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ABSTRACT techniques for multimodal importance sampling include [5]
- Importance sampling from the prior was also used in the first
e[:iarticle filter (PF) paper [6] and importance sampling from a

quential importance s.a.mpling in.the context of particl_@ﬁlt Gaussian approximation about the mode was described as one
ng. These were speCIflc;aIIy designed fo.r proble_ms W'th,mm'possible technique for approximating the optimal seqaénti
timodal posteriors (particularly those with multimodaidi importance density for PF in [7]
lihoods) and with very Iar_ge_ dirr_lensions._ In this work, we Importance sampling from the prior is often very ineffi-
demonstrgte the use of S|m|_lar |dea_s, to improve the Ioerfor<3ient especially when the likelihood is reliable [7, 8]. On
mance of importance sampling (l.S) n stapc problems. Th?he other hand, the Gaussian approximation of the posterior
key idea of our proposed method 'S t_o split the state space l|fQ, valid only when it is unimodal (or is unimodal most of the
frlljecr;t:\t\év?[gatxzzti;h‘%r?i?nséilr;?’r %%zd;gﬁntii:?mii:?;rl]lcgasr;r?%ime, i.e. for most values of the observation). In this wavk,

) ' : it he situati h h ior i Iti |. Thi
ple from the prior for the small “multimodal” part of the stat Study the situation where the posterior is multimoda IS

space while adapting existing efficient IS techniques fer th happens very often due to multimodality or heavy-tailedsne

much laraer dimensional “unimodal” part. We dive a modi of the observation likelihood. A common example is large di-
. g part. g . . mensional temperature field estimation when each sensor has
fied version of a result from our recent work to obtain suffi-

) " . . . some probability of failure. In computer vision, multiméda
cient conditions to ensure posterior unimodality. Alsa, do P y P

. . likelih r kground clutter or occlusi
subspace of the “unimodal” state space having small enougél elihoods occur due to background clutter or occlusidl]s [

. : ) LT ut in most of these problems, even though the posterior is
prior variance, one can replace IS by just estimating the con__~ .. o . o
ditional posterior mode. We call this the mode trackin (MT)muIUmodaI, it is often unimodal conditioned on a part of the
a roxiraation of IS We Show. Via experiments on g lar estate space. If we can find the “multimodal” part of the state
diF;rF])ensionaI tem eréture field éstimatiopn roblem thatnNhgeveCtor conditioned on which the posterior will be unimodal,
the number of ng les. N. is small. the FI?/IT a r,oximationwe can sample from the prior for this part and sample from

pies, N, ! PP a Gaussian approximation to the conditional posteriorter t
outperforms any standard IS technique. . ”
rest (“unimodal” states).

Index Terms— Importance sampling, multimodal obser- In [1], we derived sufficient conditions to test for uni-
vation likelihood, multimodal posterior computation modality of the posterior conditioned on the previous state
and a part of the current state. In this work, we adapt that
result to obtain sufficient conditions for unimodality ofeth

posterior conditioned on a part of the state space.

In recent work [1], we proposed two new ideas for efficient se- Forha sgbspa(_:e of the “unimodal Istate spsce_: ha"'”g sm;’;\ll
quential importance sampling in the context of particlefit enough prior variance, one can replace IS by just using the

ing. These were specifically designed for problems with mul_con(;jitiongl pqsterior m(cj)de ask_the sample. W‘? caI_I this} tge
timodal posteriors (particularly those with multimodatdi ~ MO¢€ estlrr;natmr? or mode tracking (MIT) appér_oxma}tlonlo '
lihoods) and with very large dimensions. In this work, wel1]- We show, via experiments on a large dimensional tem-

demonstrate the use of similar ideas to improve the perfolf€rature field estimation problem, that when the number of
mance of importance sampling (IS) to compute the poste§amples' N, is small, the MT approximation outperforms any

rior in static problems. Well-known IS techniques for pos_standard IS technique.
terior computation include sampling from the prior or sam-
pling from a Gaussian approximation to the posterior aboul.1. Problem Definition

its mode (Laplace’s approximation) [2, 3, 4]. Some other o . )
We denote the probability density function (pdf) of a random

This work was partially funded by NSF grant ECCS 0725849 vector X, fx(X), using the notatiorp(X) and we denote

1. INTRODUCTION




Algorithm 1 EIS. Computing p¥ |y (X) = SN | wi’8(X — X7), X' = [X], X]]

1. Importance Sample from the prior fof,: Vi, sampleX? ~ p(Xy).

2. Efficient Importance Sampl&,.: Vi, sampleX! ~ N(Xi;m®, %), Herem!(X),Y) = argminy, L'(X,) and
Yig £ (V2Li(m?))~t and L’ is defined in (8).

Rt s i @ ~i _ p(Y|X)p(X7[X]) D) _[yi yi

the conditional pdffx v (X|Y), by p(X]Y'). The goal is to  contains the minimum number of dimensions for whichis
estimate a large dimensional unobserved state véctitom  unimodal conditioned on it, i.e.

observation vecto” which is a noise-corrupted and non- s a _ _

linear function of X. The optimal minimum mean squared p(Xy) = pt(X]X) = p(Xe XL Y) 2
error estimate (MMSE) is given by the posterior expecta- . : :

tion E[X|Y] = [ Xp(X|Y)dX. When the integral cannot is unimodal. We sampl&’, from its prior (to sample the pos-

be computed analytically, we use (Bayesian) importancéibly multiple modes 0p*), and use Laplace’s approximation

H Hok 7 o 7
sampling to approximate it. Our goal is to design efficient.0 2PProximate and samplex; from it, i.e. sampleX,

% %
importance densities for problems where the observatioﬂrormv(m , Tis) where

likelihood,p(Y'| X), treated as a function of , is multimodal mi = mi(XL,Y)2 minLi(X,)
and when the dimension df is large. s X, ro
is = [(VELY)(m")]™", where
The paper is organized as follows. We describe our Li(X 2 T const 3
efficient importance sampling (EIS) technique in Sec. 2. (Xr) oglp™ ()] + (3)
Sufficient conditions for testing for conditional postenmi- ~ 27¢ denotes the Hessian dff. The weighting step also

mOda“ty for a static prObIem are derived in Sec 3. The MOdQ:hanges to Satisfy the princip|e of importance Samp“n@ Th
tracking (MT) idea is discussed in Sec 4. Simulation resultgomplete algorithm is given in Algorithm 1. We call it Effi-
comparing EIS and EIS-MT with existing work for a large cjent Importance Sampling (EIS). It is to be noted thaXif
dimensional temperature field estimation problem are giveps chosen so thai** is unimodal for most particles and at
in Sec. 5. Conclusions are given in Sec. 6. most times (i.e. is unimodal with high probability), the pro
posed algorithm works well.
2. EFFICIENT IMPORTANCE SAMPLING

. i 3. TESTING FOR POSTERIOR UNIMODALITY
Denote the posterior by*(X), i.e.

We derive sufficient conditions for unimodality of the con-
ditional posterior,p**?, defined in (2). By setting, =

In most cases, the posterior cannot be computed analyticalgempty’ the same conditions can be used for checking for pos-

: N . erior unimodality. Letdim(X,) £ K, dim(X,) = M,,

and hence importance sampling is needed (else simple Mon A
. v , . m(X) = M = K + M,. Now,

Carlo would suffice). If p* is unimodal (at least approxi-
mately) one can approximate it by a Gaussian about its mode pUXy) = Cp(YIXE X,)p(X, XD (4)
and sample from it (Laplace’s approximation)[2, 7]. But,
when the observation likelihoog(Y| X)) is multimodal, or  where( is a proportionality constant.
heavy-tailed, or otherwise not strongly log-concayve will o . .
be unimodal only if the priop(X) is unimodal and narrow Definition 1 We first define a few terms and symbols.
gnoggh and the state samp'le is.near eqoughto an obsgrvationll The notationd > 0 (A > 0) where A is a square
likelihood mode. In many situations, this may not hold in all matrix means that! is positive definite (positive semi-
d|menS|ons_. But in most such s_|tuat_|ons, thg prior is broad definite) Also,A > B (A > B) meansA — B > 0
and/or multimodal in only a few directions, which we call the (A— B> 0).
“multimodal” directions. It can be shown that if the prior -
is unimodal and narrow enough in the rest of the directions, 2. The ternfminimizer” refers to the unconstrained local
p* will be unimodal conditioned on th&nultimodal states” minimizer of a function, i.e. a pointy s.t. f(zg) <
(this is proved in Theorem 1). When this holds, we propose to f(x) V x in its neighborhood. Similarly for “maxi-
split the state vector a& = [X; X,.] in such a way thak mizer”.

pr(X) = pX|Y) o p(Y[X)p(X) @)



3. Atwice differentiable functiorf,(z), isstrongly convex Theorem 1 p**¢(X,.) is unimodal with the unique mode ly-
in a regionR, if there exists amn > 0 s.t. at all points, ing insideR ¢ if the following hold:
r € R, the HessiarW2f(x) > mlI. If f is strongly . P
convex inR, it has at most one minimizer iR and it L Th_e prior O(ijr_,p(ng\f(a), Is strongly log-concave. Its
lies in the interior ofR. If f is strongly-convex oY, unique mode is denoted b.
then it has exactly one (finite) minimizer. . The —log of the observation likelihood giver?,
4. A function isstrongly log-concavéf its negative log is Ey (X, X,) is twice continuously differentiable al-
strongly convex. An example is a Gaussian pdf. most everywhere and |sj!?cally convex in the neighbor-
hood off!. LetR - C R denote the largest convex
5. Since a pdfis an integrable function, it will always have region in the neighborhood gf whereV3, Ey (X% X,.) >

at least one (finite) maximizer. Thus a pdf having at

0 (Ey as a function ofX,. is locally convex).

most one maximizer is equivalent to it betngmodal _
3. There exists ary > 0 such that
6. The symbdE].] denotes expected value.
S ) inf max [v,(X,)] > 1 9)
7. We denote the log of the observation likelihood using Xrendr (A,UZ,) P=L.- My

the symboFy, i.e.

where
Ey(X) % —logp(Y|X) + const (5)
_ e, if X €4,
8. We denote the log of the prior of X, as (X)) £ | (10)
i i vD], .

D'(X,) £ —logp(X,|X!) + const (6) #,%7 if Xr€2Z,

9. When the prior o, is strongly log-concave (assumed N ‘
in Theorem 1), we denote its unique mode by Ap ={X, € Ri¢ : [VD'],.[VEy], <0}

Z,2{X, eRo:

[VEy],.[VD'], > 0& |[VEy],| < €} (11)

VEy 2 Vx, Ey(X!, X,)
VD' 2 Vx DY(X,)

fia Xl = argrr;(B:Xp(Xr\Xi) @)

10. [2], or z, denotes the'" coordinate of a vector,.

11. max, is often used in place ehax,—i 2 . s, .- (12)

Combining (4), (5) and (6)L.*(X,.) can be written as

LY(X,) = By (X!, X,) + D'(X,) (8)  Proof: In the proof,V is used to denot& x,. Also, we
remove the superscripts froff and D*. p***(X,.) will be
unimodal iff L defined in (8) has at most one minimizer. We
obtain sufficient conditions for this. Condition 1) ensuttesst

D is strongly convex everywhere with a unique minimizer at
35‘;3. Condition 2) ensures th& ;¢ exists. By definition of

Now, p***(X,.) will be unimodal if and only if we can
show thatZ’ has at most one minimizer. We derive a set of
sufficient conditions orEy,, D* and f! to ensure this. The
main idea is as follows. We assume strong log-concavit

(e.g. Gaussianity) of the prior of,.. ThusD*(X,) will be Rrc, Ey, is convex inside it. Thus the first two conditions

strr:);glgconvex ]:N'rght? #nlgye mlglrr‘:"\z/ernfl.lti&lﬂ ﬂ}i/n(iﬁi)z ensure thal. is strongly convex insid® ;. So it has at most
(and soFy as a function ofX,) can have multiple " _one minimizer insid&R 1.¢.

ers since observation likelihood can be multimodal. Assume We now show that if condition 3) also holds,will have

that Ey (X5, X, is locally convex in the neighborhood gf no stationary points (and hence no minimizersRif. or on

(this will hold if f? is close enough to any of its minimizers). . - - -
) T o S . A suff for this is: A
Denote this region biRyc.. Thus, insideR ., L' will be its boundary. A sufficient condition for this iskeg > 0 s.t

strongly convex and hence it will have at most one minimizer.
We show that ifmax,, |[V D], | is large enough outsid® ;¢
(the spread of the prior ok, is small enough)/* will have

m§x|[VL]p| > €g, VX, € Rl (13)
We show that condition 3) is sufficient to ensure (13). Note
no stationary points (and hence no minimizers) out®de:  thatvL = VEy + VD. In the regions where for at least one
or on its boundary. p, [VEy],.[VD], > 0 (have same sign) antV Ey|,| > «o,
This idea leads to Theorem 1 below. Its first condition entondition (13) will always hold. Thus we only need to worry
sures strong convexity ab" everywhere. The second one apout regions where, for af, either[VEy],.[VD], < 0 or
ensures thafR ;- exists. The third one ensures thatan [VEy],.[VD], > 0 but|[VEy],| < €. This is the region
e > 0, s.t. at all points inR} .~ (complement ofR ),
max, [[VL],| > € (i.e. L' has no stationary points RS ).

Nl (A, U Z,) £ G, Ay, 2, defined in (11)  (14)



Now, D only has one stationary point which j§ and it lies
insideR ¢ (by definition of R 1.¢), and none ik . Thus
VD # 0in R and, in particular, insidg C R .. Thus

Thus, we have the following corollary.

if we can find a condition which ensures that, for all pointsCorollary 1 When the prior ofX,. is Gaussian with mean

in G, for at least one, [VL], “follows the sign of[VD],”
(i.e. [VL], > ¢y where[VD], > 0 and[VL], < —ey where
[VD], < 0), we will be done.

We first find the required condition for a givenand a

point X, € G. For anyp, if X,. € G, then it either belongs to

A, or belongs taz,,. If X, € A, |[VL],| > ¢ if

[V Dy |

—_—>1
€0 +[[VEvly|

(15)

fi anddiagonal covariance),., p**(X,.) is unimodal if (a)
condition 2) of Theorem 1 holds and (b) there existga 0
s.t. (17) holds withy; "™ defined in (18) and4,,, 2, defined
in (19). A sufficient condition for (17) is (20).

Now consider the case when the priorXf is Gaussian
with non-diagonal covariancg, = UA,UT. Define X, =
UTX,. SinceX, is a one-to-one and linear function &f.,
it is easy to see that***(X,) is unimodal iff p***(X,) £

This is obtained by combining the conditions for the case’(:X-|X{,Y) is unimodal. The prior ofX, is N (U f}, A,).
[VD], > 0 and the cas&V D], < 0. Proceeding in a similar AlSO,_its observation likelihood ip(Y[X(, UX,). Define

fashion, it X, € Z,, [[VL],| > ¢ if

[V Dly|

—_—>1
€0 — HVEY]p|

(16)

Inequalities (15) and (16) can be combined and rewritten
vp(Xr) —1 > 0 wherevy, is defined in (10). For (13) to hold,

we need[VL],| > ¢ for at least one, for all X,. € G. This
will happen ifinf x, ¢g max, v,(X,) > 1. But this is condi-

tion 3. Thus condition 3) implies thdt has no minimizers in
R§ . Thus if conditions 1), 2) and 3) of the theorem hold,

L has at most one minimizer which lies insi®&,~. Thus
p***(X;,) has a unique mode which lies insi@&,c, i.e. it
is unimodal. W

The most common example of a strongly log-concave pdf
is a Gaussian. When the prior &f,. is Gaussian with mean

a

Ey(X,) 2 Ey(UX,).

Corollary 2 When the prior ofX,. is Gaussian with mean
fi and non-diagonal covariance;, = UA,UT, p*i(X,.)
i§ unimodal if the conditions of Corollary 1 hold withy
replaced byEy; f! replaced byU” fi and X, replaced by

X, everywhere.

To summarize the above discussipit;? is unimodal if

1. The prior of X,. is strongly log-concave (e.g. Gaus-
sian),

2. The mode of the prior oK, is “close enough” to a
mode of [observation likelihood giveki’], so that con-
dition 2) of Theorem 1 holds. Denote this mode.Xy.

(= mode)f?, the above result can be further simplified to get
an upper bound on the eigenvalues of its covariance matrix. 3. The maximum spread of the prior of, is “small

First consider the case when the covariance is diagonal, de-

i 7 _ ([erfl]py
notedA,.. In this case,D*(X,.) = . CTw. and so

P

VD], = [XA_if]P By substituting this in condition 3), it is

easy to see that we get the following simplified condition:

inf max[y, " (X;) = A p] >0 (17)
Xr€mpl (ApUZ,) P
X =il
, | arwEg i X e A
(X 2 , (18)
X —fily
a-TvEs ) o Xr€2p

Ay £ {Xr € Rl [Xr — fi]p'[VEY]p <0}
Zp £ {X, e R
[VEy]p.[X: = [1lp 2 0&|[VEy],| < e} (19)

Also, sincemax, (g (p) — g2(p)] > max;, g1(p) —max;, g2(p)

for any two functionsg, g2, a sufficient condition for (17) is

max A, , < inf max[y, " (X;)] £ A* (20)
P Xrenpr (A,uZ,) P

enough” to ensure that condition 3) of Theorem 1
holds. In the Gaussian prior case, this translates to the
maximum eigenvalue of its covariance being smaller
than A*, defined in (20).A* itself is directly propor-
tional to the distance ok’ to the next nearest mode
of [observation likelihood givenX?] and inversely
proportional to its strength.

The last two conditions above automatically hold if [obser-
vation likelihood givenX] is strongly log-concavéR . is
empty and sa\* = o).

4. MODE TRACKING (MT) APPROXIMATION OF IS

For any importance sampling (including EIS and the impor-
tance sampling techniques used in PF-Gordon [6] or in PF-
Doucet [7]), the effective sample size [8, 7] reduces with in
creasing dimension, i.e. th¥ required for a given estima-
tion accuracy increases with dimension. This makes the stat
estimation problem impractically expensive when the dimen
sionality of the state vector is large. We discuss one plessib
solution to this problem here.



Algorithm 2 EIS-MT. Computing p¥ y (X) = SN wi’6(X — X¥), X' = [X1, X}], X} = [X},,X},]

1. Importance Sampl&y: Vi, sampleX! ~ p(X?).

2. Efficient Importance Samplg,. ;: Vi,

(@) Computen’(X!Y) = argminy, L(X,)andYiq = (V2Li(m?))~! whereL! is defined in (8). Letn’ = {nmlf]

- by by
andzivs _ IS,s I1S,s,r )
EIS,’I“ EIS,’I“,S

(b) SampleX; ~ N(ml, Xig,).
3. Mode TrackX, ,: Vi,

(a) Computen:’ using (21).

(b) Setx;, =m?’

o° P

4. Weight: Vi, computew® = =
j=1

p(YX)p(XF| X!
N(Xi;m

T

) whereXi = [X;

T,89

XX Xil.

Consider a large dimensional state veclor To apply
EIS, we split the statél into [ X, X..], such thap* is uni-

then called EIS-MT. It is summarized in Algorithm&more
accurate, but also more expensive modification (need to im-

modal w.h.p. conditioned oX ;. As explained earlier, this is plement it on-the-fly) would be do MT on the low eigenvalue
ensured if the eigenvalues &f. are small enough to satisfy directions ofS .

(20). Now, X, can further be split int@X,. 5, X, ,.] so that the
maximum eigenvalue of the covariance of the priofgf, is

The IS-MT approximation introduces some error in the
estimate ofX,.,. (error decreases with decreasing spread of

small enough to ensure that there is little error in appratim p**¢(X,.,.)). But it also reduces the sampling dimension from
ing the conditional posterior of,, , by a Dirac delta function dim(X) to dim([X,; X, s]) (significant reduction for large
at its mode. We call this the Mode Tracking (MT) approx- dimensional problems), thus improving the effective sampl

imation of importance sampling (IS), or IS-MT. Wefer to
X, & [Xs, X, 5] as the “effective” state and tdX, £ Xrr
as the “residual” state We explain IS-MT in detail below.

In EIS, we ISX! from its prior, and we EISX! from
N(m',2%) wherem!, ¥4 are defined in (3). Letn’ =
mi ; ZIS s EIS s,r

sl and Yy = ’ o
[mj} 18 . |:EIS,T',S R
to first samplingX; , ~ N(m}, %75 ,) and then sampling
Xi, ~N(m;' Sig,) where

} This is equivalent

*1 A -1

My =My + EIS,T',SEIS,S (Xr,s - ms)’
% QA v i i lsi T
ZIS,T — “ISr T EIS,T,SEIS,S IS,r,s (21)

Now, from (21),%7g," < Sig,. Also, sincem’ lies in a
locally convex region ofsy (X!, X,.), i.e. V2Ey (X!, m?) >
0 (by Theorem 1)ty < A,. This implies thatA, . —
¥, Which is a square sub-matrix df, — X}, is also
non-negative definite. Thus,

Sier < She, < Apy (22)

size. For carefully chosen dimension &f. ., this results in
smaller total error, especially when the available numier o
particles, NV, is small. This is observed experimentally, but
proving it theoretically is an open problem. We say that the
IS-MT approximation is “valid"for a given choice ofX, ,. if

it results in smaller total error than if it were not used.

5. TEMPERATURE FIELD ESTIMATION

Consider the problem of estimating spatially varying tem-
perature (temperature field) from a network of sensors,
which obtain noisy observations of temperature and some
of them could occasionally fail. Assume that we have sen-

sors Sy, ..., Sk in K different spatial locations. The cor-
responding true temperature 8 = [Cy,...,Ck]T and
the sensor observations a¥é = [Y1,...,Yx|?. Define

V £ [Vi,...,Vk]T where,V; is the coefficient along the
it" eigen direction of temperature variation. The relatiopshi
betweenC' andV is given asC' = m. + BV, wherem,. is
the mean temperature vector aids a K x K orthonormal
matrix with its columns as the eigen directions of tempemtu

If the maximum eigenvalue ak,.,. is small enough, any sam- variation. Thus the state vector becom&s~= [CT, V|7,
ple from N (m?", Y1s,') Will be close tom;* w.h.p. Sowe  The prior onV is given asp(V) = N'(V;0,%,).
can setX; . = m;" with little extra error. The algorithm is We assume that any sensor fails with probability- p)



Sl no. Importance Sampling method Averaged Normalized RMSE\X = 30)
1 EIS-MT (X, = V1], X, s = [Vo, V3], X, = [V, Vs, Vi, V7)) 0.0416
2 EIS-MT (X, = [V4, V2], X, 5 = [V3, Val, Xor = [V5, Ve, V7)) 0.0593
3 EIS (Xs = [‘/IL Xr,s = [V27 ‘/37 V4; V57 V6a V7]1 Xr,r — empty) 0.0449
4 IS-GaussianX; = empty, X, s = [V], X, , = empty) 0.0610
5 IS-prior (X, = [V], X, s = empty, X, , = empty) 0.0733
Sl no. Importance Sampling method Averaged Normalized RMSE\ = 100)
1T | EIS-MT (X, = Vi), Xpuo = [Va, Va], Xrr = [Va, Vi, Ve, V2]) 0.0375
2 EIS-MT (X5 = [V4, Vo], X, s = [V3, Val, Xor = [V5, Ve, V7)) 0.0420
3 EIS (Xs = [Vl]! Xr,s = [‘/27 V37 V4a V57 V67 V7]r Xr,r — empty) 0.0368
4 IS-GaussianX, = empty, X, s = [V], X,.,, = empty) 0.0587
5 IS-prior (X, = [V], X, s = empty, X, , = empty) 0.0599

Fig. 1. Comparing EIS-MT with EIS, I1S-prior and 1S-Gaussian fér= 30 (top) andN = 100 (bottom)

independent of all other sensors. When the sensor is working
properly, the observation is a noise-corrupted scaledorers

6. CONCLUSIONS

of the original temperature. But when the sensor fails, the o We proposed two new techniques for large dimensional
servation is independent of the true temperature at thesensBayesian importance sampling problems with frequently
location. We model it as a large variance Gaussian. To sumnultimodal likelihoods. Significantly improved performean
marize, the observation likelihood (OL) is given as follows over sampling from prior and sampling from Gaussian ap-
proximation to posterior (both of which can be interpreted

K
p(Y[X) = p(Y|C) = [ [PV (@ Ci, 03)+(1=p)N(0, 1007))]
=1 (23)
whereaq, is a scaling factor and? is the observation noise
variance. Since&” is deterministic giverl/, we performed
importance sampling ol and computed” = m. + BV.
We simulated the above system wilti = 7 sensors,
p =08, a, =090, =05 m.=[25..,25" and®, =
diag([32,5%,2%,2% 1,1, 1]) wherediag(a) denotes a diago- [2]
nal matrix witha as its diagonal. The performance measure
of the system is given by averaging the normalized RMSE

NE = ”ﬁ(}ﬁ” over50 monte-carlo simulations. Heré! is

the importance sampling estimate®{iC|Y].

We computed’' using the following IS techniques and [4]
compared theVE values: EIS, EIS-MT, IS-prior and IS- 5]
Gaussian-approx. Notice that I1S-prior can be interpreted a
EIS-MT with X, = X, while IS-Gaussian can be interpreted
as EIS-MT with.X, ; = X. We used two different values of 6]
the sample sizey = 30 andN = 100. Also, while perform-
ing EIS-MT we tried two different case : 1) whe®, = [17],

Xr,s = “/27 VB]: Xr,r = [V47 V:’)a ‘/Ga V7] and 2) WhenXs =

W1, Vo], X, s = [V5,Va], X;rr [V, Vs, V7], The results

are summarized in Fig. 1. Notice that both EIS and EIS-MT
significantly outperform IS-prior and IS-Gaussian. Whgn

is large, EIS has the best performance. But as explained iﬁg]
Sec. 4, whenV is small, EIS-MT outperforms EIS and and

all other methods. This is because in EIS-MT we importance
sample only on 3 dimensions (while computing conditional[g
posterior mode for the rest) and thus its effective sample si

is much larger.

(1]

[3]

[7]

as special cases of our algorithm) was demonstrated, partic
ularly when the number of samples used is small. We also
derived sufficient conditions to test for posterior unimidgla
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