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Particle Filter with Mode Tracker (PF-MT) for Visual
Tracking Across Illumination Changes

Samarjit Das, Amit Kale and Namrata Vaswani

Abstract—In this correspondence, our goal is to develop a visual

tracking algorithm that is able to track moving objects in the presence of

illumination variations in the scene, and that is robust to occlusions. We

treat the illumination and motion (x-y translation and scale) parameters

as the unknown “state” sequence. The observation is the entire image

and the observation model allows for occasional occlusions (modeled as

outliers). The nonlinearity and multimodality of the observation model

necessitates the use of a particle filter (PF). Due to the inclusion of

illumination parameters, the state dimension increases, thus making

regular PF impractically expensive. We show that the recently proposed

PF with Mode Tracker (PF-MT) approach can be used here since, even in

most occlusion cases, the posterior of illumination conditioned on motion

and the previous state is unimodal and quite narrow. The key idea is

to importance sample on the motion states while approximating impor-

tance sampling by posterior Mode Tracking for estimating illumination.

Experiments demonstrate the advantage of the proposed algorithm over

existing PF based approaches for various face and vehicle tracking. We

are also able to detect illumination model changes, e.g. those due to

transition from shadow to sunlight or vice versa by using the gELL

statistic and successfully compensate for it without ever loosing track.

Index Terms—Visual tracking, Particle Filter, tracking, Monte Carlo

methods

I. INTRODUCTION

In recent works [3], [4], [5], we developed practically imple-
mentable particle filtering (PF) approaches for tracking on large
dimensional state spaces with multimodal likelihoods. An approach
called PF with posterior mode tracking (PF-MT) was introduced.
The focus of [3] was only on the algorithm design and analysis and
we only showed one simulated temperature field tracking problem.
In this correspondence, we look at the problem of moving objects’
tracking across illumination change, which is a key practical appli-
cation where the above problem occurs. We explain how to use
the PF-MT approach to design an efficient PF based tracker for
this problem. Significantly improved performance of PF-MT over
existing PF approaches as well as over some other illumination
tracking approaches is demonstrated. We note that this is the first

work where the PF-MT approach is exhaustively compared against
existing PF methods for a real visual tracking application. The only
other work where PF-MT was used for a real application is [6], but
that only compared two different contour deformation models and
not PF algorithms. We also briefly demonstrate the use of the ELL
statistic [7] to detect illumination model change and to automatically
adapt to that change. This is needed for example when the moving
target (vehicle or persons) moves from a lighted to a shadowed region
or vice versa.

In the absence of illumination change, the motion of a rigid object
moving in front of a camera that is far from the scene can be
tracked using a three dimensional vector consisting of x-y translation
and uniform scale or more generally using a six dimensional affine
model as in Condensation [8]. Condensation was the first work
to beautifully demonstrate the use of a PF for tracking through
multimodal observation likelihoods resulting from background clutter
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or occlusions. Now, if illumination also changes over time and if
different parts of the object experience different lighting conditions,
then many more dimensions get added to the state space, thus
making it a much larger dimensional problem. As the state space
dimension increases, the number of particles required to track using
a PF increases [9], thus making PF impractical. But, as we explain
later in Sec. III, in most cases of practical interest, the posterior
of illumination change, conditioned on motion and on the previous
state, is unimodal. Also, illumination change is usually very gradual
and this causes the posterior to be also narrow. Under these two
assumptions, one can replace importance sampling of illumination by
just posterior mode tracking (MT), i.e. we can use a PF-MT for this
problem. This one step, reduces the importance sampling dimension
to three and thus drastically reduces the number of particles required.
We refer to the resulting PF as Illumination PF-MT.

Early work on illumination modeling for object recognition and
illumination invariant tracking include [10], [11], [12], [13]. However,
learning these models from low resolution videos might pose serious
practical challenges. Template adaptation approaches [14], [15], [16]
suffer from problems of drift [17], e.g. if you adapt when the tracker
has latched onto clutter, it will lead to tracking failure. In [18], it
was assumed that a small number of centroids in the illumination
space can be used to represent the illumination conditions existing
in the scene. The six centroids method of [18] does not suffice given
complex illumination patterns often encountered in reality. Also, it
is unclear how standard trackers like mean-shift tracker [19] can be
adapted for illumination invariance. We show examples of failure of
template adaptation, mean-shift and six centroids method in Fig. 3
of Supplementary material. Some recent work on jointly handling
appearance change due to illumination variations, as well as other
factors like 3D pose change, include [20], [21], [22], [23], [24], [25].

In this note, we use a template-based tracking framework because
it is simple to use and to explain our key ideas; but the Illumination
PF-MT approach can also be used with other representations of the
target, e.g. feature based approaches. Also, the template matching
framework enables illumination to be parameterized using a Legendre
basis, as suggested in past works [18], [26]. We use a very simple
motion and illumination change model to demonstrate how to design
PF-MT for our problem. However, we note that a similar PF-MT
idea can also be extended to jointly handle appearance change due
illumination as well as other factors like 3D pose change, by using
the more sophisticated models of recent work [20], [21], [22], [23],
[25]. Similarly, illumination can also be represented using other
parameterizations such as those proposed in [10], [11], [12], [13].

Paper Organization: In Sec. II, we develop the state space model
for the tracker. In Sec. III, we explain how to design a PF-MT
algorithm for tracking across illumination variations. In Sec. IV, we
design the gELL based change detection system for detecting and
tracking illumination model changes. The experimental results are
given in Sec. V and we conclude the paper in Sec. VI.

II. STATE SPACE MODEL

The system model consists of simple dynamical models for illu-
mination Λt and motion parameters Ut (further details to follow).
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Thus the state vector is given as, Xt = [UT
t ,ΛT

t ]
T . The observation

Yt is the image frame at time t. Our observation model assumes that
occlusions may occur.

A. Notation

The notation vec(.) refers to the vectorization operator which
operates on a m × n matrix to give vector of dimension mn by
cascading the rows. [x]n denotes the n

th element of a vector x. I
denotes the identity matrix. The Hadamard product (the ‘.*’ operation
in MATLAB) is denoted by ⊙. The terms 1 and 0 refer to the column
vectors with all entries as 1 and 0 respectively. mean(.) gives the
mean value of the entries of a vector i.e mean(x) = 1/N

�N
i [x]i

for an N length vector x. The function round(Z) operates on a
matrix Z and outputs a matrix with integer entries as round(zi,j)
which is the integer closest to zi,j . The notation N (a;µ,Σ) denotes
the value of the Gaussian distribution with mean µ and covariance
Σ computed at a whereas x ∼ N (µ,Σ) implies that the random
variable x is Gaussian distributed with mean µ and covariance Σ.
Similarly, the notation U(a; c1, c2) denotes the value of the uniform
density defined over [c1, c2] computed at a while x ∼ U(c1, c2)
denotes that x is uniformly distributed over [c1, c2]. The term mode

refers to the local maxima of a probability density function (PDF).
The PDF is unimodal (multimodal) if it has exactly one (multiple)
mode(s).

B. The Observation Model

We assume the observation model of [1], [18], but include an
occlusion model similar to the one introduced in condensation [8].
The target object template image, at time t, is denoted as Tt. As
introduced in [18], the changed “appearance” of the template Tt is
represented in terms of a linear combination of the initial template
T0 scaled by a set of Legendre basis functions as follows.

vec(Tt) = AΛt (1)

where the matrix A is defined in Appendix equation (7). Its columns
consist of the initial template scaled by the first D Legendre basis
functions. The D× 1 vector Λt is the Legendre basis coefficients at
time t along the first D Legendre basis functions. Henceforth, we
will call it the illumination vector. Theoretically, illumination can
be different for each pixel and the illumination dimension would
become equal to M . However, it is know from earlier work that in
reality, the variability is not so high and the top Legendre coefficients
suffice to model most of the illumination changes [18]. The Legendre
basis coefficients were successfully used in [1]. In this work, we
use the Legendre basis, although any other suitable basis (even data
dependent basis like PCA) can be used as well and nothing in our
proposed algorithm will change. It is to be noted that we only model
translation and scaling of the template as the motion states. Note that
the template is not updated as a whole, but we update the motion
states that need to be applied to the original template to get something
that matches the object in the current image.

Given the motion parameter vector Ut consisting of scale, hori-
zontal translation and vertical translation (Ut = [st τ

h
t τ

v
t ]

T ) of the
initial template, the ‘moved’(translated/scaled) template region in the
current frame Yt can be computed as given in Appendix equation
(8). We call it region of interest or ROI(Ut).

At any given instant, part or all of the ROI may get covered
(occluded) by some other object(s). In the absence of any knowledge
about the occluding object(s)’s intensity or pixel locations, we assume
a simple outlier noise model for occlusion [8]. At any time t, any
ROI pixel gets occluded with probability (1− θ) independent of the
others and when it does, its intensity is uniformly distributed between

0 to 255 independent of all other pixels. On the other hand, with
probability θ, there is no occlusion. Thus, for all i ∈ ROI(Ut),

Yt(i) =

�
[AΛt]i + [nt]i w.p θ

[Ot]i w.p 1− θ

where nt ∼ N (0,σ2
oI), [Ot]i ∼ U(0, 255) and ROI(Ut) is

computed using (8). The pixels outside the predicted template region
(ROI) are assumed to have intensities that do not depend on Ut, Λt

or T0(i, j). Thus we have the following observation likelihood given
the state vector Xt � [UT

t ,ΛT
t ]

T ,

OL(Xt) � p(Yt|Ut,Λt) ∝ p(Yt(ROI(Ut))|Λt)

= ΠM
n=1[θ N ([Yt(ROI(Ut))]n; (AΛt)n,σ

2
o)

+ (1− θ)U([Yt(ROI(Ut))]n; 0, 255)] (2)

where [ ]n denotes the n
th element of a vector. Note that the outlier

noise term in (2) does not depend on Xt and thus each of the M

terms in the product is a heavy-tailed probability distribution function
and hence multimodal. For a given realization U

(i)
t of Ut, we define

the conditional likelihood of Λt as,

CL
(i)(Λt) � OL(Λt, U

(i)
t ) (3)

An example of the negative-log plot of CL
(i) for a scalar case (i.e.

M = 1) is shown in Fig. 1.

C. The System Model

We defined the motion parameter vector Ut = [st τ
x
t τ

y
t ]

T in the
previous section. As mentioned earlier, the illumination vector Λt ∈
RD correspond to the coefficients of the Legndre basis function. Thus
tracking is performed over a D+3 dimensional motion-illumination

space.
In the absence of specific information about the object motion or

about illumination variation, we assume a simple random walk model
on both Ut and Λt i.e.

Ut = Ut−1 + nu, and Λt = Λt−1 + nλ (4)

where nu ∼ N (0,Σu), nλ ∼ N (0,ΣΛ), ΣΛ is a D ×D diagonal
matrix and Σu is a 3× 3 diagonal covariance matrix. Thus the state
transition prior (STP) can be given as :

STP (Ut,Λt;Ut−1,Λt−1) � STP (Ut;Ut−1) STP (Λt;Λt−1)

where STP (Ut;Ut−1) � N (Ut;Ut−1,Σu)

and STP (Λt;Λt−1) � N (Λt;Λt−1,ΣΛ) (5)

III. ILLUMINATION PF WITH MODE TRACKER (PF-MT)
A particle filter (PF) uses sequential importance sampling [9] along

with a resampling step [27] to empirically estimate the posterior
distribution, πt|t(Xt) � p(Xt|Y1:t), of the state Xt. PF-MT [3]
splits the state vector Xt into Xt = [Xt,s, Xt,r] where Xt,s

denotes the coefficients of a small dimensional “effective basis” (in
which most of the state change is assumed to occur) while Xt,r

belongs to the “residual space” in which the state change is assumed
“small”. It importance samples only on the effective basis dimensions,
but replace importance sampling by deterministic posterior Mode
Tracking (MT) in the residual space. Thus the importance sampling

dimension is only dim(Xt,s) (much smaller than dim(Xt)) and

this is what decides the effective particle size. PF-MT implicitly
assumes that the posterior of the residual space conditioned on the
effective basis (“conditional posterior”) is unimodal most of the time.
Moreover it is also assumed to be narrow. Only under these two
assumptions, the conditional posterior mode is a highly likely sample
from the conditional posterior.
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(c) Multimodal p∗∗,i(Λt)
Fig. 1. In this figure, we plot the negative log of the conditional likelihood (CL) i.e. CL(i)(Λt) and state transition prior (STP) p(Λt|Λ(i)

t−1) together
with the negative log of p∗∗,i for a simple 1D scalar case. Fig. 1(a) shows the no occlusion case where CL mode is very close to the STP mode
leading to a unimodal p∗∗,i. Fig. 1(b) demonstrates that the occlusion case with unimodal p∗∗,i (the CL mode is very far from the STP mode). In
Fig. 1(c), it is shown that when the CL mode is close to the STP mode (but not in the basin of attraction of the STP), this gives rise to a multimodal
p∗∗,i.

Consider the observation model given in (2). Without any prior
information, due to clutter, the observation likelihood, OL(Ut,Λt)
is clearly multimodal, e.g. if there is no constraint on how large
illumination change can be, one may get a very strong match to the
observation with a wrong object region (wrong motion estimate).
This necessitates the use of a PF. Also, even with just a seven
dimensional space of illumination change, the state space dimension
becomes ten, which is quite large. As a result the original PF [27]
will require a very large number of particles. Other efficient PFs
such as PF-Doucet [9] or Gaussian PF [28] also cannot be used
since these implicitly assume that the posterior conditioned on the
previous state, p∗(Xt) � p(Xt|Xt−1, Yt) is unimodal. But in our
problem, this will not hold, since the likelihood is multimodal and
the prior on motion is typically quite broad, and this will result in
a multimodal p∗ (as explained in [3]). In fact, PF-Doucet [9] cannot
even be implemented easily because it requires finding the posterior
mode (mode of OL(Xt)STP (Xt)). But since our OL(Xt) is not
differentiable (consists of a round operation, see (8)), one cannot
use standard numerical optimization algorithms to do this. Moreover,
since the multimodality in the problem comes from the likelihood
(and not the system model), at any time, Gaussian mixture filters
or Gaussian Sum PF [29] also cannot be used (see discussion in
[3] for details). Because of the occlusion term, even conditioned on
motion Ut, the observation model is not linear-Gaussian. Hence, Rao-
Blackwellized Particle Filter (RB-PF [30], [31]) cannot be used either.

But notice that, while p
∗ is often multimodal, p∗ conditioned on

motion, i.e.

p
∗∗,i(Λt) � p

∗(Xt|U (i)
t ) = p(Λt|X(i)

t−1, Yt, U
(i)
t )

∝ CL
(i)(Λt)p(Λt|Λ(i)

t−1) (6)

is usually unimodal. Here CL
(i)(Λt), defined in (3), is the conditional

likelihood of Λt i.e. p(Yt|U (i)
t ,Λt). This happens for the following

reason. Notice that p(Λt|Λ(i)
t−1) is Gaussian and hence unimodal.

When there is no occlusion, the dominant conditional likelihood mode
is the observed illumination of the target. Hence the state transition
prior’s mode (target illumination at t−1) is close to it and in fact lies
in its basin of attraction and so, p∗∗,i(Λt) is unimodal (see Fig. 1(a)).
In case of occlusion, the dominant CL mode is the intensity pattern
of the occluding object. But since the illumination change prior is
quite narrow, the conditional posterior, p∗∗,i, will still be unimodal
(see Fig. 1(b)), except if the occlusion intensity is very close to the
targets intensity pattern (see Fig. 1(c)). This fact is proved in Theorem
1 of [3]. In both occlusion and no-occlusion cases, narrowness of
STP (Λt) ensures narrowness of p

∗∗,i. As a result we can use PF-
MT for this problem with Xt,s = Ut and Xt,r = Λt. We give the
stepwise Illumination PF-MT algorithm in Algorithm 1. The only
exception where the above split up may not work is if, the occluding
objects intensity pattern is very close to that of the template i.e. the
case of Fig. 1(c). If in an application, this happens very often, then

Algorithm 1 Illumination PF-MT. Going from π
N
t−1|t−1 to

π
N
t|t(Xt) =

�N
i=1 w

(i)
t δ(Xt −X

(i)
t )

For each t > 0,
1) Importance Sample (IS) on motion : For all i, sample U

(i)
t ∼

STP (Ut;U
(i)
t−1) (defined in (5)). Use U

(i)
t to compute the corre-

sponding ROI using (8).
2) Mode Tracking (MT) on illumination : Use the current observation

to get Yt(ROI(U(i)
t )) and compute the mode m

(i)
t of p∗∗,i(Λt)

by solving the following convex optimizing problem,

m
(i)
t = argmin

Λt
[− log p∗∗,i(Λt)] = argmin

Λt
L
(i)(Λt)

where L
(i)(Λt) = [− logCL

(i)(Λt)] + [− logSTP (Λt;Λ
(i)
t−1)]

where CL(i)(Λt) is defined in (3) and STP(.) in 5. Generate
illumination particle as Λ(i)

t = m
(i)
t

3) Weighting and Resampling: Compute the weights using w
(i)
t ∝

w
(i)
t−1OL(U(i)

t ,Λ(i)
t )STP (Λ(i)

t ;Λ(i)
t−1) and resample

4) Increment t and go back to Step 1

one should also use a part of the illumination state as Xt,s.

IV. ILLUMINATION PF-MT WITH ILLUMINATION MODEL
CHANGE

In most cases, the illumination changes gradually over time and
hence the illumination change variance takes a small value. The
exception is when a car or a person transitions from shadow to
sunlight or vice versa or in an indoor scenario if the light bulb
is switched off or on. During these transitions, if we track with a
small illumination variance model, the tracker will gradually lose
track. Thus there is a need to detect model change and to assign a
high illumination change variance temporarily during the transition
period and to change it back once the transition is over. If we allow
the illumination change to have a larger variance all the time, then
the PF-MT algorithm as designed in the previous section will no
longer be applicable (since it will become more likely that p

∗∗ is
multimodal). We propose to detect model change using the recently
proposed generalized Expected (negative) Log Likelihood (gELL)
statistic [7]. The gELL is designed to detect model changes before
complete loss of track, which is what our application needs. In fact
it works by using the partly tracked part of the change to detect it.
Standard approaches, like tracking error use loss of track to detect
change and hence take longer.

Generalized ELL (gELL) is the Kerridge inaccuracy [33] between
the posterior at time t, πt|t and the ∆-step ahead prediction distribu-
tion πt|t−∆, i.e. gELL(t,∆) � Eπt|t [−logπt|t−∆(Xt)] where Ep[.]

denotes expectation w.r.t pdf p(X) and πt|t−∆(Xt) � p(Xt|Y1:t−∆).
In practical applications, it is not clear how to choose ∆. One option
is to compute the maximum of gELL over all ∆, i.e. to compute
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t = 10 t = 28 t = 38 t = 45 t = 51

Fig. 2. Visual comparison of various methods for face tracking across illumination changes with occlusion lasting up to 6 frames. We used N = 100
particles. The top row corresponds to Illumination PF-MT (our method). Second row correspond to the case when no model for illumination is used
i.e. PF-Gordon is used on the three dimensional motion space only. The third row correspond to Auxiliary-PF [32]. The fourth row correspond to
PF-Gordon [27] with standard resampling strategy. It can be seen that Illumination PF-MT outperforms the rest. It is to be noted that with limited
number of particles (N = 100), PF-Gordon looses track right from the beginning. This is because, PF-Gordon fails to estimate the illumination
vector correctly with insufficient number of particles.

gELL-max(t) � max∆=1,2,...,t gELL(t,∆). In order to detect
illumination model change, we compute the gELL for the illumination
state Λt. The gELL is computed as follows [7]. We use a Gaussian
density approximation to the posterior at t − ∆, πt−∆|t−∆(Xt)
as : π

N
t−∆|t−∆(Xt) ≈ N (Xt ; µ

N
t−∆|t−∆,ΣN

t−∆|t−∆) where the
parameters are estimated as the empirical mean and covariance of
the weighted particle set for π

N
t−∆|t−∆(Xt) =

�N
i=1 w

(i)
t δ(Xt −

X
(i)
t ). With this approximation, the prediction , πt|t−∆(Xt), which

is obtained by applying the system model of Λt, given in (4),
∆ times to πt−∆|t−∆(Xt), is also Gaussian i.e. πt|t−∆(Xt) ≈
N (µN

t|t−∆,ΣN
t|t−∆) where µ

N
t|t−∆ = µ

N
t−∆|t−∆ and ΣN

t|t−∆ �
ΣN

t−∆|t−∆ +∆ΣΛ. Thus,

gELL(t,∆) =
N�

i=1

w
(i)
t (Λ(i)

t − µ
N
t|t−∆)T (ΣN

t|t−∆)−1(Λ(i)
t − µ

N
t|t−∆)

As explained in [7], the gELL threshold for detecting
model change can be set at a value that is a little above
Eπt|t−∆

[− log πt|t−∆(Λt)|no change] (see Sec. IV-C of [7]
for details). Notice that this is equal to the differential entropy of
πt|t−∆(Xt). Since πt|t−∆(Xt) is approximated by a Gaussian, its
differential entropy is proportional to the dimension of Λt times the
logarithm of the determinant of the illumination change covariance.

A. Illumination PF-MT with Change Detector

We begin by running the Illumination PF-MT algorithm of Al-
gorithm 1 with ΣΛ given by the learnt illumination covariance.
At each time t, after the weighting step, we compute gELL as
described above. If it exceeds a threshold, then we set ΣΛ to a
heuristically selected large value. During this period the tracker
almost exclusively relies on the observations. Assuming no occlusion

during this transition period, the particles will quickly and correctly
adapt to the changed illumination conditions. At this point, the gELL
statistic value will reduce. When it goes below the threshold, we reset
ΣΛ to its learnt value.

It is assumed that this transition affects the illumination space only
and does not alter the observation process itself. Thus the value
θ in equation (2) does not need to be changed. We should point
out here that if occlusion occurs during this period, it will lead to
tracking failure since the tracker will wrongly latch onto the occlusion
intensity. In other words, the proposed solution cannot handle large
illumination change and occlusion occurring at the same time.

V. EXPERIMENTAL RESULTS

The goal of this correspondence is to show how to design PF-
MT for illumination tracking problem and to demonstrate that it
provides a much more efficient solution (efficient in terms of number
of particles needed) to visual tracking under illumination change,
compared to other PFs. Hence, here, we only show comparisons with
other PF methods. In Fig. 3 of Supplementary materials and also in
[34], we also show comparisons with some other approaches from
recent work.

In all of our experiments, we used a set of labeled video sequences
for learning the dynamical model parameters for Λt and Ut. First,
manually hand-mark the target centroids in the training sequence and
then use these to learn the motion vectors Ut. The corresponding
illumination vector Λt is computed from the image frame Yt as,
Λt = (AT

A)−1
A

T
Yt(ROI(Ut)). The covariance matrices of the

change of Ut and of Λt, ΣΛ and Σu are estimated using stan-
dard maximum likelihood estimation applied to (Ut − Ut−1) and
(Λt − Λt−1). For learning the illumination model, we used D = 7
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(a) Face tracking (b) Vehicle Tracking
Fig. 3. Performance comparison of various PFs while tracking across illumination changes for face (left) and vehicle tracking (right) application
(visuals in the supplementary section). We show the location error from the ground truth for different particle filters. PF-MT correspond to Particle
Filter with Mode Tracker (i.e. Illumination PF-MT), FULL-PF correspond to PF-Gordon [27], Full-PF-AUX correspond to Auxiliary-PF [32] and
PF-NO-ILL corresponds to PF-Gordon without illumination model. It can be seen that Illumination PF-MT outperforms the rest. It is to be noted that
Auxiliary-PF has some negligible performance improvement over PF-Gordon with standard resampling strategy; but it is far worse than Illumination
PF-MT. In all of these experiments we used N = 100 particles.

t = 20 t = 90 t = 100 t = 110 t = 130

Fig. 4. An instance of face tracking under large illumination variation when someone switches the lighting conditions in a room.
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Fig. 5. This Figure shows the results using gELL based change detection statistics. It can be see that the tracker can track through drastic illumination
changes. The top row demonstrates that we are able track through illumination model changes when the car moves from sunlight to shadow area.
During the transition from sunlight to shadow area (around frame 19), the gELL value goes above threshold indicating a model change (see gELL
plot in the top row). If we do not detect the transition and increase ΣΛ then, tracker fails (second row).

(i.e. used Legendre functions up to order 3). For all the PF algorithms,
we used a fixed particle size of N = 100. In our experiments,
we handmark the approximate target ROI in the first frame. The
tracking performance of illumination PF-MT was compared with
several other PF-based algorithms like - PF without the illumination
model, Auxiliary-PF [32] and PF-Gordon [27]. Auxiliary-PF [32]
uses look-ahead resampling strategy to improve effective particle size.
PF-Doucet [9] cannot be implemented for our problem because it is
not possible to use numerical convex optimization techniques to find
the mode of p∗(Ut,Λt) ∝ OL(Ut,Λt)STP (Ut,Λt). This is due to
fact that the observation likelihood OL(Ut,Λt) is not continuously
differentiable due to the involvement of round() operations in the
mapping from Ut to Yt (refer to (8) and (2)). However, the same is
not true for the conditional likelihood of Λt i.e. CL

(i)(Λt) which
enables us to implement PF-MT for our problem.

In the first experiment, we evaluate the tracking performance of
illumination PF-MT for face tracking in the presence of illumination

change and occlusions. Here, the lighting conditions variations could
be attributed to two factors - a) the target’s distance from the window
and variable ambient lighting coming through it, and b) occasional
switching off and on of the light sources inside the room. The visual
tracking results are given in Fig. 2. It can be clearly seen that
illumination PF-MT (top row) clearly outperforms the rest of the
PF based methods for a limited particle budget of just 100 particles.
The other PFs loose track within the first few frames and are unable
to recover.

For quantitative tracking performance analysis, we did some
further experiments with face and vehicle tracking from surveillance
videos. The quantitative performance comparison plots for face
tracking is shown in Fig. 3(a). The car dataset was generated from
a camera observing a road from above as the cars approach an
intersection (shown in Supplementary material Fig. 1). The illumi-
nation variations were due to the variations in the ambient lighting
conditions. The corresponding quantitative tracking accuracy plots
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are given Fig. 3(b). It can be seen that with just 100 particles, our
algorithm has the best performance in terms of tracking accuracy
for both face and vehicle tracking scenarios. Another instance of
face tracking under illumination variations using PF-MT has been
demonstrated in Fig. 4 (dataset taken from http://www.eecs.qmul.ac.
uk/∼andrea/avss2007 d.html). We also show visual tracking results
on the standard CAVIAR data set [35] in the Supplementary material
Fig. 2.

We demonstrate the utility of illumination model change detection
and compensation in Fig. 5. Notice that the tracker fails during a
sunlight to shadow transition if we do not detect and adapt to the
change.

VI. CONCLUSIONS

In this correspondence, we have tackled the difficult problem of
visual tracking under variable illumination by reformulating it as a
problem of large dimensional tracking with multimodal observation
likelihood and using the PF-MT approach to design an efficient
PF algorithm. We show exhaustive experiments to demonstrate the
superior performance of our algorithm in handling large illumination
variations and severe occlusions for both face and vehicle tracking
videos. We also use the recently proposed idea of generalized ELL
(gELL) to detect and adapt to changes in the illumination model. In
future works, sparse representation of the illumination vector could
be leveraged to replace the posterior mode tracking part by recently
proposed particle filtered modified compressed sensing (PaFiMoCS)
[36].

APPENDIX

The changed ‘appearance’ of the template Tt is represented in
terms of a linear combination of the initial template T0 scaled by a
set of Legendre basis functions as follows [18].

vec(Tt) = AΛt,where
A � [vec(T0⊙P0), ..., vec(T0⊙PD−1)];

Pn(i, j) =






1 n = 0

pn(i) n = 1, ..., k

pn−k(j) n = k + 1, ..., D − 1

(7)

where pn(.) is the Legendre polynomial of n
th order and Λt is the

vector of Legendre basis coefficients at time t. Henceforth, we will
call it the illumination vector. Here, A is an M×D matrix with D =
2k+1 with k being the highest degree of the Legendre polynomials
being used and M is the number of pixels in the initial template T0.

Now, given the motion parameter vector Ut consisting of scale,
horizontal translation and vertical translation (Ut = [st τ

h
t τ

v
t ]

T ) of
the initial template, ROI(Ut) can be computed as [18],

ROI(Ut) � round([JiUt + i0, JjUt + j0]) (8)
with, Ji � [(i0 − ĩ01) 1 0], Jj � [(j0 − j̃01) 0 1]

The terms i0 and j0 are the M dimensional vectors containing the
x and y coordinates of all the pixels in the initial template T0,
ĩ0 = mean(i0) and j̃0 = mean(j0) denote the center of the
initial template. Notice that equation (8) essentially is a geometric
transformation that maps the pixels in the initial template to the
current template region.
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