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ABSTRACT

In recent work, we proposed some new ideas for efficient se-
quential importance sampling in the context of particle filter-
ing. These were specifically designed for problems with mul-
timodal posteriors (particularly those with multimodal like-
lihoods) and with very large dimensions. In this work, we
demonstrate the use of similar ideas to improve the perfor-
mance of importance sampling (IS) in static problems. The
key idea of our proposed method is to split the state space in
such a way that the posterior conditioned on a small part of
the state space is “unimodal”. We can then importance sam-
ple from the prior for the small “multimodal” part of the state
space while adapting existing efficient IS techniques for the
much larger dimensional “unimodal” part. We give a modi-
fied version of a result from our recent work to obtain suffi-
cient conditions to ensure posterior unimodality. Also, for a
subspace of the “unimodal” state space having small enough
prior variance, one can replace IS by just estimating the con-
ditional posterior mode. We call this the mode tracking (MT)
approximation of IS. We show, via experiments on a large
dimensional temperature field estimation problem, that when
the number of samples, N, is small, the MT approximation
outperforms any standard IS technique.

Index Terms— Importance sampling, multimodal obser-
vation likelihood, multimodal posterior computation

1. INTRODUCTION

In recent work [1], we proposed two new ideas for efficient se-
quential importance sampling in the context of particle filter-
ing. These were specifically designed for problems with mul-
timodal posteriors (particularly those with multimodal like-
lihoods) and with very large dimensions. In this work, we
demonstrate the use of similar ideas to improve the perfor-
mance of importance sampling (IS) to compute the poste-
rior in static problems. Well-known IS techniques for pos-
terior computation include sampling from the prior or sam-
pling from a Gaussian approximation to the posterior about
its mode (Laplace’s approximation) [2, 3, 4]. Some other
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techniques for multimodal importance sampling include [5].
Importance sampling from the prior was also used in the first
particle filter (PF) paper [6] and importance sampling from a
Gaussian approximation about the mode was described as one
possible technique for approximating the optimal sequential
importance density for PF in [7].

Importance sampling from the prior is often very ineffi-
cient, especially when the likelihood is reliable [7, 8]. On
the other hand, the Gaussian approximation of the posterior
is valid only when it is unimodal (or is unimodal most of the
time, i.e. for most values of the observation). In this work,we
study the situation where the posterior is multimodal. This
happens very often due to multimodality or heavy-tailed-ness
of the observation likelihood. A common example is large di-
mensional temperature field estimation when each sensor has
some probability of failure. In computer vision, multimodal
likelihoods occur due to background clutter or occlusions [9].
But in most of these problems, even though the posterior is
multimodal, it is often unimodal conditioned on a part of the
state space. If we can find the “multimodal” part of the state
vector conditioned on which the posterior will be unimodal,
we can sample from the prior for this part and sample from
a Gaussian approximation to the conditional posterior for the
rest (“unimodal” states).

In [1], we derived sufficient conditions to test for uni-
modality of the posterior conditioned on the previous state
and a part of the current state. In this work, we adapt that
result to obtain sufficient conditions for unimodality of the
posterior conditioned on a part of the state space.

For a subspace of the “unimodal” state space having small
enough prior variance, one can replace IS by just using the
conditional posterior mode as the sample. We call this the
mode estimation or mode tracking (MT) approximation of IS
[1]. We show, via experiments on a large dimensional tem-
perature field estimation problem, that when the number of
samples, N, is small, the MT approximation outperforms any
standard IS technique.

1.1. Problem Definition

We denote the probability density function (pdf) of a random
vector X, fX(X), using the notationp(X) and we denote



Algorithm 1 EIS. Computing pN
X|Y (X) =

∑N

i=1 w
(i)
t δ(X − Xi), Xi = [Xi

s, X
i
r]

1. Importance Sample from the prior forXs: ∀i, sampleXi
s ∼ p(Xs).

2. Efficient Importance SampleXr: ∀i, sampleXi
r ∼ N (Xi

r;m
(i),Σi

IS). Heremi(Xi
s, Y ) = arg minXr

Li(Xr) and
Σi

IS , (∇2Li(mi))−1 andLi is defined in (8).

3. Weight: ∀i, computewi = w̃i

∑

N
j=1

w̃j
wherew̃i =

p(Y |Xi)p(Xi
r|X

i
s)

N (Xi
r ; mi, Σi

IS
)

whereX(i) = [Xi
s,X

i
r].

the conditional pdf,fX|Y(X|Y ), by p(X|Y ). The goal is to
estimate a large dimensional unobserved state vectorX from
observation vectorY which is a noise-corrupted and non-
linear function ofX. The optimal minimum mean squared
error estimate (MMSE) is given by the posterior expecta-
tion E[X|Y ] =

∫

Xp(X|Y )dX. When the integral cannot
be computed analytically, we use (Bayesian) importance
sampling to approximate it. Our goal is to design efficient
importance densities for problems where the observation
likelihood,p(Y |X), treated as a function ofX, is multimodal
and when the dimension ofX is large.

The paper is organized as follows. We describe our
efficient importance sampling (EIS) technique in Sec. 2.
Sufficient conditions for testing for conditional posterior uni-
modality for a static problem are derived in Sec 3. The Mode
tracking (MT) idea is discussed in Sec 4. Simulation results
comparing EIS and EIS-MT with existing work for a large
dimensional temperature field estimation problem are given
in Sec. 5. Conclusions are given in Sec. 6.

2. EFFICIENT IMPORTANCE SAMPLING

Denote the posterior byp∗(X), i.e.

p∗(X) , p(X|Y ) ∝ p(Y |X)p(X) (1)

In most cases, the posterior cannot be computed analytically
and hence importance sampling is needed (else simple Monte
Carlo would suffice). If p∗ is unimodal (at least approxi-
mately), one can approximate it by a Gaussian about its mode
and sample from it (Laplace’s approximation)[2, 7]. But,
when the observation likelihoodp(Y |X) is multimodal, or
heavy-tailed, or otherwise not strongly log-concave,p∗ will
be unimodal only if the priorp(X) is unimodal and narrow
enough and the state sample is near enough to an observation
likelihood mode. In many situations, this may not hold in all
dimensions. But in most such situations, the prior is broad
and/or multimodal in only a few directions, which we call the
“multimodal” directions. It can be shown that if the prior
is unimodal and narrow enough in the rest of the directions,
p∗ will be unimodal conditioned on the“multimodal states”
(this is proved in Theorem 1). When this holds, we propose to
split the state vector asX = [Xs;Xr] in such a way thatXs

contains the minimum number of dimensions for whichp∗ is
unimodal conditioned on it, i.e.

p∗∗,i(Xr) , p∗(X|Xi
s) = p(Xr|X

i
s, Y ) (2)

is unimodal. We sampleXs from its prior (to sample the pos-
sibly multiple modes ofp∗), and use Laplace’s approximation
to approximatep∗∗,i and sampleXr from it, i.e. sampleXi

r

fromN (mi,Σi
IS) where

mi = mi(Xi
s, Y ) , min

Xr

Li(Xr),

Σi
IS , [(∇2Li)(mi)]−1, where

Li(Xr) , − log[p∗∗,i(Xr)] + const (3)

∇2Li denotes the Hessian ofLi. The weighting step also
changes to satisfy the principle of importance sampling. The
complete algorithm is given in Algorithm 1. We call it Effi-
cient Importance Sampling (EIS). It is to be noted that ifXs

is chosen so thatp∗∗,i is unimodal for most particles and at
most times (i.e. is unimodal with high probability), the pro-
posed algorithm works well.

3. TESTING FOR POSTERIOR UNIMODALITY

We derive sufficient conditions for unimodality of the con-
ditional posterior,p∗∗,i, defined in (2). By settingXs =
empty, the same conditions can be used for checking for pos-
terior unimodality. Letdim(Xs) , K, dim(Xr) , Mr,
dim(X) , M = K + Mr. Now,

p∗∗,i(Xr) = ζp(Y |Xi
s,Xr)p(Xr|X

i
s) (4)

whereζ is a proportionality constant.

Definition 1 We first define a few terms and symbols.

1. The notationA > 0 (A ≥ 0) whereA is a square
matrix means thatA is positive definite (positive semi-
definite). Also,A > B (A ≥ B) meansA − B > 0
(A − B ≥ 0).

2. The term“minimizer” refers to the unconstrained local
minimizer of a function, i.e. a pointx0 s.t. f(x0) ≤
f(x) ∀ x in its neighborhood. Similarly for “maxi-
mizer”.



3. A twice differentiable function,f(x), isstrongly convex
in a regionR, if there exists anm > 0 s.t. at all points,
x ∈ R, the Hessian∇2f(x) ≥ mI. If f is strongly
convex inR, it has at most one minimizer inR and it
lies in the interior ofR. If f is strongly-convex onRM ,
then it has exactly one (finite) minimizer.

4. A function isstrongly log-concaveif its negative log is
strongly convex. An example is a Gaussian pdf.

5. Since a pdf is an integrable function, it will always have
at least one (finite) maximizer. Thus a pdf having at
most one maximizer is equivalent to it beingunimodal.

6. The symbolE[.] denotes expected value.

7. We denote the− log of the observation likelihood using
the symbolEY , i.e.

EY (X) , − log p(Y |X) + const (5)

8. We denote the− log of the prior ofXr as

Di(Xr) , − log p(Xr|X
i
s) + const (6)

9. When the prior ofXr is strongly log-concave (assumed
in Theorem 1), we denote its unique mode by

f i
r , fr(X

i
s) = arg max

Xr

p(Xr|X
i
s) (7)

10. [z]p or zp denotes thepth coordinate of a vector,z.

11. maxp is often used in place ofmaxp=1,2,...Mr
.

Combining (4), (5) and (6),Li(Xr) can be written as

Li(Xr) = EY (Xi
s,Xr) + Di(Xr) (8)

Now, p∗∗,i(Xr) will be unimodal if and only if we can
show thatLi has at most one minimizer. We derive a set of
sufficient conditions onEY , Di andf i

r to ensure this. The
main idea is as follows. We assume strong log-concavity
(e.g. Gaussianity) of the prior ofXr. ThusDi(Xr) will be
strongly convex with a unique minimizer atf i

r. But EY (X)
(and soEY as a function ofXr) can have multiple minimiz-
ers since observation likelihood can be multimodal. Assume
thatEY (Xi

s,Xr) is locally convex in the neighborhood off i
r

(this will hold if f i
r is close enough to any of its minimizers).

Denote this region byRLC . Thus, insideRLC , Li will be
strongly convex and hence it will have at most one minimizer.
We show that ifmaxp |[∇D]p| is large enough outsideRLC

(the spread of the prior ofXr is small enough),Li will have
no stationary points (and hence no minimizers) outsideRLC

or on its boundary.
This idea leads to Theorem 1 below. Its first condition en-

sures strong convexity ofDi everywhere. The second one
ensures thatRLC exists. The third one ensures that∃ an
ǫ0 > 0, s.t. at all points inRc

LC (complement ofRLC),
maxp |[∇Li]p| > ǫ0 (i.e. Li has no stationary points inRc

LC).

Theorem 1 p∗∗,i(Xr) is unimodal with the unique mode ly-
ing insideRLC if the following hold:

1. The prior ofXr, p(Xr|X
i
s), is strongly log-concave. Its

unique mode is denoted byf i
r.

2. The − log of the observation likelihood givenXi
s,

EY (Xi
s,Xr) is twice continuously differentiable al-

most everywhere and is locally convex in the neighbor-
hood off i

r. LetRLC ⊆ R
Mr denote the largest convex

region in the neighborhood off i
r where∇2

Xr
EY (Xi

s,Xr) ≥
0 (EY as a function ofXr is locally convex).

3. There exists anǫ0 > 0 such that

inf
Xr∈∩Mr

p=1
(Ap∪Zp)

max
p=1,...Mr

[γp(Xr)] > 1 (9)

where

γp(Xr) ,











|[∇Di]p|
ǫ0+|[∇EY ]p|

, if Xt,r ∈ Ap

|[∇Di]p|
ǫ0−|[∇EY ]p|

, if Xr ∈ Zp

(10)

Ap , {Xr ∈ Rc
LC : [∇Di]p.[∇EY ]p < 0}

Zp , {Xr ∈ Rc
LC :

[∇EY ]p.[∇Di]p ≥ 0 & |[∇EY ]p| < ǫ0} (11)

∇EY , ∇Xr
EY (Xi

s,Xr)

∇Di , ∇Xr
Di(Xr) (12)

Proof: In the proof,∇ is used to denote∇Xr
. Also, we

remove the superscripts fromLi andDi. p∗∗,i(Xr) will be
unimodal iff L defined in (8) has at most one minimizer. We
obtain sufficient conditions for this. Condition 1) ensuresthat
D is strongly convex everywhere with a unique minimizer at
f i

r. Condition 2) ensures thatRLC exists. By definition of
RLC , EYt

is convex inside it. Thus the first two conditions
ensure thatL is strongly convex insideRLC . So it has at most
one minimizer insideRLC .

We now show that if condition 3) also holds,L will have
no stationary points (and hence no minimizers) inRc

LC or on
its boundary. A sufficient condition for this is:∃ ǫ0 > 0 s.t.

max
p

|[∇L]p| > ǫ0, ∀Xr ∈ Rc
LC (13)

We show that condition 3) is sufficient to ensure (13). Note
that∇L = ∇EY +∇D. In the regions where for at least one
p, [∇EY ]p.[∇D]p ≥ 0 (have same sign) and|[∇EY ]p| > ǫ0,
condition (13) will always hold. Thus we only need to worry
about regions where, for allp, either[∇EY ]p.[∇D]p < 0 or
[∇EY ]p.[∇D]p ≥ 0 but |[∇EY ]p| < ǫ0. This is the region

∩Mr

p=1(Ap ∪ Zp) , G, Ap, Zp defined in (11) (14)



Now, D only has one stationary point which isf i
r and it lies

insideRLC (by definition ofRLC), and none inRc
LC . Thus

∇D 6= 0 in Rc
LC and, in particular, insideG ⊂ Rc

LC . Thus
if we can find a condition which ensures that, for all points
in G, for at least onep, [∇L]p “follows the sign of[∇D]p”
(i.e. [∇L]p > ǫ0 where[∇D]p > 0 and[∇L]p < −ǫ0 where
[∇D]p < 0), we will be done.

We first find the required condition for a givenp and a
pointXr ∈ G. For anyp, if Xr ∈ G, then it either belongs to
Ap or belongs toZp. If Xr ∈ Ap, |[∇L]p| > ǫ0 if

|[∇D]p|

ǫ0 + |[∇EY ]p|
> 1 (15)

This is obtained by combining the conditions for the case
[∇D]p > 0 and the case[∇D]p < 0. Proceeding in a similar
fashion, ifXr ∈ Zp, |[∇L]p| > ǫ0 if

|[∇D]p|

ǫ0 − |[∇EY ]p|
> 1 (16)

Inequalities (15) and (16) can be combined and rewritten as
γp(Xr)− 1 > 0 whereγp is defined in (10). For (13) to hold,
we need|[∇L]p| > ǫ0 for at least onep, for all Xr ∈ G. This
will happen if infXr∈G maxp γp(Xr) > 1. But this is condi-
tion 3. Thus condition 3) implies thatL has no minimizers in
Rc

LC . Thus if conditions 1), 2) and 3) of the theorem hold,
L has at most one minimizer which lies insideRLC . Thus
p∗∗,i(Xt,r) has a unique mode which lies insideRLC , i.e. it
is unimodal. �

The most common example of a strongly log-concave pdf
is a Gaussian. When the prior ofXr is Gaussian with mean
(= mode)f i

r, the above result can be further simplified to get
an upper bound on the eigenvalues of its covariance matrix.
First consider the case when the covariance is diagonal, de-

noted∆r. In this case,Di(Xr) =
∑

p

([Xr−fi
r]p)2

2∆r,p
and so

[∇Di]p =
[Xr−fi

r]p
∆r,p

. By substituting this in condition 3), it is
easy to see that we get the following simplified condition:

inf
Xr∈∩Mr

p=1
(Ap∪Zp)

max
p

[γnum
p (Xr) − ∆r,p] > 0 (17)

γnum
p (Xr) ,











|[Xr−fi
r]p|

ǫ0+|[∇EY ]p|
, if Xr ∈ Ap

|[Xr−fi
r]p

ǫ0−|[∇EY ]p|
, if Xr ∈ Zp

(18)

Ap , {Xr ∈ Rc
LC : [Xr − f i

r]p.[∇EY ]p < 0}

Zp , {Xr ∈ Rc
LC :

[∇EY ]p.[Xr − f i
r]p ≥ 0 & |[∇EY ]p| < ǫ0} (19)

Also, sincemaxp[g1(p)−g2(p)] ≥ maxp g1(p)−maxp g2(p)
for any two functions,g1, g2, a sufficient condition for (17) is

max
p

∆r,p < inf
Xr∈∩Mr

p=1
(Ap∪Zp)

max
p

[γnum
p (Xr)] , ∆∗ (20)

Thus, we have the following corollary.

Corollary 1 When the prior ofXr is Gaussian with mean
f i

r anddiagonal covariance,∆r, p∗∗,i(Xr) is unimodal if (a)
condition 2) of Theorem 1 holds and (b) there exists anǫ0 > 0
s.t. (17) holds withγnum

p defined in (18) andAp,Zp defined
in (19). A sufficient condition for (17) is (20).

Now consider the case when the prior ofXr is Gaussian
with non-diagonal covariance,Σr = U∆rU

T . DefineX̃r =
UT Xr. SinceX̃r is a one-to-one and linear function ofXr,
it is easy to see thatp∗∗,i(Xr) is unimodal iff p∗∗,i(X̃r) ,

p(X̃r|X
i
s, Y ) is unimodal. The prior of̃Xr is N (UT f i

r,∆r).
Also, its observation likelihood isp(Y |Xi

s, UX̃r). Define
ẼY (X̃r) , EY (UX̃r).

Corollary 2 When the prior ofXr is Gaussian with mean
f i

r and non-diagonal covariance,Σr = U∆rU
T , p∗∗,i(Xr)

is unimodal if the conditions of Corollary 1 hold withEY

replaced byẼY ; f i
r replaced byUT f i

r and Xr replaced by
X̃r everywhere.

To summarize the above discussion,p∗∗,i is unimodal if

1. The prior ofXr is strongly log-concave (e.g. Gaus-
sian),

2. The mode of the prior ofXr is “close enough” to a
mode of [observation likelihood givenXi

s], so that con-
dition 2) of Theorem 1 holds. Denote this mode byX∗

r .

3. The maximum spread of the prior ofXr is “small
enough” to ensure that condition 3) of Theorem 1
holds. In the Gaussian prior case, this translates to the
maximum eigenvalue of its covariance being smaller
than∆∗, defined in (20).∆∗ itself is directly propor-
tional to the distance ofX∗

r to the next nearest mode
of [observation likelihood givenXi

s] and inversely
proportional to its strength.

The last two conditions above automatically hold if [obser-
vation likelihood givenXi

s] is strongly log-concave(Rc
LC is

empty and so∆∗ = ∞).

4. MODE TRACKING (MT) APPROXIMATION OF IS

For any importance sampling (including EIS and the impor-
tance sampling techniques used in PF-Gordon [6] or in PF-
Doucet [7]), the effective sample size [8, 7] reduces with in-
creasing dimension, i.e. theN required for a given estima-
tion accuracy increases with dimension. This makes the state
estimation problem impractically expensive when the dimen-
sionality of the state vector is large. We discuss one possible
solution to this problem here.



Algorithm 2 EIS-MT. Computing pN
X|Y (X) =

∑N

i=1 w
(i)
t δ(X − Xi), Xi = [Xi

s, X
i
r], Xi

r = [Xi
r,s, X

i
r,r]

1. Importance SampleXs: ∀i, sampleXi
s ∼ p(Xi

s).

2. Efficient Importance SampleXr,s: ∀i,

(a) Computemi(Xi
s, Y ) = arg minXr

Li(Xr) andΣi
IS , (∇2Li(mi))−1 whereLi is defined in (8). Letmi =

[

mi
s

mi
r

]

andΣi
IS =

[

ΣIS,s ΣIS,s,r

ΣIS,r ΣIS,r,s

]

.

(b) SampleXi
r,s ∼ N (mi

s, Σi
IS,s).

3. Mode TrackXr,r: ∀i,

(a) Computem∗
r
i using (21).

(b) SetXi
r,r = m∗

r
i

4. Weight: ∀i, computewi = w̃i

∑

N
j=1

w̃j
wherew̃i =

p(Y |Xi)p(Xi
r|X

i
s)

N (Xi
r ; mi, Σi

IS
)

whereXi
r = [Xi

r,s,X
i
r,r].

Consider a large dimensional state vectorX. To apply
EIS, we split the stateX into [Xs,Xr], such thatp∗ is uni-
modal w.h.p. conditioned onXs. As explained earlier, this is
ensured if the eigenvalues ofΣr are small enough to satisfy
(20). Now,Xr can further be split into[Xr,s,Xr,r] so that the
maximum eigenvalue of the covariance of the prior ofXr,r is
small enough to ensure that there is little error in approximat-
ing the conditional posterior ofXr,r by a Dirac delta function
at its mode. We call this the Mode Tracking (MT) approx-
imation of importance sampling (IS), or IS-MT. Werefer to
X̃s , [Xs,Xr,s] as the “effective” state and tõXr , Xr,r

as the “residual” state.We explain IS-MT in detail below.
In EIS, we ISXi

s from its prior, and we EISXi
r from

N (mi,Σi
IS) wheremi, Σi

IS are defined in (3). Letmi =
[

mi
s

mi
r

]

and Σi
IS =

[

ΣIS,s ΣIS,s,r

ΣIS,r,s ΣIS,r

]

. This is equivalent

to first samplingXi
r,s ∼ N (mi

s,Σ
i
IS,s) and then sampling

Xi
r,r ∼ N (m∗

r
i,Σi

IS,r) where

m∗
r
i
, mi

r + Σi
IS,r,sΣ

i
IS,s

−1
(Xi

r,s − mi
s),

Σ∗
IS,r

i
, Σi

IS,r − Σi
IS,r,sΣ

i
IS,s

−1
Σi

IS,r,s

T
(21)

Now, from (21),Σ∗
IS,r

i ≤ Σi
IS,r. Also, sincemi lies in a

locally convex region ofEY (Xi
s,Xr), i.e.∇2EY (Xi

s,m
i) ≥

0 (by Theorem 1),Σi
IS ≤ ∆r. This implies that∆r,r −

Σi
IS,r, which is a square sub-matrix of∆r − Σi

IS , is also
non-negative definite. Thus,

Σ∗
IS,r

i ≤ Σi
IS,r ≤ ∆r,r (22)

If the maximum eigenvalue of∆r,r is small enough, any sam-
ple fromN (m∗

r
i,Σ∗

IS,r
i) will be close tom∗

r
i w.h.p. So we

can setXi
r,r = m∗

r
i with little extra error.The algorithm is

then called EIS-MT. It is summarized in Algorithm 2.A more
accurate, but also more expensive modification (need to im-
plement it on-the-fly) would be do MT on the low eigenvalue
directions ofΣi

IS .
The IS-MT approximation introduces some error in the

estimate ofXr,r (error decreases with decreasing spread of
p∗∗,i(Xr,r)). But it also reduces the sampling dimension from
dim(X) to dim([Xs;Xr,s]) (significant reduction for large
dimensional problems), thus improving the effective sample
size. For carefully chosen dimension ofXr,r, this results in
smaller total error, especially when the available number of
particles,N , is small. This is observed experimentally, but
proving it theoretically is an open problem. We say that the
IS-MT approximation is “valid”for a given choice ofXr,r if
it results in smaller total error than if it were not used.

5. TEMPERATURE FIELD ESTIMATION

Consider the problem of estimating spatially varying tem-
perature (temperature field) from a network of sensors,
which obtain noisy observations of temperature and some
of them could occasionally fail. Assume that we have sen-
sorsS1, . . . , SK in K different spatial locations. The cor-
responding true temperature isC = [C1, . . . , CK ]T and
the sensor observations areY = [Y1, . . . , YK ]T . Define
V , [V1, . . . , VK ]T where,Vi is the coefficient along the
ith eigen direction of temperature variation. The relationship
betweenC andV is given as,C = mc + BV , wheremc is
the mean temperature vector andB is aK × K orthonormal
matrix with its columns as the eigen directions of temperature
variation. Thus the state vector becomes,X = [CT , V T ]T .
The prior onV is given as,p(V ) = N (V ; 0,Σv).

We assume that any sensor fails with probability(1 − p)



Sl no. Importance Sampling method Averaged Normalized RMSE (N = 30)
1 EIS-MT (Xs = [V1], Xr,s = [V2, V3], Xr,r = [V4, V5, V6, V7]) 0.0416
2 EIS-MT (Xs = [V1, V2], Xr,s = [V3, V4], Xr,r = [V5, V6, V7]) 0.0593
3 EIS (Xs = [V1], Xr,s = [V2, V3, V4, V5, V6, V7], Xr,r = empty) 0.0449
4 IS-Gaussian (Xs = empty, Xr,s = [V ], Xr,r = empty) 0.0610
5 IS-prior (Xs = [V ], Xr,s = empty, Xr,r = empty) 0.0733

Sl no. Importance Sampling method Averaged Normalized RMSE (N = 100)
1 EIS-MT (Xs = [V1], Xr,s = [V2, V3], Xr,r = [V4, V5, V6, V7]) 0.0375
2 EIS-MT (Xs = [V1, V2], Xr,s = [V3, V4], Xr,r = [V5, V6, V7]) 0.0420
3 EIS (Xs = [V1], Xr,s = [V2, V3, V4, V5, V6, V7], Xr,r = empty) 0.0368
4 IS-Gaussian (Xs = empty, Xr,s = [V ], Xr,r = empty) 0.0587
5 IS-prior (Xs = [V ], Xr,s = empty, Xr,r = empty) 0.0599

Fig. 1. Comparing EIS-MT with EIS, IS-prior and IS-Gaussian forN = 30 (top) andN = 100 (bottom)

independent of all other sensors. When the sensor is working
properly, the observation is a noise-corrupted scaled version
of the original temperature. But when the sensor fails, the ob-
servation is independent of the true temperature at the sensor
location. We model it as a large variance Gaussian. To sum-
marize, the observation likelihood (OL) is given as follows:

p(Y |X) = p(Y |C) =

K
∏

i=1

[pN (αoCi, σ
2
o)+(1−p)N (0, 10σ2

o)]

(23)
whereαo is a scaling factor andσ2

o is the observation noise
variance. SinceC is deterministic givenV , we performed
importance sampling onV and computedC = mc + BV .

We simulated the above system withK = 7 sensors,
p = 0.8, αo = 0.9, σo = 0.5, mc = [25, ..., 25]T andΣv =
diag([32, 52, 22, 22, 1, 1, 1]) wherediag(a) denotes a diago-
nal matrix witha as its diagonal. The performance measure
of the system is given by averaging the normalized RMSE,

NE = ||C−Ĉ||
||C|| over50 monte-carlo simulations. Here,̂C is

the importance sampling estimate ofE[C|Y ].
We computedĈ using the following IS techniques and

compared theNE values: EIS, EIS-MT, IS-prior and IS-
Gaussian-approx. Notice that IS-prior can be interpreted as
EIS-MT with Xs = X, while IS-Gaussian can be interpreted
as EIS-MT withXr,s = X. We used two different values of
the sample size,N = 30 andN = 100. Also, while perform-
ing EIS-MT we tried two different case : 1) whenXs = [V1],
Xr,s = [V2, V3], Xr,r = [V4, V5, V6, V7] and 2) whenXs =
[V1, V2], Xr,s = [V3, V4], Xr,r = [V5, V6, V7]. The results
are summarized in Fig. 1. Notice that both EIS and EIS-MT
significantly outperform IS-prior and IS-Gaussian. WhenN

is large, EIS has the best performance. But as explained in
Sec. 4, whenN is small, EIS-MT outperforms EIS and and
all other methods. This is because in EIS-MT we importance
sample only on 3 dimensions (while computing conditional
posterior mode for the rest) and thus its effective sample size
is much larger.

6. CONCLUSIONS

We proposed two new techniques for large dimensional
Bayesian importance sampling problems with frequently
multimodal likelihoods. Significantly improved performance
over sampling from prior and sampling from Gaussian ap-
proximation to posterior (both of which can be interpreted
as special cases of our algorithm) was demonstrated, partic-
ularly when the number of samples used is small. We also
derived sufficient conditions to test for posterior unimodality.
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