
2

Sequential Monte Carlo Techniques and
Bayesian Filtering : Applications in Tracking

Samarjit Das

Abstract—Visual tracking is a very important issue in various applications involving robotics and/or computer vision. The basic idea

is to estimate a hidden state sequence from noisy observations under a given state space model. The state space model comprises

of a system model and an observation model. The system models that we are going to discuss here has the markov property and the

corresponding state space model is basically known as hidden markov model. Due to non-linearities in the system and the observation

model, bayesian filtering (also known as particle filtering) is an ideal candidate for the purpose of tracking. Particle filtering is basically a

non-linear, non-gaussian analog of kalman filter. It is based on sequential Monte Carlo techniques. In this article we are going to discuss

Monte Carlo simulation techniques to solve numerical problems, especially to compute posterior probability distribution which involves

complicated integrals. Then we are going to extend these ideas to sequential Monte Carlo techniques and develop algorithms leading

to particle filtering. We demonstrate applications of particle filtering in areas such as target tracking in a wireless sensor network.

Index Terms—Monte Carlo simulation, sequential Monte Carlo techniques, particle filtering, visual tracking

✦

1 MONTE CARLO METHODS

Monte Carlo methods (also referred to as Monte Carlo
simulation) are a class of computational algorithms that
rely on repeated random sampling to compute their
results. These methods are quite often used to simu-
late physical and mathematical systems. They are most
suitable for computation by computers as they rely on
repeated computation and random or pseudo random
numbers. Monte Carlo methods tend to be used when
it is infeasible or impossible to compute an exact re-
sult with deterministic algorithm. A simple example is
numerical computation of complicated integrals using
Monte Carlo simulation.

Consider the following case. Say we want to compute,

I =

∫ b

a

ψ(x)dx

where ψ(x) be a function with a very complicated closed
form expression making it impossible to be integrated
in a closed form. We can solve this problem numerically
using Monte Carlo technique. First, consider a random
variable X distributed over the interval [a, b] with a
probability density function (pdf) fX(x). The closed form
expression of fX is known and we can draw samples
w.r.t. fX(.). We draw N (sufficiently large) samples from
the pdf,

xi ∼ fX(x), i=1, . . . , N

f̂X(x) ,

N∑
i=1

1

N
δ(x− xi)

• This article was submitted as a term paper for the course ComS 577, Fall
2008 at Iowa State University, Ames, IA 50010.

here δ(.) denotes a dirac delta function. Thus f̂X(x) is
the discretized PMF (probability mass function) approx-
imation of the continuous pdf fX . Now the integral can
be written as,

I =

∫ b

a

ψ(x)dx

=

∫ b

a

ψ(x)

fX(x)
fX(x)dx

I = EfX
[
ψ(X)

fX(X)
]

where EfX
[.] denotes the expected value w.r.t the

distribution fX . Now, we can estimate the expectation
and thus the integral using the discretized version of

the pdf. Or, Î ≈ E
f̂X

[ψ(X)
fX (X)] which ca be computed as

follows,

Î =

∫ b

a

ψ(x)

fX(x)
(
N∑
i=1

1

N
δ(x− xi))dx

Or, Î =
1

N

N∑
i=1

ψ(xi)

fX(xi)
(1)

Using the law of large numbers it can be shown that
Î → I as N → ∞. Thus by drawing a large number of
sample in the interval [a, b] we are able to numerically
approximate the integral I using Monte Carlo technique.
The process of sampling from the distribution fX can be
extended to importance sampling technique by which we
can estimate the properties of a particular distribution ,
while only having samples from a different distribution
(known as importance density or importance function)
rather than the distribution of interest. This will be
discussed in detail while developing the particle filtering
algorithm.

3

Fig. 1. This figure shows the hidden markov model structure of
the state space. The state sequence xt is a markov process and
the observations yt, t = 1, 2, ... are conditionally independent
given the state at t

2 BAYESIAN FILTERING PROBLEM

Consider a state-space model with t = 0, . . . , T ,

xt = φ(xt−1) + nt (2)

yt = g(xt) + vt (3)

where xt and yt denote the state and the observation at
the current instant respectively. In real-life applications,
for example, the state can be the position of a target
while the observation is noisy the sensor data about the
current position and our goal could be to extract the true
‘hidden’ state information using the observations and
the state dynamical model (the system model, eq (2)).
The functions φ(.) and g(.) can be any linear or non-
linear function. The following things can be assumed
to be known. The initial state distribution p(x0), the
state transition density p(xt|xt−1) and the observation
likelihood p(yt|xt). Here, p(.) is used to denote proba-
bility density function. The transition density and the
observation likelihood can be determined form the know
distributions of i.i.d noise sequences nt and vt. The state
space is assumed to follow a hidden markov model
(HMM). In other words, the state sequence xt is a
markov process and the observations yt, t = 1, 2, ... are
conditionally independent given the state at t. The states
are hidden (i.e. not observable); all we can know about
the system is through the observations known at each in-
stant. The graphical model of the HMM is shown in Fig.
1. Under HMM assumption, p(xt|xt−1, past) = p(xt|xt−1)
and p(yt|xt, past) = p(yt|xt) e.g. p(yt|xt, yt−1) = p(yt|xt).

The goal of particle filtering (or bayesian filtering) is
to estimate the joint posterior state distribution at time t
i.e. p(x1:t|y1:t) or quite often its marginal p(xt|y1:t). Here,
x1:t = {x1, x2, ..., xt}. Finally, we would like to compute

It = Ep(xt|y1:t)(f(Xt)) =

∫
f(xt)p(xt|y1:t)dxt

(4)

When the posterior can be assumed to be gaussian and
function φ(.) and g(.) to be linear the same problem can
be recursively solved using Kalman filter [1]. To tackle
non-linearity of φ and g(.), the Extended Kalman filter [1]
can be used, but it still assumes the gaussianity of the

posterior distribution. But in many practical problems
the posterior is highly non-gaussian (quite often mul-
timodal) together with non-linear φ(.) and g(.). Under
such circumstances, sequential Monte Carlo technique
based particle filtering algorithm gives us a way to
solve this posterior estimation problem. In the next few
sections, we shall develop the particle filter starting
with Monte Carlo sampling for pdf approximation. We
also discuss sequential Monte Carlo method (especially
sequential importance sampling) and how it leads to
particle filtering.

3 DERIVATION OF THE PARTICLE FILTER

Similar to eq (4), say we are trying to compute the ex-
pectation w.r.t the joint posterior distribution p(x1:t|y1:t)

Ep(x1:t|y1:t)[f(X1:t)] =

∫
f(x1:t)p(x1:t|y1:t)dx1:t =?

(5)

In order to solve this problem, we have to look into
two very important issues. a) Do we have a closed
form expression for p(x1:t|y1:t) ? b) Can we sample from
p(x1:t|y1:t) ? Depending on these two issues we can use
three different methods two solve this problem namely,
simple Monte Carlo sampling, importance sampling and
bayesian importance sampling. The method involving
bayesian importance is our main focus as it exactly is
what bayesian filtering/particle does. These methods are
discussed below.

3.1 Simple Monte Carlo Sampling

Consider the case when we can sample from the joint
posterior distribution p(x1:t|y1:t). In that case we can
approximate the distribution as a discretized version (as
done in Sec. 1) in terms of the samples drawn from that
distribution. Or,

xi1:t ∼ p(x1:t|y1:t), i=1, . . . , N

p̂(x1:t|y1:t) ≈
N∑
i=1

1

N
δ(x1:t − x

i
1:t) (6)

Now, we can approximate the expectation in the equa-
tion (5) as follows,

Ep(x1:t|y1:t)[f(X1:t)] ≈ Ep̂(x1:t|y1:t)[f(X1:t)]

=
1

N

N∑
i=1

f(xi1:t)

This is the most ideal case. In reality, almost always
we cannot sample from the posterior but we might have
a closed form expression for the distribution. This leads
to the second method known as importance sampling.

4

3.2 Importance Sampling

Importance sampling can be used to estimate the prop-
erties of a particular distribution, while only having
samples from a different distribution (known as impor-
tance density or importance function) rather than the
distribution of interest. Thus when we have a closed
form expression for p(x1:t|y1:t) but cannot sample from
it, we use an importance density to draw the samples.
We choose the importance density such that it has a
convenient closed form expression and can easily draw
samples from it. Say, this importance density be given
as π(x1:t|y1:t). Now, the problem of posterior expectation
computation can be solved as follows,

It =

∫
f(x1:t)p(x1:t|y1:t)dx1:t

=

∫
f(x1:t)

p(x1:t|y1:t)

π(x1:t|y1:t)
π(x1:t|y1:t)dx1:t

= Eπ(x1:t|y1:t)[f(X1:t)
p(X1:t|Y1:t)

π(X1:t|Y1:t)
]

Now, draw samples from π(.) and get its discretized
version π̂(.). Then the computation of posterior expecta-
tion boils down to,

xi1:t ∼ π(x1:t|y1:t), i=1, . . . , N

Ep(x1:t|y1:t)[f(X1:t)] ≈ Eπ̂(x1:t|y1:t)[f(X1:t)
p(X1:t|Y1:t)

π(X1:t|Y1:t)
]

=
1

N

N∑
i=1

f(xi1:t)
p(xi1:t|y1:t)

π(xi1:t|y1:t)
(7)

The corresponding approximation to the joint poste-
rior distribution is given as follows,

p(x1:t|y1:t) ≈ p̂(x1:t|y1:t)

=

N∑
i=1

witδ(x1:t − x
i
1:t) where

wit =
1

N
w̃it, with w̃it =

p(xi1:t|y1:t)

π(xi1:t|y1:t)

Thus we can see that even if we cannot sample from
the joint posterior, still we can get around the problem
by performing importance sampling from a conveniently
chosen probability distribution π(.).

3.3 Bayesian Importance Sampling

It turns out that in most real-life situations, we can
neither sample from the posterior (i.e. p(x1:t|y1:t)) nor
we have any closed form expression of it. Thus com-
puting the integral in equation (5) becomes challeng-
ing. Bayesian importance sampling is a variant of the
standard importance sampling technique to tackle this
problem. The numerical methods developed for solving
this problem leads to sequential importance sampling
(SIS) and then finally to particle/bayesian filtering. Now,
under the problem statement we do not have a closed

form expression for the posterior p(x1:t|y1:t). But it can
be expressed in the following manner,

p(x1:t|y1:t) =
p(x1:t, y1:t)

p(y1:t)
thus

p(x1:t|y1:t) ∝ p(x1:t, y1:t) (8)

It turns out that we can at least compute p(x1:t, y1:t)
in closed form recursively. This follows from the
hidden markov model (HMM) assumption on the
state space. The recursion can be performed as
p(x1:t, y1:t) = p(x1:t−1, y1:t−1)p(yt|xt)p(xt|xt−1) with
p(yt|xt) and p(xt|xt−1) known. We shall utilize this
fact to solve the problem of computing the posterior
expectation in a recursive fashion i.e. starting with
a known p(x0) and using p(yt|xt), p(xt|xt−1), keep
computing the approximate posterior p̂(x1:t|y1:t) and
Ep(x1:t|y1:t)[f(X1:t)] for t > 0.

The bayesian importance sampling is performed as
follows. The posterior expectation Ep(x1:t|y1:t)[f(X1:t)]
can be written as,

It =

∫
f(x1:t)p(x1:t|y1:t)dx1:t

=

∫
f(x1:t)

p(x1:t, y1:t)

p(y1:t)
dx1:t

=

∫
f(x1:t)p(x1:t, y1:t)dx1:t

p(y1:t)

=

∫
f(x1:t)p(x1:t, y1:t)dx1:t∫
x1:t

p(x1:t, y1:t)dx1:t
(9)

Now, let us consider the importance density to be
π(x1:t|y1:t) from which we are going to draw samples.
We choose π(.) in such a way that we at least recursively
know how to compute the expression for π(x1:t|y1:t).
The importance density π(.) is assumed to have certain
properties which are crucial to the development of the
recursive algorithm for approximating the posterior dis-
tribution and expectation. These will be discussed soon.
Now, let us get back to the problem of computing It.
From equation (9) it follows that

It =

∫
f(x1:t)

p(x1:t,y1:t)
π(x1:t|y1:t)

π(x1:t|y1:t)dx1:t∫
x1:t

p(x1:t,y1:t)
π(x1:t|y1:t)

π(x1:t|y1:t)dx1:t

=
Eπ(.)[f(X1:t)

p(X1:t,Y1:t)
π(X1:t|Y1:t)

]

Eπ(.)[
p(X1:t,Y1:t)
π(X1:t|Y1:t)

]
(10)

Now we can sample from π(.) as, xi1:t ∼ π(x1:t|y1:t),
i = 1, . . . , N and then get its discretized version π̂(.).
Finally, It can be estimated as follows,

Ît =
Eπ̂(.)[f(X1:t)

p(X1:t,Y1:t)
π(X1:t|Y1:t)

]

Eπ̂(.)[
p(X1:t,Y1:t)
π(X1:t|Y1:t)

]

=
1
N

∑N

i=1 f(xi1:t)w̃
i
t

1
N

∑N

j=1 w̃
j
t

, w̃it =
p(xi1:t, y1:t)

π(xi1:t|y1:t)

=

N∑
i=1

f(xi1:t)w
i
t, with wit =

w̃it∑N

j=1 w̃
j
t

(11)

5

The corresponding approximation to the joint poste-
rior distribution is given as,

p̂(x1:t|y1:t) ,

N∑
i=1

witδ(x1:t − x
i
1:t) (12)

where {wit}∀i are called the normalized importance
weights. Now, clearly wit’s cannot be computed directly
at a given instant. So, we develop a recursive way to
compute them. Once this is done, we have a compu-
tationally feasible method for computing the posterior
distribution. In order to do that we first make sure the
following assumption holds for the importance density
π(x1:t|y1:t).

π(x1:t|y1:t) = π(x1:t−1|y1:t−1)π(xt|x1:t−1, y1:t) (13)

Since p(x1:t, y1:t) = p(x1:t−1, y1:t−1)p(yt|xt)p(xt|xt−1), we
can develop a recursive way of computing the impor-
tance weights as,

w̃it =
p(xi1:t, y1:t)

π(xi1:t|y1:t)

= w̃it−1

p(yt|xit)p(x
i
t|x

i
t−1)

π(xit|x
i
1:t−1, y1:t)

where,

xit ∼ π(xt|x
i
1:t−1, y1:t) and xi1:t = [xi1:t−1, x

i
t]

(14)

Thus we can recursively compute the estimates of
the posterior distribution and the corresponding expec-
tations starting with the initial distribution. The entire
algorithm is summarized in the next section which is
known as sequential importance sampling (SIS).

3.4 Sequential Importance Sampling (SIS)

Before we give the algorithm for SIS, it is important to
choose the importance density π(.). There could be many
choices. The simplest one is to use the state transition
density as the importance density [2]. Or,

π(xt|x1:t−1, y1:t) = p(xt|xt−1) (15)

This gives, w̃it = w̃it−1p(yt|x
i
t) (16)

The optimal importance density [3], [4] is the one which
minimized the variance of the importance weights
conditioned on the observations and previous state
samples. It can be shown that πopt(.) = p(xt|xt−1, yt)
under the hidden markov model (HMM) assumption.
The derivation of πopt(.) is beyond the scope of this
article. All our discussions will stick to the case where
transition density is used as the importance density
(given in equation (15)). Finally, the recursive algorithm
for estimating the posterior density is summarized
below.

SIS Algorithm

1) Sample from the initial distribution. xi0 ∼ p(x0),
assign w̃i0 = wi0 = 1

N
, i = 1, ..., N

2) For t > 0 and i = 1, ..., N ,

a) Sample xit ∼ p(xt|xit−1) and xi1:t = [xi1:t−1, x
i
t].

Compute weights as, w̃it = w̃it−1p(yt|x
i
t)

b) Get the normalized importance weights wit
and finally, p̂(x1:t|y1:t) =

∑N

i=1 w
i
tδ(x1:t − x

i
1:t)

3) Set t+ 1← t and go back to step 2.

The SIS algorithm gives us a way to recursively es-
timate the discretized posterior distribution. But this
algorithm has one major problem which makes it almost
ineffective for practical applications. It turns out that the
variance of the importance weights conditioned on the
observations only increases over time. As a result, after
a few iterations, only a few samples (also called particles)
will have non-zero normalized importance weights. This
is known as degeneracy of weights and it ends up
wasting a lot of particles making it very inefficient. The
particle filter comes into picture to solve this problem.
The basic particle filtering algorithm is discussed in the
next section.

3.5 The Basic Particle Filter

The particle filter basically modifies the SIS algorithms
to prevent the degeneracy of weights. In order to do
that at each time step, the particles (i.e. the samples) are
resampled w.r.t their normalized importance weights.
In other words, {wit}

N
i=1 is used as a probability mass

function (PMF) to sample the existing particles again. It
is denoted as xit ∼ PMF [{wt}] and the new importance
weights are assigned as wit = 1

N
. The basic particle

filtering algorithm is summarized below.

Particle Filtering (PF) Algorithm

1) Sample from the initial distribution. xi0 ∼ p(x0),
assign w̃i0 = wi0 = 1

N
, i = 1, ..., N

2) For t > 0,

a) Sample xit ∼ p(xt|x
i
t−1) and Compute weights

as, w̃it = p(yt|xit), i = 1, ..., N
b) Get the normalized importance weights wit as

wit =
w̃i

t∑
N
j=1 w̃

j
t

c) Resample the particles as, xit ∼ PMF [{wt}]
and reassign wit = 1

N

d) Get the estimated posterior as, p̂(x1:t|y1:t) =∑N

i=1
1
N
δ(x1:t − xi1:t) where xi1:t = [xi1:t−1, x

i
t]

e) Finally, compute It = Ep(xt|y1:t)[f(Xt)] ≈

Ep̂(xt|y1:t)[f(Xt)] = 1
N

∑N

i=1 f(xit)

3) Set t+ 1← t and go back to step 2.

3.5.1 A Simple PF Example

Consider a very simple linear state space model,

xt = 0.5xt−1 + wt, wt ∼ N (0, σ2
w)

yt = 0.4xt + vt, vt ∼ N (0, σ2
v)

Given initial distribution p(x0) = N (0, σ2
0). Here

N (µ, σ2) denotes a gaussian distribution with mean µ

6

and variance σ2. The algorithm with N = 1000 particles
is implemented as follows,

1) Sample xi0 ∼ N (0, σ2
0), i = 1, . . . , N

2) For t > 0,

a) Sample xit ∼ N (0.5xit−1, σ
2
w), i = 1, . . . , N

b) Compute weight : w̃it ∝ e
−

(yt−0.4xi
t)2

2σ2
v

c) Compute the normalized importance weights

wit =
w̃i

t∑
N
j=1 w̃

j
t

d) Resample the particles as, xit ∼ PMF [{wt}]
and reassign wit = 1

N
, xi1:t = [xi1:t−1, x

i
t]

e) Compute p̂(x1:t|y1:t) =
∑N

i=1 w
i
tδ(x1:t − xi1:t)

and It ≈ Ep̂(xt|y1:t)[f(Xt)] = 1
N

∑N

i=1 f(xit)

3) Set t+ 1← t and go back to step 2.

4 APPLICATIONS : TARGET TRACKING IN

SENSOR NETWORK

Consider a network coverage area of 200m× 200m with
200 randomly distributed sensors. The track-length was
of 60 times steps. Let Xt = [xt, yt] be the target state
(i.e the position of the target in the network) at time t

with corresponding velocity Vt = [vx,t, vy,t]. The state
dynamics equation used was,

xt = xt−1 + vx,t−1 and yt = yt−1 + vy,t−1

vx,t = vx,t−1 + e1,t and vy,t = vy,t−1 + e2,t (17)

And the sensor model (i.e. the measure-
ment/observation model) was,

zt = tan−1(
xt − xs
yt − ys

) + et,

where (xs, ys) is the position of the current sensor leader.
The system and observation noises used were as fol-

lows: ei,t ∼ N (0, 0.22), i = 1, 2 and et ∼ N (0, 0.052)
were assumed to be white, stationary and independent
of each other. The ground truth (i.e. the original track)
was generated by assuming the initial position of the
target to be [5, 5] and corresponding initial velocity to be
[2, 1.5]. While implementing tracking we assumed that
we have an estimate of the initial position of the target.
The current sensor leader was chosen using the mini-
mum distance criteria w.r.t the current target location. A
total of 4000 particles were used. At each step, using the
observations of the current sensor leader, we estimate
the state of the target by averaging over the resampled
particles. The results are shown in Fig. 2.

5 CONCLUSION

This article gives an overview of sequential Monte Carlo
techniques leading to bayesian/particle filtering. We
have shown how Monte Carlo techniques can be effi-
ciently used to compute numerical solutions to problems
which are often impossible to solve in closed form.
We have derived the particle filtering algorithm starting
with simple Monte Carlo sampling and then importance

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Fig. 2. This figure shows target tracking in a wireless sensor
network. The blue path denotes the ground truth i.e. the true
trajectory and the red × denote the tracked version. The blue,
magenta and green circular patches are the sensors. The green
color indicates a leader node while a magenta color indicates a
neighboring node.

sampling followed by bayesian importance sampling.
We have seen that particle filtering can be used in
problems with non-linear state-space together with non-
gaussian and multimodal posterior for which we do not
have a closed form expression. Such algorithms can give
us a discretized estimate of the posterior distribution in
terms the particles (i.e. samples) and their corresponding
weights. This also enables us to approximate the poste-
rior expectation of any function (equation (5)). We have
demonstrated the working of a basic PF algorithm for
a simple scalar case. Finally, we give application of the
particle filtering for target tracking in a wireless sensor
network. Particle filters has numerous other applications
in areas such as image processing and computer vi-
sion, robotics, finance and even for spacecraft trajectory
tracking. In computer vision, PF has been successfully
used to track deforming shape sequences leading to
articulated body tracking. It has also found applications
for deformable contour tracking, also know as conden-
sation [5]. More about bayesian/particle filtering and its
applications can be found in [2], [4], [3].

REFERENCES

[1] G. Welch and G. Bishop, “An introduction to Kalman Filters,”
SIGGRAPH, 2001.

[2] N. Gordon, D. Salmond, and A. Smith, “Novel approach to non-
linear/nongaussian bayesian state estimation,” IEE Proceedings-F
(Radar and Signal Processing), pp. 140(2):107–113, 1993.

[3] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for on-line non-linear/non-gaussian bayesian
tracking,” IEEE Trans. Signal Processing, vol. 50, pp. 174–188, Feb.
2002.

[4] A. Doucet, “On sequential monte carlo sampling methods for
bayesian filtering,” in Technical Report CUED/F-INFENG/TR. 310,
Cambridge University Department of Engineering, 1998.

[5] M. Isard and A. Blake, “Condensation: Conditional Density Prop-
agation for Visual Tracking,” Intl. Journal of Comp. Vision, pp. 5–28,
1998.

