

n · max8i1 a9�i4ai5
0

This choice of valuations ensures that Bidder i gets bundle a1
i .

Also, the difference in the value of

SW�4a54v5=

n
∑

i=1

�i4ai5vi4a5

for a (the best allocation where i gets a1
i ) and ã (the best alloca-

tion where i gets a2
i ) is less than 2.

Suppose now the valuation of Bidder i for bundle a2
i increases by

ã2 =
2 +�1�

�2 −�1

and the valuation for bundle a1
i increases by

ã1 =ã2 + �0

The value of weighted SW on a increases by

ã4SW�4a5
1 5=�1

(

2 +�1�

�2 −�1
+ �

)

1

while the value of the same objective on ã increases by

ã4SW�4a5
2 5=�2

(

2+�1�

�2 −�1

)

= 6�1 +4�2 −�157

(

2+�1�

�2 −�1

)

=�1

(

2+�1�

�2 −�1

)

+2+�1�=ã4SW�4a5
1 5+20

Therefore, under the new valuations, the allocation rule will
choose ã despite the fact that the valuation of Bidder i for
a increased more than her valuation for ã. That contradicts
W-MON. Therefore the mechanism is not incentive compatible
under the assumption used in Step I, i.e., a1

i 6⊂ a2
i . We have thus

shown that the mechanism is not incentive compatible if (a) nei-
ther a1

i nor a2
i is a subset of the other or (b) a2

i ⊂ a1
i .

Step II. By (a), we have that �i48j95=�i48k95 for all items j

and k, and that �i4S5 = �i48j95 for all nonempty bundles S ⊆

G− 8j9 and all j . It follows that �i4S5 has to be constant for all
bundles S, except perhaps the grand bundle G (and the empty bun-
dle whose �i4�5 does not matter because vi4�5 = 0). From (b),
it follows that �i4G5¾�i4S5. �

Proof of Theorem 2.2. Before giving the proof, we need to
introduce the following notation. Let aEFF be an efficient alloca-
tion, ak be the winning allocation of VVCAk, and ak

−i be the allo-
cation that would have won had Bidder i not submitted any bids.
Let vN 4gj5 be the highest bid for item gj 2 vN 4gj5= maxi′∈N vi′ 4gj5.
Also, let vkN∪8094gj5 be the highest bid for item gj , including the
bid of the seller

vkN∪8094gj5= max8vN 4gj51 l · 2k90

Finally, let vkN∪809\8i94gj5 be the highest bid for item gj , including
the bid of the seller, but excluding the bid of Bidder i

vkN∪809\8i94gj5= max
i′∈8110001n9\8i9

8vi′ 4gj51 l · 2k90

Because the valuations are additive, aEFF allocates every item gj
according to vN 4gj5, that is, to Bidder i′ (1 ¶ i′ ¶ n) that submitted
vN 4gj5. Since the seller’s bids are also additive, ak allocates every
item gj according to vkN∪8094gj5 and ak

−i allocates every item gj
according to vkN∪809\8i94gj5.

We will use the following lemma in the proof. �

Lemma A.1. Consider a set of bidders’ valuations v. If Bidder i

wins bundle b in VVCAk, she pays at least �b� · l · 2k.
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Proof of Lemma. By Equation (7), the payment of Bidder i is

ti = SW�
� 4a

k
−i5− SW�

� 4a
k5+ vi4b5

=

(

∑

gjyb

vkN∪809\8i94gj5+
∑

gj∈b

vkN∪809\8i94gj5

)

−

m
∑

j=1

vkN∪8094gj5+ vi4b50

Obviously, vi4b5 =
∑

gj∈b
vkN∪8094gj5. Thus the last two terms

simplify to

−

m
∑

j=1

vkN∪8094gj5+ vi4b5= −
∑

gjyb

vkN∪8094gj50

For the items that are not allocated to Bidder i, we have

∑

gjyb

vkN∪809\8i94gj5=
∑

gjyb

vkN∪8094gj50

Therefore

ti =
∑

gj∈b

vkN∪809\8i94gj51

which by definition of vkN∪809\8i9 is no less than �b� · l · 2k. �

Proof of Theorem 2.2 Continued. Since every VVCAk is
ex post incentive compatible and ex post individually rational
and M is a randomization over VVCAk, M is also ex post incentive
compatible and ex post individually rational.

We now prove the revenue bound. By Lemma A.1, any bidder
who wins a bundle, b, in VVCAk, pays at least �b� · l · 2k. Because
valuations are additive, ak allocates every item gj to the same
bidder as aEFF if vN 4gj5¾ l · 2k, and leaves the item for the seller
otherwise. Therefore the revenue in VVCAk is at least nkl · 2k,
where nk is the number of such gj that vN 4gj5¾ l · 2k:

nk =

m
∑

j=1

I6vN 4gj5¾ l · 2k71

where I is an indicator function, which equals 1 if its argument
is true and 0 otherwise.

So, when the valuations of bidders are given by v, the expected
revenue of mechanism M , Ek6RM 4v57, is at least

1
1 + �log 4h/l5�

�log 4h/l5�
∑

k=0

l · 2k
m
∑

j=1

I6vN 4gj5¾ l · 2k7

=
1

1 + �log 4h/l5�

m
∑

j=1

�log 4h/l5�
∑

k=0

I6vN 4gj5¾ l · 2k7l · 2k0 (11)

The sum on the right of (11) can be bounded as follows:

vN 4gj5¶ l+
�log 4h/l5�
∑

k=0

I6vN 4gj5¾ l · 2k7l · 2k

¶ 2 ·

�log 4h/l5�
∑

k=0

I6vN 4gj5¾ l · 2k7l · 2k0 (12)

Substituting (12) into (11), we obtain

Ek6RM 4v57¾
1

2 + 2�log 4h/l5�

m
∑

j=1

vN 4gj50 (13)

Here,
∑m

j=1 vN 4gj5 is the welfare of the efficient allocation. No
individually rational auction can yield more revenue than that.
Therefore the revenue of the optimal auction is bounded from
above by

∑m
j=1 vN 4gj5. It follows that

Ek6RM 4v57¾
ROPT4v5

2 + 2�log 4h/l5�
0 � (14)

Proof of Corollary 2.1. By construction of M in Theorem 2.2,
we have

Ek6RM 4v57=
1

1 + �log 4h/l5�

�log 4h/l5�
∑

k=0

RVVCAk 4v50

Substituting Ek6RM 4v57 into (14) and taking expectations
over v, we obtain

∑�log 4h/l5�
k=0 Ev6RVVCAk 4v57

1 + �log 4h/l5�
¾ Ev6ROPT4v57

2 + 2�log 4h/l5�
0

Since the sum of VVCAk contains exactly 1+�log 4h/l5� terms,
there must exist a k∗ such that

Ev6RVVCAk∗ 4v57¾
Ev6ROPT4v57

2 + 2�log 4h/l5�
0

Note that k∗ can be found by enumerating all VVCAk and
evaluating their expected revenues. �

Proof of Theorem 2.3. We first scale the problem down by a
factor l, so the support of each bidder’s valuation distribution
is 611 4h/l57. In this proof, we will use the shorthand notation
H = h/l.

Consider an n-item auction with n bidders. Assume the val-
uation of Bidder i for item i is drawn from distribution Fi with
density

fi4vi5=











H

4H − 15v2
i

1 for vi ∈ 611H71

0 otherwise0

The valuations of other bidders for item i are 0. The valuations
for the bundles are additive.

Here, the expected welfare of an efficient allocation is

Ev6SW4aEFF57=Ev

[ n
∑

i=1

vi

]

=

n
∑

i=1

E6vi7

= n
∫ H

1
vifi4vi5dvi = 4lnH5

nH

H − 1
0

Our example is a special case of single-minded bidders, that is,
settings where each bidder has a nonzero valuation for one bundle
and all the supersets of this bundle, and 0 valuations for all other
bundles. We will use a characterization result for single-minded
bidders introduced by Mu’alem and Nisan (2002). We start by
reviewing two definitions.
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Definition A.2. An auction mechanism M is monotone if for
any Bidder i and any bids of the other bidders v−i, we have that if
vi is a bid that wins bundle ai, then any higher bid v′

i4ai5 > vi4ai5

also wins bundle ai.

Definition A.3. A payment scheme (associated with monotone
auction mechanism M) is based on a critical value p, if it has the
following form: payment ti = p4ai1 v−i5 if Bidder i wins ai, and
ti = 0 otherwise.

Mu’alem and Nisan (2002) showed that when bidders are single
minded, an auction is incentive compatible if and only if it is
monotone and its payment scheme is based on a critical value.

Let M be an optimal individually rational incentive compatible
mechanism. Consider a mechanism M ′, which is like M except
that it holds back the goods allocated to bidders with 0 valuations
for them:

1. Whenever M allocates a bundle b such that item i ∈ b to
Bidder i, M ′ allocates item i to Bidder i and holds back the rest
of the bundle.

2. Whenever M allocates a bundle b such that item i y b to
Bidder i, M ′ holds back the entire bundle b.

3. The payment scheme is the same as in M .
Denote the allocation under mechanism M by a, and the allo-

cation under mechanism M ′ by a′. Then, for any Bidder i, vi4a5=

vi4a
′5. This makes M ′ incentive compatible. Obviously, the rev-

enue of M ′ is the same as that of M ; therefore M ′ is also optimal.
We now obtain a bound on the expected payment that mecha-

nism M ′ extracts from Bidder i:

Ev6t
M ′

i 4v57=Ev−i
6Evi

6pM ′

i 4v−i1 vi5770

Since M ′ must be based on a critical value, the latter equals

Ev−i
6pM ′

i 4v−i5 · Prob4Bidder i wins gi � v−i570

Since M ′ is an optimal incentive compatible individually ratio-
nal auction, it must allocate item i to Bidder i whenever vi is
greater than pM ′

i 4v−i5: by construction M ′ either keeps item i or
allocates it to Bidder i. Also, M ′ cannot sell item i when vi is
less than pM ′

i 4v−i5; otherwise, the auction will not be individually
rational. Finally, if M ′ does not allocate item i to Bidder i when
vi is larger than pM ′

i 4v−i5, then an auction that differs from M ′

by allocating item i to Bidder i would yield higher revenue while
still remaining incentive compatible (since it is still monotone and
based on a critical value).

Therefore

Ev−i

[

pM ′

i 4v−i5 · Prob4Bidder i wins gi � v−i5
]

=Ev−i

[

pM ′

i 4v−i5 · Prob4vi >pM ′

i 4v−i55
]

0

In this example, the valuations of bidders other than i do not
provide any information about vi.

Since M ′ is an optimal auction, we have

pM ′

i = arg max
p

6p · 41 − Fi4p5570

By substituting Fi, it is easy to show that pM ′

i = 1 for all i.
Therefore the expected revenue of M ′ is n.

Since RM =RM ′ , we obtain

Ev6RM 7

Ev6SW4aEFF57
¶
(

1 −
1
H

)

1
lnH

0 �

Proof of Theorem 2.4. M ′ is incentive compatible and individ-
ually rational because it is a randomization over incentive com-
patible and individually rational auctions. Let ak be the winning
allocation in VVCA′k and ak

−i be the allocation that would have
been optimal had Bidder i not submitted any bids. Since there is
no competition, ak

−i and ak are the same for all bidders except
for Bidder i. By construction of VVCA′k, Bidder i wins the grand
bundle G iff vi4G5¾−l · 2k and wins nothing otherwise.

Since ak
−i and ak are equivalent for bidders other than i, the

payment of Bidder i for bundle G is

ti = 4SW�
� 4a

k
−i5− SW�

� 4a
k55+ vi4G5

= 4−vi4G5+ l · 2k5+ vi4G5= l · 2k0

Denote by aEFF the (efficient) allocation that allocates a copy of
every item to every bidder. Using the notation of Theorem 2.2, the
expected revenue of mechanism M ′, Ek6RM 4v57, can be written
as

1
1 + �log 4h/l5�

�log 4h/l5�
∑

k=0

l · 2k
n
∑

i=1

I6vi4G5¾ l · 2k7

¾
∑n

i=1 vi4G5

2 + 2�log 4h/l5�
=

SW4aEFF5

2 + 2�log 4h/l5�

¾ ROPT4v5

2 + 2�log 4h/l5�
0 �

Proof of Corollary 2.2. Analogous to the proof of Corollary 2.1.

Proof of Theorem 3.1. We will prove the claim for a one-item
auction. This is without loss of generality because the argument
applies directly to CAs where the bundle of all items is the only
bundle that any agent is interested in (i.e., values for all other bun-
dles are zero). Let M be a completely prior-free mechanism. We
will construct a distribution V of valuation functions where the
ratio of the expected revenues of M and some (suboptimal) incen-
tive compatible individually rational mechanism is less than �.

In order to be incentive compatible for all distributions of val-
uations, M must have the following property. Assume valuations
of Bidders 2 to n are given by a vector v−1 = 8v21 0 0 0 1 vn9. If Bid-
der 1 with valuation v1 wins, the price paid, p1, cannot depend
on v1. Otherwise Bidder 1 with sufficiently high v1 would submit
the valuation arg minv̂1∈V1

p14v̂11 v−15 rather than her true valu-
ation. Since M is a deterministic prior-free mechanism, p1 is a
function of v−1 only. (We allow p14v−15 to be infinite if Bidder 1
never wins for some v−1.)

We now fix the distributions of valuations of all bidders except
Bidder 1. We let their valuation distributions be bounded; we
denote by h the highest valuation that any of those other bidders
might have.

Consider now the following set of segments:

8Tl9
�

0 =

[

h1
h

�

)

1

[

h

�
1
h

�2

)

1 0 0 0 1

[

h

�n−1
1
h

�n

)

1 0 0 0 0

Take

�<
�

2 − �
0
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Consider p14v−15. Obviously,

�
∑

l=0

Pr
v−1

8p14v−15 ∈ Tl9¶ 10

Therefore, for all � > 0, there exists some Tl4�5 such that

Pr
v−1

8p14v−15 ∈ Tl4�59¶ �0

Now, take

� ¶ �4�+ 15− 4�
4 − 4�

0

It is easy to check that � > 0 because of our choice of �. Let v1

be uniformly distributed on Tl4�5. For convenience, denote the left
end point of Tl4�5 by x� :

Tl4�5 =

[

x�1
x�

�

)

The expected revenue of OPT is at least the revenue obtainable
by making a take-it-or-leave-it offer to Bidder 1 with a price set
at the middle of the interval Tl4�5:

p̂ = x�
�+ 1

2�
0

Since v1 is uniformly distributed, the revenue of OPT is at least

Pr8v1 > p̂9 · p̂ =
p̂

2
= x�

�+ 1
4�

0

The revenue of M can be calculated as follows: if M does not
allocate the item to Bidder 1, by construction of the valuation set,
the revenue of the mechanism is at most x� .

Since

Pr
v
8p1 ∈ Tl4�59= Pr

v−1
8p14v−15 ∈ Tl4�59¶ �

the probability that Bidder 1 wins is at most �. By individual
rationality of M , whenever Bidder 1 wins, the revenue of M is at
most x�/�.

The expected revenue of M can therefore be bounded as fol-
lows:

Ev4RM 4v55¶ �
x�

�
+ x�41 −�50

Finally, for the chosen � and �, we obtain

Ev4RM 4v55

Ev4OPT4v55
¶

�4x�/�5+ x�
1
4x�44�+ 15/42�55

¶ 4
�+�41 − �5

�+ 1

¶ 4
�+ �4�+ 15/4 − �

�+ 1
= �0 �

Proof of Theorem 3.2. It is easy to show that the expected
revenue of the VVCA and AMA is Lipschitz continuous in all
parameters as follows.

Take any �1
j and �2

j . We have

∣

∣SW
4�−j 1�

1
j 5

� 4v5− SW
4�−j 1�

2
j 5

� 4v5
∣

∣

=

∣

∣

∣

∣

∑

i 6=j

6�ivi4a15+�8i1 a14i59
4a157+�1

j vj4a15+�8j1 a14j59
4a15

−
∑

i 6=j

6�ivi4a25+�8i1 a24i59
4a257−�2

j vj4a25−�8j1a24j59
4a25

∣

∣

∣

∣

¶ max
{

��1
j −�2

j �vj4a251 ��
1
j −�2

j �vj4a15
}

0

The last inequality is by definition of a1 and a2. Since the
valuations are bounded, Ev6SW�

� 7 is Lipschitz continuous (the
same property for � can be verified in a similar manner). The
same property is true for Ev6SW−i7

�
� for all i. Therefore the

expected revenue, Ev4R4�1�1 v55, where R is given by (10), is
also Lipschitz continuous.

By the Rademacher theorem, this yields the statement of the
theorem.

Alternatively, continuity can be shown using convexity of SW.
By the definition of SW�

� , it can be represented as

sup
a∈A

f 4�1�1a51

where

f 4�1�1a5=

n
∑

j=1

4�jvj4a5+�8j1 aj 9
4a55

f is linear in 4�1�5 and therefore convex in 4�1�5. Since
pointwise maximum preserves convexity, SW�

� is also convex in
f 4�1�5. Also, since integration preserves convexity, Ev6SW�

� 4v57

is convex and thereby continuous.
Similarly, it can be shown that Ev64SW−i5

�
� 4v57 is continuous.

Ev6R4�1�1 v57 is then continuous as a linear combination of con-
tinuous functions. �

Proof of Theorem 3.3. Without loss of generality, assume �1 <

�2. Assume there exists a polynomial-time algorithm A that for
some Bidder i, some bundle b, and arbitrary set of valuations v,
can tell whether

R4�1 4�−8i1 b91�155 > R4�1 4�−8i1 b91�2550

Also, assume �i = 1.
We now show that A can be used to find a solution to the

independent set problem. The proof works as follows. We first
show that A can be used to compute the optimal allocation in
AMA with single-minded bidders; as defined by Lehmann et al.
(2002), this term refers to auctions where each bidder bids for
only one bidder-specific bundle. We then show how to convert
an instance of the independent set problem into an instance of
optimal allocation in affine maximization.

Let v̂ be a given set of valuations. We assume that every bidder
bids just for one bundle. Moreover, assume that all the bundles
have the same number of items, g. If this assumption does not
hold, augment the smaller bundles with fake items, such that each
item is a part of only one bundle—so that there is no competition
for fake items.
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Denote the set of parameters 4�−8i1b91�15 by �̄1 and 4�−8i1 b91�25

by �̄2. Define a4�15 to be an optimal allocation under �̄1:

a4�15= arg max
a∈A

SW�

�̄1
4v̂51

and define a4�25 to be an optimal allocation under �̄2:

a4�25= arg max
a∈A

SW�

�̄2
4v̂50

We now show that A can be used to compute the optimal (in
terms of SW�

� 4v̂5) allocation a4�15.
We start by proving the following proposition.

Proposition A.1. If A outputs

R4�1 �̄25¾R4�1 �̄151

then b is not part of a4�15. If A outputs

R4�1 �̄25 < R4�1 �̄151

then the weighted SW, corresponding to the allocation where b is
given to i and other bundles are allocated optimally, is at most
ã�= �2 −�1 suboptimal to the weighted SW of a4�15.

Proof. Consider the following three cases:
1. a4�15 and a4�25 allocate b to i.
2. Neither a4�15 nor a4�25 allocates b to i.
3. a4�25 allocates b to i, but a4�15 does not.

Clearly, since �2 >�1, these are the only three cases possible (if
b is a part of an optimal allocation under �8i1 b9 = �1, it is also a
part of optimal allocation under �8i1 b9 = �2).

Consider the revenue of the seller, given by (10). In Case 1, b
is part of a4�15 and a4�25, which means that vi4b5+ �1 is high
enough to make b a part of the optimal allocation (same goes
for vi4b5 + �2). The optimal allocation of G\8b9 is the same;
therefore we have a4�15 = a4�25 (the allocations are the same).
Similarly, a−j4�15= a−j4�25.

Therefore

SW�

�̄2
4v̂5= SW�

�̄1
4v̂5+ã�0

Also,

6SW−i7
�

�̄2
4v̂5= 6SW−i7

�

�̄1
4v̂5

and for j 6= i,

6SW−j 7
�

�̄2
4v̂5¶ 6SW−j 7

�

�̄1
4v̂5+ã�0

Substituting the above equalities in (10), we get that in Case 1,

R4�1 �̄15−R4�1 �̄25¾ã�> 00

In Case 2, since b is not part of a under either values of param-
eters,

SW�

�̄2
4v̂5= SW�

�̄1
4v̂5

and
∑n

i=1 �8i1 a4i59 is the same in both cases. Also, by definition,
SW�

� is increasing in any of the � parameters; therefore
n
∑

j=1

6SW−j 7
�

�̄2
4v̂5¾

n
∑

j=1

6SW−j 7
�

�̄1
4v̂5

So in Case 2,

R4�1 �̄15−R4�1 �̄25¶ 00

Therefore, depending on the output of A, we either conclude
that i does not get b in a4�15, or that i does get b in a4�25. In the
latter case, allocating b to i under 4�1 �̄15 decreases the optimal
weighted SW by at most ã�. This proves the proposition. �

We can use the following algorithm to find whether i should
obtain b in the optimal allocation.

Algorithm 4 (Determines whether i should get b)
1. Run A.
2. If A outputs R4�1 �̄15 > R4�1 �̄25, then allocate b to i, oth-

erwise do not allocate.

Proposition A.1 shows that if this algorithm makes mistakes, the
SW goes down by at most ã�.

Algorithm A can be used to determine whether any of the other
Bidders i′ gets her preferred bid (recall that we consider single-
minded bidders). Suppose Bidder i′ bids for bundle b′. Since we
transformed the problem into one where all the bidders bid for
bundles of the same size, �b� = �b′� = g. Rename the items so that
bnew = b′ and 6b′7new = b (it is always possible to do that). Now,
change v̂i4b5 so that the new value of

6v̂new
i 7

�

�̄1
4bnew5=�iv̂

new
i 4bnew5+�8i1 b9

equals the old value for 6v̂i′ 7
�

�̄1
4b′5 by setting

v̂new
i =

�i′ v̂i′ 4b
′5+�8i′1 b′9 −�8i1 b9

�i

0 (15)

Similarly, modify v̂i′ 4b
′5:

v̂new
i′ =

�iv̂i4b5+�8i1 b9 −�8i′1 b′9

�i′
0 (16)

This operation effectively interchanges i and i′ and now Algo-
rithm A can be used to find whether i′ obtains b′ in a4�15. The
only problem with such a transformation is that the new real (but
not virtual) valuations might become negative (we explain how to
deal with this later in the proof).

We now show that Algorithm A can be used to compute a4�15.

Proposition A.2. Algorithm A can be used to compute a4�15 in
polynomial time.

Proof. Since there are at most n bids in the auction, we can run
Algorithm 4 on each one of those bundles to determine which
bundles are parts of optimal allocation a4�15. The only problem
here is that Algorithm 4 can make mistakes when telling us to
allocate the bundle, reducing the value of the allocation by at most
ã�, and more importantly, possibly yielding an invalid allocation.

We can deal with this problem as follows. Define � to be the
minimal positive difference in weighted SW of any two alloca-
tions:

� = min8SW�

�̄1
4a15− SW�

�̄1
4a2591 where a11 a2 ∈A1

s.t. SW�

�̄1
4a15 > SW�

�̄1
4a25

Now, we make the following transformation of all real valua-
tions of all bidders:

v̂new
j =

c�j v̂j + 4c− 15�8j1 bj 9

�j

0 (17)

Here, bj is the bundle that Bidder j bid on, �8j1 bj 9
is the corre-

sponding parameter, and c is some constant.
This transformation increases all virtual valuations by the same

factor c. Trivially, this increases � to c�. Choose c to be larger
than ã�/�. After transformation (17), the weighted SW of all
allocations differ by more than ã�.
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Note that since all the valuations increase by factor c, such
an operation does not change the optimal allocation a4�15. But
we know that if Algorithm 4 makes a mistake and chooses the
bundle which is not a part of a4�15, the weighted SW decreases
by at most ã�, which means that on these modified valuations,
Algorithm 4 cannot choose suboptimal allocations.

Therefore, by applying transformation (17) and running Algo-
rithm 4, we can compute the optimal allocation a4�5. �

The “trick” with transformation (17) can be also applied to deal
with negative real valuations in Proposition A.1.

Finally, Algorithm 4 can be used to solve the independent set
problem as follows. We create an item for each edge of the graph.
We create a bid for each vertex of the graph; the items included in
the bid correspond to the edges that are connected to the vertex.
We set the valuations for bundles so that virtual valuations are
equal to some constant c (since virtual valuations are increasing
functions of real valuations, it is always possible to do that). The
affine maximizing allocation yields the maximum independent set
of the graph. �

Endnotes

1. This paper combines and extends upon two short conference
papers (Likhodedov and Sandholm 2004, 2005).
2. For the mechanism to be incentive compatible, ṽi should be
increasing in vi. If (3) does not satisfy this condition, an “ironing”
technique is used to make ṽi nondecreasing (Myerson 1981).
3. The basic idea of adding an allocation-specific constant to the
objective was also discussed by Jehiel et al. (2007) in parallel
with our work (Likhodedov and Sandholm 2004, 2005), for the
purpose of tuning the bundling policy. Their �-auction is a spe-
cial case of the VVCA where (1) no weights are used (�i = 1 for
all i) and (2) the same constant is added to the objective when-
ever all items are sold to the same bidder (i.e., �i4G5= c for the
grand bundle G, and �i4b5= 0 for all other bundles b). In a sym-
metric additive valuations model, they show that the �-auction
can increase the revenue over both pure bundling auctions (which
always sells all the items together) and separate auctioning of
individual items (this is what the VCG does in the additive valua-
tions model). Our work differs from theirs in several ways: (1) we
study a significantly larger family of mechanisms that subsumes
the family they study; (2) unlike us, they assume that each bid-
der’s valuation is additive, that is, no bidder considers any items
as complements or substitutes; (3) we ask different questions; and
(4) our main thrust is on automated design rather than manual
analysis.
4. A mechanism is an almost affine maximizer if it is an affine
maximizer for sufficiently high valuations. Lavi et al. (2003) con-
jecture that the “almost” qualifier is merely technical, and can be
removed in future research.
5. Throughout this paper, ties in allocation rules can be broken
arbitrarily.
6. In a recent personal email communication (8/30/2008), Jason
Hartline points out that if one knows the highest possible valua-
tion, h, and the lowest possible valuation, l, then one can achieve,
in expectation over random bits, a log4h/l5-approximation to rev-
enue by running the VCG first, and then uniformly increasing
every winner’s price by 2k (where k is randomly chosen in 6l1 h7),
and then giving each winner the option to not buy. A recent
technical report shows that even with knowledge of those two

bounds, one cannot achieve a better than logarithmic approxima-
tion (Micali and Valiant 2008). Both of those results are subse-
quent work to the conference versions of our paper (Likhodedov
and Sandholm 2004, 2005).
7. In the additive valuations setting, the optimal allocation is triv-
ial to find: every item is sold to the bidder with the highest virtual
valuation 6ṽi7

�
� for that item. If that virtual valuation is negative,

the seller keeps the item.
8. Naturally, one can fix one of the � parameters in AMA (e.g.,
�1 = 1) without loss of generality because the other � parameters
and the � parameters can be scaled multiplicatively accordingly.
In addition, one can fix any one of the � parameters in AMA
without loss of generality (for example, the one corresponding to
the seller keeping all the items) because that simply amounts to
adding a constant to the value of each allocation, which affects
neither the allocation nor the payments. However, if one does this,
one may have to allow for negative values for some of the other �
parameters. Similarly, in VVCA, one can fix one � parameter
(e.g., �1 = 1) and one � parameter (e.g., �14�5 = 05 without
loss of generality. If one imposes additional restrictions on the
mechanism (for example, item symmetry), that fixes more of the
variables and the search for a mechanism can take place in a
lower-dimensional space.
9. All of the algorithms that we introduce in the rest of this sec-
tion are motivated by the idea of minimizing this “revenue loss”
(difference between the bidder’s valuation and her payment). This
economic motivation is intuitively desirable and the algorithms
based on it perform quite well, as our experiments will show.
However, such algorithms can get stuck in local optima because
minimizing revenue loss is not the same as maximizing revenue.
As an extreme example, the allocation where no items are allo-
cated to any bidders has zero revenue loss, yet it has zero revenue.
10. We do not perform a similar comparison in Settings II and III
since in those settings there is a nonzero complementarity param-
eter. In that case, it would no longer be a dominant strategy for the
bidders to report their true valuations in the individual auctions
since their valuation can depend on the outcome of the auction
for the other item.
11. In these experiments, we do not fix any lambda parameter
or any �i although one of each could be fixed without loss of
generality, as was discussed in §3.2.
12. The affinely transformed winner determination problem here
in the case of sparse input representation is NP-complete. It is
obviously in NP, and it is NP-hard because the regular sparse
CA winner determination problem, a special case, is NP-complete
(Rothkopf et al. 1998).
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