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Abstract

Winner determination in combinatorial auctions has received
significant interest in the AI community in the last 3 years.
Another difficult problem in combinatorial auctions is that
of eliciting the bidders’ preferences. We introduce a pro-
gressive, partial-revelation mechanism that determines an ef-
ficient allocation and the Vickrey payments. The mechanism
is based on a family of algorithms that explore the natural
lattice structure of the bidders’ combined preferences. The
mechanism elicits utilities in a natural sequence, and aims
at keeping the amount of elicited information and the effort
to compute the information minimal. We present analytical
results on the amount of elicitation. We show that no value-
querying algorithm that is constrained to querying feasible
bundles can save more elicitation than one of our algorithms.
We also show that one of our algorithms can determine the
Vickrey payments as a costless by-product of determining an
optimal allocation.

Introduction
Combinatorial auctions, where agents can submit bids on
bundlesof items, are economically efficient mechanisms
for selling m items to bidders, and are attractive when
the bidders’ valuations on bundles exhibitcomplementar-
ity (a bundle of items is worth more than the sum of its
parts) and/orsubstitutability(a bundle is worth less than the
sum of its parts). Determining the winners in such auc-
tions is a complex optimization problem that has recently
received considerable attention (e.g., (Rothkopf, Pekeˇc, &
Harstad 1998; Sandholm 2002; Fujishima, Leyton-Brown,
& Shoham 1999; Sandholm & Suri 2000; Nisan 2000; An-
dersson, Tenhunen, & Ygge 2000; Sandholmet al. 2001)).

An equally important problem, which has received much
less attention, is that of bidding. There are2m � 1 bundles,
and each agent may need to bid on all of them to fully ex-
press its preferences. This can be undesirable for any of sev-
eral reasons: (1a) determining one’s valuation for any given
bundle can be computationally intractable (Sandholm 1993;
2000b; Parkes 1999; Larson & Sandholm 2001); (1b) there
is a huge number of bundles to evaluate; (2) communicating
the bids can incur prohibitive overhead (e.g., network traf-
fic); and (3) agents may prefer not to reveal all of their val-
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uation information due to reasons of privacy or long-term
competitiveness. Appropriate bidding languages (Sand-
holm 2002; Fujishima, Leyton-Brown, & Shoham 1999;
Sandholm 2000a; Nisan 2000; Hoos & Boutilier 2001) can
potentially solve the communication overhead in some cases
(when the bidder’s utility function is compressible). How-
ever, they still require the agents to completely determine
and transmit their valuation functions and as such do not
solve all the issues. So in practice, when the number of items
for sale is even moderate, the bidders will not bid on all bun-
dles.

We study the situation in which a benevolent auctioneer
(or arbitrator) wants to implement an efficient allocation of
a set of heterogeneous, indivisible goods. The preferences of
the participating agents (or consumers) are private informa-
tion. The auctioneer tries to design a mechanism that gives
no incentive for the bidders to misreport preferences.

It is well known that a Generalized Vickrey Auction
(GVA), that is based on the elicitation of all utilities, is
such an incentive-compatible mechanism. However, in that
mechanism, each bidder evaluates each of the exponentially
many bundles, and communicates a value for each one.1

This is clearly impractical even for auctions with moderate
numbers of goods.

Another important thread tries to identify iterative or pro-
gressive auction protocols that try to limit the space of
preferences that are to be revealed in comparison to the
fully revealing, naive GVA. Recently, auctions that fol-
low certain solution procedures for primal/dual linear pro-
grams have been studied extensively and with respect to
incentive-compatibility (see (Bikhchandaniet al. 2001)
for an overview and new suggestions). Another approach
(AkBA) has been suggested (Wurman & Wellman 2000),
though a detailed analysis of incentive-compatibility prop-
erties has yet to be performed. Iterative auctions are price-
based, which requires that to guarantee that Vickrey pay-
ments are determined by the auction, prices must be com-
putable that coincide with the Vickrey payments. Depend-
ing on the allowed price structures2, equilibrium prices (that
solve an underlying dual model) may or may not exist. The

1In general, preference communication in combinatorial auc-
tions is provably exponential (even to find an approximately opti-
mal solution) in the theoretical worst case (Nisan & Segal 2002).

2Price for a bundle additive in the prices of the contained goods,



existence depends on properties of preferences which will
be considered either individually (e.g. submodularity) or,
more general, with respect to the combination of agent types
(“agents are substitutes”, (Bikhchandani & Ostroy 2001)).
The allowed price structure will also influence the applica-
bility of the suggested mechanisms. For example, the un-
constrained anonymous prices used in AkBA, see (Wurman
& Wellman 2000), may require an enforcement of the con-
dition that each agent is only allowed to purchase one bun-
dle in one transaction (at the price quoted for that bundle
and not, for example, in two transactions as may seem at-
tractive if the sum of prices for sub-bundles is below the
quoted price). Similar considerations are necessary for the
unconstrained non-linear (and non-anonymous) prices used
in auctions based on and extending the work of Bikhchan-
dani et. al (see, for example, (Bikhchandani & Ostroy 2001;
Parkes & Ungar 2000a; 2000b; Bikhchandaniet al. 2001)).

We develop a partially-revealing, direct mechanism that
does not exhibit the disadvantages of a GVA. It may save
bidders from specifying or considering valuations for ev-
ery bundle and, with respect to the existence of a protocol
that establishes an incentive-compatible outcome and with
respect to the burden put on necessary communication be-
tween consumers and auctioneer and computation of valua-
tions on the side of the consumers, it exhibits certain limit
properties that may allow to compare its attractiveness to
those of iterative auctions in the general setting.

The basic idea is as follows: preferences can be elicited in
a natural sequence, from most preferred towards least pre-
ferred. Combinations of individual preferences determine
collections of preferred bundles. The individual preferences
induce a partialdominanceorder on these collections. This
relation can be exploited to guide a search for the best fea-
sible collection through the space of infeasible collections
with higher aggregated valuation.

We will present two algorithms to compute efficient al-
locations and an extension to determine Vickrey payments
without requiring additional information. An efficient,
incentive-compatible mechanism based on these algorithms
will be described. We will consider aspects of the optimal-
ity of the algorithms and derive two results that bound the
informational requirements for a certain class of algorithms.

The model
Our basic setting extends the concepts introduced in (Conen
& Sandholm 2001). We consider a combinational economy
consisting ofn consumers,N = f1; : : : ; ng, a seller0, and
m goods,
 = f1; : : : :mg. Each consumeri 2 N has util-
ity over bundles, given by a functionui : 2
 ! Q+

0
, where

ui(;) = 0. (For now, we will neither assume quasi-linearity
nor monotony, because our first result does not rely on such
assumptions.) The seller has all the goods; the consumers

unconstrained, non-linear prices for every bundle, coherent prices
for bundles (the price for a bundle may not exceed the sum of prices
of the bundles in any partition of the bundle, the prices for super
bundles of the bundles in the supported allocation are additive);
anonymous prices, different prices for the set of buyers and the set
of sellers, different prices for each individual.

own none of them. We will neglect the seller for now. If the
seller has reservation values (for bundles), he can be mod-
eled as an additional consumer.

It is well known that an agent’s preferences can be rep-
resented by a utility function only if the preference order
is rational, that is, the preference order over alternatives is
transitive and defined on all pairs of alternatives (equal pref-
erence between alternatives is fine). This preference order
induces a rank function as follows.

Definition 1 (Rank function, Inverted Rank function).
Let R be the set of the first2m natural numbers,
f1; : : : ; 2mg. Let, for every agenti, the rational prefer-
ence order%i be defined over2
. A bijective function
Ri : 2


 ! R will be called therank function for agenti if it
assigns a unique value (rank) to each bundle, such that, for
every pairx; y � 
 of bundles withx �i y, Ri(x) < Ri(y)

holds. The inverseR�1i of Ri gives the bundle that corre-
sponds to a rank.

Proposition 2. A rank function and its inverse exist for every
rational preference relation.

A rank function is not necessarily unique. Indifferences in
the preference order are arbitrarily resolved in the above def-
inition, as the following example demonstrates.

Example 1. Let the set of goods be
 = fA;Bg and let the
preference order of agenti be

%i: fABg � fAg � fBg � f;g:

Only the following bijective functions are rank functions:

R1i :fABg ! 1; fAg ! 2; fBg ! 3; f;g ! 4

R2i :fABg ! 1; fBg ! 2; fAg ! 3; f;g ! 4

Now, a combination of ranks of the agents can be viewed
as representing a potential solution to the allocation prob-
lem at hand. Some of these potential solutions are invalid,
though. The others determineallocations.

Definition 3 (Combination of Ranks). LetC be the set of
all possiblen-ary tuples overR, that isC = R�� � ��R. An
elementc 2 C, c = (r1; : : : ; rn) will be calledcombination
of ranks. (If, for every positioni of c, the corresponding
functionR�1i is applied, acollection of bundles, bc, will be
obtained.)

Definition 4 (Feasible Combination). A combinationc of
ranks isfeasibleif no item is allocated more than once. For-
mally, a combinationc of ranks is feasible if the correspond-
ing collectionbc of bundles is a partition of a (not necessar-
ily proper) subset of
. A feasible combination determines
an allocationXc with Xi = bc[i], i = 1; : : : ; n and the
seller keeps the item setX0 = 
=

S
i b
c[i]. Here,[i] denotes

the i’th element of a tuple.

Definition 5 (Dominance of Rank Combinations). A bi-
nary relation� � C � C will be called adominance rela-
tion if, for all x; y 2 C, (x; y) 2� if and only ifx[i] <= y[i]
for all i 2 N .

Proposition 6 (Rank Lattice). � is a partial orderandC
forms a complete lattice with respect to� with lub(C) =

(n; : : : ; n) andglb(C) = (1; : : : ; 1).



The observation exploited by the following algorithms is
that a combination that is feasible and not dominated by any
other feasible combination will be Pareto-efficient. In addi-
tion, if the context is that of transferable utility, the welfare-
maximizing allocation will be among these feasible Pareto-
efficient combinations. The following algorithms will search
the space of combinations (including infeasible ones) to de-
termine the efficient allocations.

Efficient allocations
The first algorithm finds all Pareto-efficient allocations. We
proposed it in (Conen & Sandholm 2001); we restate it here
because we will use it to prove a bound on the number of
valuations of combinations that are necessary to determine a
welfare-maximizing allocation.

AlgorithmPAR (Pareto optimal):
(1) OPEN =[ (1; : : : ; 1) ]
(3) while OPEN 6= [] do
(4) Remove(c; OPEN); SUC= suc(c)3

(5) if Feasible(c)then
(6) PAR = PAR [ fcg; Remove(SUC;OPEN)

(7) else foreachn 2 SUCdo
(8) if n 62 OPEN andUndominated(n; PAR)
(9) then Append(n;OPEN)

Proposition 7. The algorithmPAR determines the set of all
Pareto-efficient allocations if the utility functions are injec-
tive (that is, no agent is indifferent between any two bun-
dles).4

The second algorithm (family) determines a welfare-
maximizing allocation (with respect to reported utilities). It
assumes a setting with transferable utility (and makes the
usual assumption that utility functions are quasi-linear in
money). The algorithm is an improved version of an algo-
rithm that we developed earlier (Conen & Sandholm 2001).
Unlike the earlier version, this algorithm does not assume
unique utilities.

AlgorithmEBF (Efficient Best First):
(1) OPEN= f(1; : : : ; 1)g;
(2) loop
(3) if jOPENj = 1 then c = combination in OPEN

elseDetermine
M = fk 2 OPEN jv(k) = maxd2OPEN v(d)g.
if jM j � 1 ^ 9d 2M with Feasible(d)then return d
elseChoosec 2M such that

nod 2M exists withd � c;
OPEN= OPENnfcg.

(4) if Feasible(c)then return c
(5) SUC= suc(c)
(6) foreachn 2 SUCdo

if n 62 OPENthen OPEN= OPEN[fng

3suc(c) determines the immediate successors ofc, fd 2 C j
9j with d[j] = c[j] + 1 andd[i] = c[i] 8i 6= jg.

4If the utility functions are not injective, the algorithm de-
termines a subset of the Pareto-efficient allocations. Further-
more, (even in the non-injective case), the set of solutions found
includes a welfare-maximizing allocation (whenever “ welfare-
maximizing” is defined in a transferable utility context).

Proposition 8. AnyEBF algorithm determines an efficient
(that is, welfare-maximizing) allocation.

Optimality considerations
The problem is to chose an allocationX = (X1; : : : ; Xn)

with
S
i2N Xi � 
 and

T
i2N Xi = ; so as to maximize

social welfare,
P

ui(Xi). Problem instances will be called
economies(
;u1; : : : ; un).
Definition 9. An algorithm isadmissible, if it determines an
efficient (that is, welfare-maximizing), feasible combination
for every problem instance. This combination is called a
solution combination.
As we have already seen,EBF is admissible. Also,PAR can
easily be turned into an admissible algorithm by comparing
the value of all the determined Pareto-optimal allocations
and picking a maximizing one. We will refer to this vari-
ant ofPAR asMPAR (maximizing PAR). Both algorithms
make use of bundle information (“What is yourk’th ranked
bundle?”) and value information (“What is your valuation
for bundleX?”). We will now study questions related to
optimal use of this information. Roughly, an algorithm (or
a family of algorithms) will be considered (weakly) optimal
with respect to certain kind of information, if no admissible
and “similarly informed” algorithm requires less informa-
tion for every problem instance. We will show thatEBF
(resp.MPAR ) are limiting cases for the use of bundle (resp.
value) information.

We assume that a valuation functionv : C ! Q is avail-
able that can be used to determine the aggregated utility
of every possible combination (note that for alla; b with
(a; b) 2 �, v(a) � v(b) holds). There is also a feasibil-
ity function f : C ! fT; Fg, which allows one to check
for every combination in the lattice, whether the combina-
tion is feasible (T) or infeasible (F). Further information is
not available. Additionally, a successor function is available
to determine the next unvisited direct successors of a combi-
nation. All of these functions will be considered elementary
(with unit costs).

In addition, every algorithm will have to determine a set
of combinations to start with; inserting a combination into
this set is considered to be an elementary operation. Com-
binations that are an element of the initial set or that have
been “created” as successor by applying (possibly itera-
tively) the successor function, will be calledvisitedcombi-
nations. Only visited combinations can be valued or checked
for feasibility.
Definition 10. An algorithm isadmissibly equippedif only
the above mentioned elementary operations are used to ob-
tain lattice-related information.
EBF is admissibly equipped. However, as given above,EBF
is not deterministic–it chooses a combination among a set of
equally valued combinations arbitrarily in step (3). In ef-
fect,EBF determines a family ofEBF algorithms differing
in the choice (ortie breaking) rule. It is clear that differ-
ent tie breaking rules may lead to differently efficient (with
respect to utilization of information) solution paths.

Now, can some deterministic algorithm search the lattice
more efficiently thanEBF algorithms?



Costs of feasibility checking
Theorem 11 (Efficiency of Feasibility Checking).There
is no admissible, admissibly equipped and deterministic al-
gorithmA which requires fewer feasibility checks for every
problem instance than every algorithm of theEBF family.

The proof uses the following propositions (whose proofs we
omit due to limited space).

Proposition 12. Let l be a solution combination that has
been determined by an arbitraryEBF algorithm. Letk be
a combination withv(k) > v(l). Then, any admissible,
admissibly equipped and deterministic algorithmsA must
check the feasibility ofk.

Proposition 13. NoEBF algorithmB checks a combination
k for feasibility which has a lower value than the solution
combinationl thatB will determine.

Proposition 14.
(a) EveryEBF algorithm checksprecisely onefeasible com-
bination for feasibility.
(b) Every admissible, admissibly equipped and deterministic
algorithm checksat leastone feasible combination for feasi-
bility.

Now, let l be a solution combination that has been found by
an EBF algorithm. The theorem holds for every problem
instance that does not imply the existence of an infeasible
combination with the same value asl. If no such combina-
tion exists,A has to checkat leastall infeasible combina-
tions with a value larger thenv(l) (which is precisely the
number of checks that anyEBF algorithm will perform).

Note that from the non-injectivity of the valuations of the
combinations, it follows thatEBF algorithms may check
infeasible combinations (for feasibility) that have the same
value as the solution combination. There are even problem
instances whereall EBF algorithms will have to perform
such checks. One such instance is shown in Fig. 1.

 Solution combination c

= Infeasible

12

10 10

10

10

9

12

11

Figure 1: Part of a lattice that will give anyEBF instance
reason to check at least one combination for feasibility that
has a value that equals the value of the solution (these are
the combinations in the emphasized region).

In this case, it might be possible that an algorithmA
performs fewer feasibility checks than anyEBF algorithm
– therefore, the above theorem cannot be formulated more
tightly.5

5It is, however, straightforward to give a version of the algo-
rithm that works with equivalence classes of ranks instead of “lin-
earizing” the partial order of the preferences. This allows one to
consider all equally valuable combinations at the same time in the
selection step. It would, however, make the presentation more awk-
ward.

We will now turn our attention to theMPAR algorithm
that allows us to formulate some results with respect to the
costs of valuating combinations.

Theorem 15. No admissible, admissibly equipped and de-
terministic algorithm that calls the valuation function for
feasible combinations only will require fewer calls than the
MPAR algorithm.

The worst case for theMPAR algorithm will occur if all
feasible allocations that distribute all goods to the con-
sumers are Pareto-optimal. This is the case if all utilities for
goods are equal and utilities for bundles are additive, that is
ui(fxg) = c for somec 2 Q+

0
and allx 2 
, ui(;) = 0,

andui(z) =
P

x2z ui(fxg) = jzj � c for all z � 
, z 6= ;,
i 2 N . It is immediate that every fully distributive alloca-
tion leads to the same welfareW = j
j � c = m � c. Now,
the number of combinations to be valued is the number of
allocations that distribute all goods to the customers6 which
is equal to counting the possibilities to distributem objects
to n buckets without further restriction, that isnm. So:

Proposition 16. MPAR requires at mostnm calls to the
valuation function. By the above theorem, this extends to
all admissible and admissibly equipped algorithms that are
restricted to call the valuation function for feasible combi-
nations only.

The version ofPAR that we gave above will deter-
mine the set of all Pareto-optimal allocations that are un-
dominated with respect to the chosen ranking. Assume
that we have 2 goods, 2 agents and the following utilities
ux(A) = ux(B) = 3, ux(AB) = 6, x 2 f1; 2g and the
ranksr1(A) = 1; r1(B) = 2; r1(AB) = 3; r1(;) = 4,
r2(B) = 1; r2(A) = 2; r2(AB) = 3; r2(;) = 4. Then,
PAR only generates the feasible rank combination(1; 1)
representing an efficient allocation(fAg; fBg). However,
with an unfortunate ordering, more work would have to be
done: r1(AB) = 1; r1(A) = 2; r1(B) = 3; r1(;) = 4

r2(AB) = 1; r2(A) = 2; r2(B) = 3; r2(;) = 4 would gen-
erate(1; 4),(4; 1),(2; 3) and(3; 2).7 So, the above bound is
not sharp but depends on the chosen order of ranks that may
vary within each class of individual ranks that map to bun-
dles with equal valuations. The worst case corresponds to
the number of combinations in the middle layer of the lat-
tice, see Fig. 2.

With respect to theEBF family of algorithms, intuitively
a worst case with respect to the number of required valua-
tions would occur if all infeasible combinations would have
a higher value than the best feasible combination. This, of
course, cannot happen in the considered setting. Instead we
have to consider the maximal amount of infeasible combi-
nations that are at least as valuable as the best allocation
and are undominated by feasible allocations. This number is
(2mn � nm)=2 in the above example and generally.8

6We could extend this to all allocations that include the arbitra-
tor as well and setc to 0. However, with monotonous preferences,
the arbitrator can be excluded from consideration.

7Requiring agents to rank bundles with equal value from small
to large can be beneficial.

8In the particular example, all valuation information is elicited.
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Figure 2:A worst case: All feasible, Pareto-optimal combi-
nations have the same value. The number of undominated
Pareto-optimal combinations cannot be larger than in the
example. If in the upper part of the lattice such a combi-
nation could be found, at least two of the combinations in
the middle layer would be dominated. By symmetry, moving
undominated combinations into the lower part will lead to
fewer undominated combinations as well.

Proposition 17. Any EBF algorithm requires at most
2
mn�nm

2
+ 1 calls to the valuation function.

Vickrey payments
Recall that the Vickrey payment of an agenti reflects the ef-
fect of her participation in an economyE: a consumeri will
pay an amount equal to the utility that the other consumers
will loose due to the participation ofi, that is

t(i) = V (E�i) �
X

j2N;j 6=i

uj(Xj)

whereE�i is the economyE without i and V (E�i) is
the utility that can be realized implementing a welfare-
maximizing allocation forE�i.

We will now assume that an execution of anEBF algo-
rithm has determined an efficient allocationX for an econ-
omyE.

Theorem 18. No valuation information in addition to the
information already obtained byEBF is necessary to deter-
mine the Vickrey payments.

Proof. We assume thatn is the solution combination that
was found by the algorithm and that it representsX .(a) First,
note that valuation information for all combinations with
higher value thann have been obtained already. (b) Now
assume that consumeri will be removed from the allocation
X =(X1; : : : ;Xi; : : : ; Xn). The valueV (X�Xi) of the
reduced allocationX�Xi is a lower bound for the maximal
value that can be obtained from allocating the goods in


to the agents in the remaining set of consumers,N�i (and
determines the second term in the equation for the Vick-
rey payment ofi without requiring any additional informa-
tion). Now assume that a reduced(n � 1)-ary allocation
Y �i = (Y1; : : : ; Yn) (leaving out the agenti resp. its index)
can be found with a value that exceedsV (X�Xi). Further
assume that additional valuation information would be re-
quired. Then a combinationc = (Y1; : : : ;Xi;: : : ; Yn) could

If we assume a trivial, binary encoding of then � 2m values from
Q
+

0 and restrict their size to a reasonable constantk, n � 2m log2 k
bits of information are required in the worst case.

be constructed that would have a higher value thanX and
that would have required additional valuation information to
determine its value, thus contradicting (a).

It is now clear that all required valuation information has
already been determined.9 A consequence of the argu-
ments for (b) is that the partial combinations which solve
the restricted allocation problem optimally are part of the al-
ready visited combinations. This allows one to extendEBF
straightforwardly to keep track of the best allocation for each
subset ofN with n � 1 elements visited so far (an imple-
mentation is straightforward). After the execution of such
an extendedEBF algorithm, Vickrey payments can be deter-
mined immediately from the collected maximum valuations
and the efficient allocation. From the argumentation above,
it follows immediately that

Proposition 19. An EBF algorithm, extended as described
above, determines an efficient allocation and corresponding
Vickrey payments.

The results obtained on the costs can be carried over to ex-
tendedEBF algorithms. The result above shows that, in the
context of admissibly equipped algorithms, the complexity
of the determination of Vickrey payments is directly tied to
the complexity of the determination of an efficient alloca-
tion. In other words: If it is possible to determine (with
an EBF algorithm) an efficient allocation with a tractable
amount of computation (implying also that only a tractable
amount of information is required if latency is neglected), it
is also possible to tractably compute the Vickrey payments.

The mechanism
To outline a mechanism that is based on the extendedEBF
algorithm, a set of allowed questions, a data structure to
store retrieved information and a policy to generate ques-
tions are fixed. To fulfill the informational needs of the
underlying algorithm, the following two questions will be
allowed: (1)give me the bundle with the next higher rank
number(that is the next weakly less preferred bundle), (2)
give me your valuation for bundlex. We assume that all par-
ticipants know the underlying set of goods. The consumers
will consider the first rank question as the start of the mech-
anism and will answer it with their most preferred bundle
(with rank 1). The arbitrator is considered to be trustwor-
thy10. In the end, the arbitrator will announce the computed
pair (Xi; t(i)) to each agenti. Note that the questions allow
only for a rather natural sequence of bundle questions–from
most preferred towards less preferred.11

9If the initial combination is feasible and, consequently, no val-
uation information is available, the Vickrey payments are0 (every
agent receives her most preferred bundle)–therefore no valuation
information is necessary to determine Vickrey payments.

10An independent institution may assess the trustworthiness of
the arbitrator by sampling the sent messages

11If the potentially exponential space requirement of the algo-
rithm does not allow one to keep track of all received bundle and
value information, polynomial space versions of the algorithm can
be used (adapted to, e.g., iterative deepening, see (Zhang & Korf
1995)), requiring that sequences of questions are repeated.



The received information can, for example, be stored in a
data structure similar to the augmented order graph of (Co-
nen & Sandholm 2001). Each node represents a quadru-
ple consisting of agent, rank, bundle and value information.
Nodes will be created as preferences are explored and in-
formation will be added to the nodes upon becoming avail-
able. The elicitation of information will be tied into the
execution of the algorithm in step (3). To determine the
set of value-maximizing combinations in OPEN, all miss-
ing bundle/value pairs of combinations in OPEN have to be
requested. With one exception, the algorithm immediately
implies that valuation requests can be done with the “next
worse bundle” question.12 Together with choosing a tie
breaking rule (deciding which value-maximizing combina-
tion to expand next), this fixes and implements a straightfor-
ward elicitation policy. Implementing the complete mech-
anism would be straightforward. The resulting mechanism
is a member of the family ofRANK mechanisms that dif-
fer only with respect to the tie breaking rule. The following
propositions follow immediately from the results above.

Proposition 20. A RANK Mechanism is incentive compat-
ible and economically efficient.

Proposition 21. Let B be theEBF algorithm that is used
in a specificRANK mechanism. Then there does not ex-
ists any other mechanism based on an admissible, admissi-
bly equipped and deterministic algorithm that requires fewer
checks of the feasibility of combinations for all instances of
the allocation problem.

Conclusions and future research
We presented a partial-revelation mechanism for combinato-
rial auctions that explores the natural lattice structure of the
bidders’ preference combinations. This mechanism gives a
possibility to analyze computational and informational re-
quirements of a class of mechanisms from first principles.
Analytical results on the amount of elicitation were derived.
Two categories of costs were studied. The results carry over
to (direct or indirect) mechanisms that do not explore the
rank lattice and use valuation questions only (possibly itera-
tive).

Theorem 15 shows that it is impossible to improve upon
the number of combinations to be valued without allow-
ing the elicitation algorithm to query the value of infeasible
combinations. If this is allowed, the comparison toEBF al-
gorithms with respect to required feasibility checks becomes
relevant (due to Theorem 11)–in this sense,EBF andMPAR
are, in spite of their simplicity, limit cases (EBF algorithms
with respect to feasibility checking andMPAR with respect
to valuation if only feasible combinations are valued.) The
mechanism is also of interest because it ties the computa-
tional effort required for Vickrey payments directly to the
effort required for computing an efficient allocation.

As future work we plan to study the effect of preference
restrictions on the performance ofEBF algorithms. We have

12The exception occurs if(1; : : : ; 1) is not feasible which leads
to a comparison with its successors, where the implementation has
to make sure that the first received value information elicited from
each agent is attached to the node representing rank 1.

already started conducting experiments on how effective
preference elicitation in combinatorial auctions is in practice
(Hudson & Sandholm 2002). Future work also includes ana-
lyzing the efficiency of elicitation in the sense of the ratio of
utility information elicited to the amount of information that
is required,at a minimumto determine an efficient allocation
and corresponding Vickrey payments. We expect that, for
a given problem instance, an optimally chosen tie-breaking
rule will not leave much room for improvement—however,
optimally choosing the tie-breaking rule will generally not
be possiblea priori.
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