SPEAKER DEPENDENT BENGALI KEYWORD
SPOTTING IN UNCONSTRAINED ENGLISH SPEECH

By
Samarjit Das.

Bachelor of Technology, 3" year
Indian Institute of Technology
Guwahati, India.

A project report submitted during summer internship under the
supervision of Prof. P.C Ching, Dept of Electronic Engineering,
The Chinese University of Hong Kong.

Department of Electronic Engineering
The Chinese University of Hong Kong.
Hong Kong, July 2005.

Abstract

Multi-lingual interfaces can be of great use in a number of applications. A very
important issue for such systems is to first identify the segments of utterances
corresponding to a specific language. Language boundary information is also
very vital before any further processing can be done. Language specific keyword
spotting can be used for this purpose. Thus such a word spotter can serve as an
integral part of a typical multi-lingual system.

A speaker dependent ‘Bengali’ keyword spotter in unconstrained ‘English’
speech had been developed in this project. Two approaches were used. Both
used whole word based HMMs for keywords. All the Bengali keywords were
trained as isolated words. The first approach used whole word filler model. The
second approach used trained English phoneme models with an all phone
grammar network to model the filler part. For whole word based approach an
optimal performance of 94.22% hit with 1.17 FA/KW/H was obtained while the
maximum %hit for the same system was 97.92% but at the cost of 7.03
FA/KW/H. The second approach attained an optimal performance with hit rate
of 95.83% with just 0.71 FA/KW/H. However, maximum %hit for this system was
same as first approach but with lesser false alarm rate of 4.45 FA/KW/H.
Performance improvements in terms of reduction of false alarms have also been
proposed. Finally, further development of the existing system to a ‘speaker
independent Bengali keyword spotter” has been discussed.

Acknowledgement

I am greatly indebted to my supervisor, Prof P.C Ching, for providing me such a
great opportunity of working in a wonderful environment. Also, I am utmost
thankful to him for his support and thoughtful guidance throughout my
internship. Without him, this work would have never been complete.

Thanks also to Prof. Tan Lee, who has given many valuable advice and
suggestions.

Finally, I would like to express my sincere gratitude to my lab-mates/friends at
the “DSP & Speech Technology Laboratory”, who has made my stay here in
Hong Kong very memorable.

I. Table of Contents page no

Acknowledgement ... 3
I. Table of Contents...........cccoiuiiiiiiiiiiiii 4
II. List Of FIgUuIes......coouiviiiiiiii i 6
IL List of Tables.........ciiiiiiiiii 8
Chapter 1 Introduction....................... 9
1.1 Multilingual interfaces....................... 9
1.2 A little bit about Bengali.................oooo 11
13 Speech recognition and keyword spotting.............................. 11
14 Keyword spotting in recent years.................c.coooviiiiiin. 14
1.5 Objective of this project.............cooviiiiiiiii 15
1.6 Reportouthine...........c.oooiiiiiiiiiii 15
Chapter 2 Keyword spotting using HMM......................., 16
2.1 Stochastic model for speech.................... 16
211 Acousticmodeling..............coooooii 17
212 Hidden Markov Models................cooiiii, 19
2.2. Keyword spotting............ccooiiiiiiiiii 22
221 Keyword spotting.............c.ooooiiiiiiii 22
222 Language model in keyword-spotting..................... 26
223 Performance measure for word-spotting.................. 27
Chapter 3 System design for Bengali keyword spotter........................... 28
3.1 Speech Data............cooooiiiiiiii 28
3.1.1 Training data for keywords......................... 28
3.1.2 Training data for fillers........................... 29
3.1.3 Testdata..........oooooviii 29
3.2 Choosing Keyword & Filler models.....................oo. 29
3.2.1 Keyword models................oooooi 30
322 Filler models............cooooiiiiiii 31
3.3 Training........oooiii 32
3.3.1 Training of word based keywords and fillers............. 32
3.3.2 Training the English phonemes............................ 34

34 Grammar NEtWOTKS. ..o 35

3.4.1 Approach 1. 35
3.4.2 Approach 2. 36
3.5 Decoder and its parameter selection........................o 37
3.5.1 Language model scale-factor......................... 38
3.5.2 Relative Word insertion penaltyooooini. 38
3.6 SUMIMIATY ...t 38
Chapter 4 System evaluations and analysis........................... 39
4.1 Evaluation of Approach 1...............ooo 39
4.1.1 Effect of relative word insertion penalty..................... 40
412 Effect of LM scale factor....................oooo, 41
4.1.3 Effect of relative keyword weights........................... 42
414 Overall performance of approach 1........................... 45
4.1.5 Some other evaluation issues......................oooeenie. 45
4.2 Evaluation of Approach 2.............coooiiiiiiiii 46
421 Varying the value of LM scale factor........................ 46
422 Effect of word insertion penalty........................... 47
423 Performance analysis of approach 2........................ 50
424 Overall performance of approach 2........................ 50
4.3 Improving the system performance.....................oooeiiinin. 51
4.4 SUMMATY ...\ttt 51
Chapter 5 Conclusions & future works........................ 52
5.1 ConclusioNnS.o.ovviiiiii 52
52 Future works...........oo 53
521 Speaker independent system design..................... 53
522 Post processing & confidence measure.................. 53
523 English-Bengali bi-lingual interface........................ 53
References...........ooooiiuiiiiiiiiii 54
Bibliography..............ooo 56

II. List of Figures page no

Figure 1-1 A bi-lingual system using language specific word-spotting......... 10
Figure 1-2 A typical Keyword spotting system........................o 13
Figure 2-1 Waveform of the word ‘Bangla’.........................., 16
Figure 2-2 Speech Spectrogram................cooooiiii 17
Figure 2-3 Mel scale Filter-bank..................coooo 18
Figure 2-4 Feature extraction modules 19
Figure 2-5 Markov generation model......................... 20
Figure 2-6 Template matching based KWS.................c 22
Figure 2-7 Networks for one KW per utterance...................ocooiiinnin. 23
Figure 2-8 Unconstrained grammar networks for KWS........................ ... 24
Figure 2-9 All-phone network based filler...................... 25
Figure 3-1 Feature vector structure......................., 31
Figure 3-2 Training file labeling......................... 33
Figure 3-3 Training the English phonemes with TIMIT........................... 34
Figure 3-4 Grammar network using whole word KW/filler model............ 35
Figure 3-5 All phone network based grammar network 37
Figure 4 -1 Variation of number of hits with varying K........................ 43

Figure 4 -2 Variation of number of FAs with varying K........................ 43

Figure 4 — 3 Variation of number of Deletions with varying K............ 44

Figure 4 — 4 ROC of the Bengali keyword spotter.............................. 44

Figure 4 — 5 Variation of number of Hits with varying p........................... 48
Figure 4 — 6 Variation of number of Deletions with varying p.................. 48
Figure 4 — 7 Variation of number of FAs with varying p........................... 49
Figure 4-8 ROC of the system using Approach 2...................ocoi, 49

I1I. List of Tables page no

Table 4 -1 Performance variation of Approach 1 depending on ‘p’............ 40
Table 4 -2 Results for varying LM scale factor............................ 41
Table 4 -3 Results for variation of relative KW weights........................ 42
Table 4-4 Results obtained by varying the value of *S’..............ccoiiiiiinils 46
Table 4 -5 Results obtained by varying ‘p’ccooviiiiiii, 47

Chapter 1
Introduction
1.1 Multilingual interfaces

Past decade has seen an exponential growth in the field of digital technology and
information processing. With the rapid development of the very large scale
integrated circuit (VLSI) technology, we have been able to achieve very high
computation and data processing speed. This has made real-life applications of
more and more complex algorithms a reality. Speech recognition algorithms are
one of the most important among them. Nowadays, state of the art speech
recognition technology is finding its place in many multimedia applications to
spoken language command interfaces, information query systems and in many
more like biometric authentications, surveillance [4] etc.

As speech driven interfaces are going to take over today’s conventional interfaces
over the next couple of years, we have to address some very important issues
related to that. Most of the speech interfaces that exist today essentially expect
the user to speak in a particular language. Or in other words, they are basically
monolingual. But as the spread of application increases, quite often we have to
come across the type of users whose utterance contains words from multiple
(more likely to be ‘two”) languages. A very good example might be a user who
has a “weak” English background. This scene is very common in many countries
where either English is not that widely spoken(example, France) or many people
are less ‘English-educated’(example, India) than the ‘system might expect’. It is
always going to happen that he might mix up his own native language when
tries to use the interface in English. This is true for speech command interfaces
and also for information query systems as well.

Due to the reasons stated above the need for systems/interfaces that can handle
multilingual behavior of speech will increase with the course of time. One thing
is pretty clear that a bi-lingual utterance will have a dominance of one specific
language compared to the other. It means that, the words corresponding to the
later will have occurrences at unpredicted intervals and at any part of the
utterance. One important phase of a desired multilingual system will be to single
out those words from a specific language as a preliminary step. Once the system
has ‘Spotted” the words from a ‘different’ language then it can take appropriate
actions, which may include adaptive decoding for a command interface kind of

an application or can be fed as an input to an advanced module to do the task of
further language specific processing / understanding. This way we’ll be able to
come up with a better and more efficient multilingual system. A typical system
block diagram is shown here in Figure 1-1.

Decade

[anguage speciic
Processing

Bi-lingual spech

language select GO Applicatians
[|I —_ Muhtilingual
LM W L Processar

lanquage pazighc
Pracessing

Decode

Figure 1-1 A bi-lingual system using language specific word-spotting

Here the word spotter includes all the other essential speech recognizer modules
like feature extractor, trained decoder etc. The system which is going to be
discussed in this report in sections to follow, aims to implement the ‘Language
Specific’ word-spotter of a multi-lingual system and as already told this part will
play a major role in over-all performance of the whole system. We’ll basically be
concerned about a bi-lingual perspective which is more practical for several
reasons.

10

1.2 A little bit about Bengali

Bengali is a widely spoken language in eastern part of India and Bangladesh.
With nearly 200 million native speakers it is world’s fourth most widely spoken
language after Mandarin, Spanish& English. Bengali is of Indo-Aryan origin of
south-Asia and comes as a successor of Sanskrit, Pali and Prakrit languages.
Following nearly 200 years of British rule in India it is very obvious that there
will be “colonization effect’ on the native spoken language. So, it is very likely in
several parts of India that a speech spoken in native language might be
‘contaminated” with English and vise versa. In case of Bengali (the language in its
tong actually called ‘Bangla’) there’s no exception. For all these reasons, spotting
Bengali (Bangla) words (in fact, Key-words from a speech recognition
perspective) in unconstrained English speech is of great interest to us. Such a
system can further be developed to a ‘Bengali-English’ bi-lingual speech
processor or understanding system which will have ample applications like
information query systems in the Bengali native areas, say, eastern part of India.

1.3 Speech recognition and keyword spotting

A typical speech recognition system transcribes a spoken input into texts. Now,
depending on the type of input they are classified in two major categories
namely isolated word recognizer and continuous speech recognizer. For each of
these cases a suitable acoustic model is chosen (either whole word based or sub
word based) and they are trained using the features extracted from the training
utterances. The decoder then takes an unknown utterance as input and finds out
the best match or best match sequence form a set of trained models. The
vocabulary of a recognizer decides how many words the recognizer can identify /
transcribe. The task grammar of the recognizer will constrain the functional
output of the recognizer to a limited set words / word sequences. It may also
allow an out put to be of arbitrary length and unconstrained. Naturally these are
more encountered in real world scenarios and will be much interest to us.

The problem of automatic speech recognition can actually be viewed from
several perspectives such as acoustics, signal processing, pattern recognition,
phonetics, linguistics, psychology, neuroscience, and computer science. ASR is a
very difficult task. Although much advancement have been made in ASR
research, the performance of today's best systems is more than an order of
magnitude in error rate from human performance. The difficulties can best be

11

described in terms of the tasks to be performed. For example, task might be to
recognize isolated words to recognizing continuously spoken words or even
more challenging spontaneously spoken language recognition. In all cases, the
performance of the recognizer always depends on human ‘cooperation’ to large
extent. The performance can also be severely affected by the environmental
conditions. There are many other robustness issues happen to be there that still
demands for more adequate methods to be solved.

Keyword spotting or simply word spotting is a special field of speech recognition
that has got a significant focus over the past decade with the advent of speech
recognition applications in real life. Although most of the Automatic Speech
Recognition (ASR) systems are designed to recognize a limited set of utterances
or some fixed set of word sequences it is quite unlikely that the users will always
stick to those constraints. In a practical scenario it has been seen that in most
cases user utters out of vocabulary words. So, we need to design systems that can
recognize a limited set of vocabulary words or “words of interest” or “‘Keywords’
embedded in extraneous speech (out of vocabulary words / background etc).
Such a system or a keyword spotter is clearly different from a conventional ASR
system. In keyword spotting we are not at all bothered about transcribing the
whole of the input utterance. Only the keywords are of interest to us. They might
occur any where in the utterance any number of times. Keyword spotter’s job is
to find out if a keyword was at all spoken or not and if yes then detect the correct
keyword. Primary job here is to correctly figure out if the utterance if fully
extraneous of there’s keyword(s) embedded in it. Failing which the system might
end up generating ‘false alarms’ or missing the keywords. Designers have to
make a compromise between these two issues as we’ll see later and these decide
the performance characteristics of the keyword spotter.

In a typical keyword spotting system, the keywords are basically trained as
isolated words (though exceptions are there) and the extraneous
speech/background is represents by one or more models better knows as ‘filler’
or garbage models. The decoder finds out the best match of filler-keyword
sequence during decoding. It is expected that if there happens to be a keyword
then the optimum sequence generated by the decoder will contain the
corresponding keyword model provided it has been “properly’ trained using a
‘broad’ class of spoken examples.

12

Modeling the filler is a very important issue. The keyword spotter’s performance
depends to a large extent on how the fillers/garbage is modeled and how ‘well’
they represent the extraneous speech without rejecting the correct keywords.
There could be whole word based models for the filler [1] or it could be a phone
based [6] (e.g. all phone network based keyword spotter). Decoding network
also plays an important role in system performance. This will decide if the
spotter allows the keyword to occur in the utterance without any constraints [1]
or certain constraints to be imposed like one occurrence per utterance [11] or
occurrence in the middle of the utterance etc. As expected the level of difficulty
for spotting unconstrained occurrences are more than the constrained ones. A
typical Keyword spotting system is show in Figure 1-2.

Trained KW
Ref. Models

Decision:KW? Results

keyward /\
ul\ﬂmf o
K

Acoustic model Trained H
estimation Ref. Models

Figure 1-2 A typical Keyword spotting system

It must be noted that a conventional ASR system just transcribes the speech input
and it has nothing to do with the contents or what they signify either. In other
words it is NOT a speech understanding system. But a keyword spotting system,
which has to make a “decision” and pick out the so called “words of interest’ from
an unconstrained speech can be considered as a ‘step towards speech
understanding’ rather than just being a ‘transcription machine’. Of course, it has
the ability of information retrieval as well. In that way, it’s a more intelligent
version of a typical ASR.

13

1.4 Keyword spotting in recent years

The problem of Keyword spotting has been approached in several ways.
Dynamic Time Warping (DTW) and Hidden Markov Model (HMM) [3] based
algorithms have been mainly used. Some researchers have also tried ANN-HMM
combined approach where neural networks work in the post-processing
phase[9]. Bridle has approached the problem by introducing dynamic
programming techniques for whole word templates [8]. Higgins and Wohlford
introduced a continuous speech recognition approach to keyword spotting, and
they also defined filler templates to represent the non-keyword portions [10].
Finally, Rose and Paul introduced HMM-based keyword spotting [1]. Similar
approach was also followed by Wilpon & Rabiner [11]. In all cases the choice of
garbage model considered to be a very important issue as it decides the systems
performance in terms of false alarms and false rejections or deletions. Many
cases, the system had to do a trade off between high detection rate and false
alarms. Number of approaches has sought to achieve a high detection rate at the
cost of high false alarms and then use further processing for ‘removing the false
alarms’ or better known as ‘rejection’. A number of post processing/ rejection
strategies have been approached by the researchers. These include use of
duration information; duration normalized acoustics score and a likelihood ratio
scoring [1], use of classifiers like Gaussian or Neural networks and very recently
discriminant methods like Support Vector Machines (SVM) [12].

Keyword spotting has been successfully used in many applications as of now.
Such as, Cambridge University Video Mail Retrieval (VMR) project, topic
identification systems e.g. topic identifier developed by K. Ohtsuki et. al. for
Japanese broadcast news [5]. There are many others like say, Voice dialing [15] .
Very recently, in 2004, Ai-Logix, US, has introduced a real time keyword spotting
system named WordALERT™ .

14

1.5 Objective of this project

The goal of this project is to implement a ‘speaker dependent” Bengali keyword
spotting system in unconstrained English speech. Two major approaches will be
considered. They basically differ in the type of filler models used and decoding
network design. The trade off between false alarm rate and correct hits or
percentage detected will be studied in both the cases. The project also aims to
study the effect relative word insertion penalty, keyword-weights and language
model scale factor on the system performance. An optimum operating point with
high detection rate but with acceptable false alarms is to be sought. A possibility
of combining the two approaches together for a better system performance will
also be explored.

The speaker dependent keyword spotter will be HMM based. The keywords will
be having whole word models trained as isolated words. On the other hand,
tillers/garbage will be either whole word based or sub-word based depending on
the approaches used. A study will be undertaken to find out whether there’s any
performance variation depending on the number of word based fillers used. The
HMMs will be trained using both single Gaussian and then a GMM (Gaussian
Mixture Density) based approach will be taken. The performance of mixture
density based models will also be investigated.

The system will be built and evaluated on HTK v3.2.1 platform. An approach to
make the system speaker independent will be sought. Finally, it will be discussed
how the system can further be developed to a Bengali-English bi-lingual
interface.

1.6 Report outline

The organization of the rest of the report is as follows:

In Chapter 2, some basics of HMM based keyword spotting will discussed with a
little bit of mathematical fundamentals behind them. In Chapter 3, the system
development including training, parameter selection will be explained.

In Chapter 4, the system is evaluated and analyzed followed by conclusions and

future works together with further development of a bi-lingual interface will be
discussed in Chapter 5.

15

Chapter 2
Keyword spotting using HMM

Spotting Keywords in unconstrained extraneous speech can be approached in
several ways. Use of dynamic programming technique could be a promising one.
Recently, iterative dynamic programming [13] has also been successfully used in
keyword spotting. But still, NO method models the stochastic nature of speech
signal as good as HMMs does. So far, HMM has been the most successful
technique in several speech recognition areas and its application in keyword
spotting is also very promising. To generate HMM based ‘acoustics-stochastic’
models from speech signal it is required to look into a statistical speech modeling
perspective and then some fundamentals behind HMM modeling.

2.1 Stochastic model for speech

Speech is a very ‘special’ kind of signal. The vibrations in the vocal cord are
transformed into a sequence of ‘pressure waves’ in the air media. The
characteristics of these waves are basically controlled by the articulary system
generating a particular phone /sound. Then electrical transducers (Microphone)
map these vibration sequences to a varying amplitude electrical signal. Our
rough perception about so called ‘Speech Signal’ is actually this mapped
electrical signal which can be further digitalized to sequence of numbers for
numerical/algorithmic processing like say, speech recognition. A typical speech
signal is shown in Figure 2-1.

\
'“"T | ,l-.',',f,!,1'u'I,-.',",f)fp'lg.'pwpl | *' WW—

Figure 2-1 Waveform of the word ‘Bangla’

16

2.1.1 Acoustic modeling

Perception of a segment of uttered speech like a phone or a whole word depends
on several characteristics of speech. Simply time domain analysis can never
reveal those. Actually, same word or phone uttered at different instances could
have a very different time domain representation. There are several reasons for
these including inter/intra speaker variations, articulary systems and
environmental conditions. So, the identity of a word or a phone or a “specific
sound” is not directly embedded in time domain. Hence, we go to frequency
domain analysis of speech which will give us a better and robust
parameterization to discriminate different phones/words from each other. It's
pretty obvious that for keyword spotting that’s a very important issue.

The speech waveform is first digitalized using techniques like Pulse Code
Modulation (PCM) with a sampling frequency of 8 kHz or more. After the speech
signal has been mapped to a sequence of numbers, different Digital Signal
Processing (DSP) techniques like FFT etc are used for its parametric
representation. This is also called feature extraction. The output is speech signal
represented in feature space (Frequency domain) and such ‘coded’ signals are
further utilized for speech recognition applications.

The parameters are dynamic. They change with time. But each set of parameters
are used to describe a limited period of time following the assumption that
speech signal is stationary for at least 10 ms time interval. So, normally, speech is
windowed (typically of 250 ms duration) and corresponding to each window the
parameters are calculated. Keeping in mind about the ‘short time stationarity” of
speech the time difference between successive windows is typically set at 10 ms.
This is better known as “short time speech analysis” and results in a Spectrogram
when DFT is used as feature. A speech spectrogram is shown in Figure 2-2.

[
" m*ﬂ I | | !'-:e
' Wi

il
Figure 2-2 Speech Spectrogram

17

Spectrograms give a better representation of speech than time domain. The dark
bands that can be seen are known as formants. Their variation with time and
spacing has the information about a specific phone embedded in the speech. But
still, it is not enough for advanced automatic speech recognition techniques.

State of the art Automatic Speech Recognition (ASR) methods use parametric
representations for speech such as smoothed spectra or Linear Prediction
Coeftficients (LPC) plus various representations derived from these, like cepstral
and log cepstral coefficients . Still it is a challenge for the researchers to find out
an even better set of parameters that captures more of the speech characteristics.

From LPC coefficients we can derive cepstral coefficients, the coefficients of
Fourier Transform representation of the log magnitude spectrum. They are
found to give a better representation of the local spectral properties of the signal
for a given analysis frame and hence they are more robust. Besides, their
temporal derivatives like Delta, Delta-delta (acceleration) coefficients are shown
to improve recognition accuracy. They also have a closer ‘mapping’ to the
articulary features like say, variation of vocal track / vocal tract transfer function
during an utterance.

To mimic human auditory system we generally do a Filter-bank analysis of
speech before parameterization. This take care of critical band response of
human ear (frequency scale corresponding to that is call Mel scale). A typical
filter bank may look like this.

l = freq

11 1m 111 E[‘lel'g}' in
1] F| Each Band

MELSFEC

Figure 2-3 Mel scale Filter-bank

18

The cepstral coefficients thus obtained are known as Mel Frequency Cepstral
Coefficient (MFCC). These along with their temporal derivatives (delta and
delta-delta / acceleration) or MFCC_0_D_A will be used in the HMM based KWS
system design to follow. The block diagram view of a typical feature extraction
module of a speech recognizer has been show in figure 2-4.

l’[bfmﬁﬁ“ ADC) J& FFT

windowing &
Preemphasis
Fiter-Bank: analysis
L
Calculate Deltta Cepstral
HFEC and < sbetadeta/ < Analysis
Derivatives acceln Coeff.

Figure 2-4 Feature extraction modules

2.1.2 Hidden Markov Models

With acoustic modeling we are able to represent speech as a sequence of feature
vectors. Such a sequence optimized for a given segment of speech (word or sub-
word) from a number of training utterances can definitely be used as a reference
model for recognition of that particular segment. We can use Euclidian distance
in N-dimensional feature space for matching or better known as template
matching. For duration normalization a Dynamic Time Warping (DTW)
algorithm can be used. But this kind deterministic template based method fails to
capture the stochastic behavior of speech. So, we look for models that
incorporate the stochastic nature of speech. We can say that they are sort of a
‘Statistical Templates” which are optimized for N-dimensional ‘random’” feature
vector in the corresponding vector space. Hidden Markov Models or HMM
exactly does that and attempts to model stochastic behavior of speech [14].

19

Suppose, we have a feature vector sequence represented by ‘O’,
0=0,,04....00 1)

Where @ is the speech vector observed at timet. We need to find a word
(model optimized corresponding to the ith vocabulary word) in such a way that
the probability of O being ‘observed” is maximized.

arg max {P(w;|O)} (2)

Following Bayes’ rule, we have

P(O|w;)P(w;)
P(0) 3)

Plu;|0) =

From the above expression it is clear that for a given set of prior probabilities
P(wi), the most probable spoken word depends only on the likelihood P(Olw:).

Usually, ‘O’ is of many dimensions. So, direct estimation of the conditional
probability P(01.02....|lwi" is not feasible. Instead a parametric model for
speech (say, word) production is assumed. And there comes the Markov Model.
Due to introduction of such a model estimating the class conditional observation
densities P(Olw:) is replaced by the much simpler problem of estimating the
Markov model parameters. In HMM based speech recognition, it is assumed that
the set of observation vectors (temporal feature vectors) are generated by a
Markov model as shown in Figure 2-5.

Markow
Model
M

! 1 t '

;bztoa'*bzcoz) ‘:,b 09 by 4)‘41@4(05) L0

e U0 0 0 1

o) 04 04 o, 04 Og

Figure 2-5 Markov generation model

20

A Markov model is a finite state machine which changes state once every time
unit and each time t that a state j is entered; a speech vector @ is generated from
the probability density Pi{@t] which happens to be a single or mixture Gaussian
density. Furthermore, the transition from state 1 to state j is also probabilistic and
is governed by the discrete probability®ii. The joint probability that O is
generated by the model M moving through the state sequence X is calculated
simply as the product of the transition probabilities and the output probabilities.
So for a state sequence X,

F{D X|ﬂvf} = fj]gb‘_;_r{ﬂl }-Fj‘_;_r'_;_rb‘z{[}_;_r }&'_;_r;.g FJ:{, {U;.;} DoC (4)

However, in practice, only the observation sequence O is known and the
underlying state sequence X is hidden. This is why it is called a Hidden Markov
Model (HMM).

Given that X is unknown, the required likelihood is computed by summing over
all possible state sequences, X = w(1),2(2),2(3),. .., 2(T) | this follows that,

T
P(OIM) = az0)x(1) | [b=ty (01)az(ty2ta1)
X t=1 (5)

Where #(0} is constrained to be the model entry state and #(T + 1} is constrained
to be the model exit state. Equation (5) is very computation intensive. No of
computations required is of the order of ~ 2T. N*T, where N is number of states
in the model. Considering that for a word T=100 => 2.100.5*100 or 10772
computations are required and so, it'll be a definite hazard for real-time
implementations. Hence an alternative approach is taken considering the fact
that the contribution of the ‘Most Likely” state sequence to the summation is
maximum. Or, instead of calculating the sum for all possible state sequence we
can just compute it for the most likely state sequence and that will given us a
very good approximation of the likelihood probability. Or,

T
PO|M) = max {ﬂmin}mil} 11 bzn{r}(ﬂr]&m.:r}:.:wrl}}

t=1

(6)
Given a set of models M: corresponding to words %i , we can solve HMM
recognition problem by equation (3) and assuming that

P(O|w;) = P(O|M;). (7)

21

All these analysis assumes that the parameters {@iil and {bi(ot)} are known.
They can indeed be estimated from a sufficient number of representatives (or
training utterances) of each word(corresponding model M;) using Baum-Welch
forward-backward re-estimation process which works on statistical Expectation
Maximization (EM) algorithm. During recognition process or to be precise ,
while calculating the likelihood probability (called likelihood score) of an
unknown utterance , the most likely state sequence is optimized by Viterbi
Algorithm which traces out the most optimal through the decoding lattice
comprising of observation vector sequence and HMM states.

HMM has been so far the most successful method in several areas of speech
recognition with considerably high accuracy. Pertaining to the fact that speech
recognition happens to be a ‘pattern recognition” problem , HMM can be
efficiently used in many other patter recognition areas. They have actually been
successfully used in written script identification. Next section will discuss
keyword spotting using HMM.

2.2.1 Keyword spotting

In keyword spotting it is required to recognize a given set of keywords in
extraneous unconstrained speech. This problem was initially addressed by the
researchers [8] using dynamic programming techniques. As told earlier still
today some researchers find them useful. In a method, called sliding window
technique, the word template is sort of slided along the whole utterance to find a
possible match at any instance of the utterance. Several pruning methods have
also been implemented for complexity reduction. In any case, the most basic
template matching based algorithms in the way show below.

Refference template
far Bangla

ddi.j)

Figure 2-6 Template matching based KWS

22

As shown in Figure 2-6 the path P(i, j) gives the optimal distance between the
reference template and the actually uttered segment. Here distance means
cumulative sum of Euclidian distances between the corresponding vectors in
successive frames. A threshold can be put to decide between a putative keyword
hit and extraneous speech. In spite of all these, these methods can’t handle the
stochastic properties and randomness of different instances of the same
utterance. This is a major disadvantage.

HMM based keyword spotting system of course uses reference templates but
they are not fixed templates like those of template matching method. They are
basically Gaussian HMMs optimized for each keyword and a class of fillers. So,
they are more like a ‘statistical template” rather than being a fixed one. In that
way they are dynamic. Hence, it’s better to call them ‘Reference models’ and
NOT ‘reference templates’.

Typical HMM based keyword spotter will have a set of fillers trained by
extraneous speech for its representation. They could be whole word models [1]
or sub-word based like phonemes [6]. The keywords are generally trained as
isolated words as context dependency has shown to have NO significant
performance improvement. Different grammar networks can be used for the
decoding purpose. This depends on the task of the word spotter. Some cases it is
assumed that there will be only one keyword per utterance [11] and grammar
network compels the optimal path to traverse through keyword networks. Such
a network is shown below.

+ _— .
5 filler Model {s) @ Filler Mondel {s) X
. N ltterance
gnm " : = End
—}ﬂ—k@?f

Figure 2-7 Networks for one KW per utterance

Decoding generates a sequence of filler(s) followed by a keyword and then
another sequence of filler(s). A specific keyword is chosen depending on best
likelihood score of the whole sequence.

23

But in a practical scenario it can’t be said that there will be exactly one occurrence
of keyword per utterance. It can be any keyword, any number of times and any
where in the utterance. Hence, an unconstrained grammar network is required.
Overviews of two different kinds of unconstrained grammar networks are
discussed. Those are the ones used in the system design. The first one [1] looks
like this,

A
~

[¥F] \}

[WKw]
START EHD

Keyward
Models

Figure 2-8 Unconstrained grammar networks for KWS

The grammar network above will allow any sequence of keywords and fillers
and finds out the best matched sequence giving the highest score given an
unknown/unlabelled utterance. So, this is more practical. But it can also happen
that an utterance having keywords gets matched to a sequence of fillers only as
the optimal path is not forced to the sun-network of keywords. However,
weights [WKw] can be used to boost the likelihood of key words relative to the
fillers who is relatively less weighted with [WF]. But then the chance of false
alarms also increases. Several post processing rejection (reject a segment as
extraneous part instead of declaring it as keyword) techniques can be used to
remove false alarms. Nevertheless, there has to be a trade-off as per system
requirements.

The ‘filler block” can be having one or more whole word models. A modification
of this filler sub-network leads to another unconstrained network as shown
Figure 2-9. Any utterance of a particular language can be represented as a
sequence of phonemes of that language. So, an all phone network, which allows
any arbitrary sequence of phonemes, can be used for recognizing ANY utterance.
Hence it'll serve the purpose of filler pretty well. But it will also tend to represent
the keywords as well in case they are from the same language or the keywords
can have a representation in terms of phonemes in the all phone network. Whole

24

word based keyword models can be used to compete with the all phone network,
provided they are properly trained from a wide variety of training utterances. In
case, the keywords are of different and contains some language specific “special
phonemes’ then it’s even better in terms of system performance for obvious
reasons. Still there will always be a clash between keyword models and all phone
networks. Hence, trade-off between hits & false alarms has to be done by
adjusting the words transition penalty which will be discussed in detail while
explaining the system design.

all Phone netwark
e

! 1

|
PHOHERE 1
FHOHEME
FHI:II'I_EI'-'IE i

FHTHEME §

Keyword Models

Figure 2-9 All-phone network based filler

Apart from all the approaches discussed so far there are several others. Using a
large vocabulary recognizer as a keyword spotter has been very popular. Instead
of having limited number of filler models to represent the whole extraneous
speech very precise models for non-keywords are trained. It’s like every non-
keyword is having its own model like every keyword. So, it’s more like a large
vocabulary (similar to a dictation machine) recognizer which generates text
transcription of spoken utterance and then text reference of keywords are used to
check for a putative hit. This way, the requirement for a word spotting specific
network is avoided. But building a large vocabulary recognizer is always a
difficult job and it’s a major disadvantage.

25

2.2.2 Language model in keyword-spotting

For a constrained grammar network the recognizer out put will be confined to a
limited set of possible utterances. But NOT all of them are supposed to be
meaningful obeying the grammatical rules of a particular language. So, to boost
the likelihood of a possible meaningful utterance (assuming that the actual
utterance was ‘meaningful” i.e. it was grammatically correct) we use language
model. It's sort of prior information that backs up the decoding process so that
the recognizer does not end up with an unlikely meaningless utterance.

P(O|w;)P(w;)

Plu;|0) =
P(O) (1)

In equation (1) the term P (wi) is the likelihood of occurrence of a particular
word. As far as grammatical rules are concerned, this probability should depend
on N-words that occurred preceding the word. So, it's essentially a conditional
probability. When N=0 then it is called unigram language model. The probability
depends solely on the word itself. There could be bi-gram or trigram or n-gram
models depending on N=1 or N=2 or N= n-1. They are estimated from their
occurrences in a large corpus / daily newspapers etc.

But, since keyword spotting uses an unconstrained grammar network or better to
say, a grammar-free network so, use of language model does not make sense.
Also, keyword spotting system is not at all bothered by grammatical correctness
of the utterance. Its job is just to detect the keywords, be it embedded in a
grammatically incorrect meaningless utterance. So, language model is NOT
directly used in keyword spotting. However, unigram language models can be
assigned manually to implement keyword weighting in grammar/decoding
network and will be discussed in detail in next chapter.

26

2.2.3 Performance measure for word-spotting

Performance analysis of a keyword spotter is different from a typical ASR. It is
expressed in terms of hits, substitutions, misses/deletions, false-alarms and trade-
off between false alarms (FAs) and hits or percentage detected.

Hit means a specific keyword being spotted correctly. It is expressed in terms of
percentage of keywords correctly detected. Substitution means one keyword is
mistaken as the other. Misses correspond to instances when the spotter fails to
detect keyword(s) embedded in the utterance. Reverse case is FAs(false alarms)
which implies that in spite of no occurrence of keyword in actual utterance the
spotter declares occurrence of keyword(s). FAs are usually expressed as number
of false alarms per keyword per hour of speech input (FA/KW/H) or simply
FA/KWH.

By adjusting the relative word insertion penalty and keyword weights (to be
discussed soon) a tradeoff can be played between FAs and hits. A performance
curve, called ROC (Receiver Operating Characteristic) can be drawn to reflect
this tradeoff. This curve is a plot of percentage hit vs. FA/KWH and depicts the
performance characteristics of the system very well.

27

Chapter 3
System design for Bengali keyword spotter

This chapter will discuss the development of speaker dependent Bengali
keyword spotter in unconstrained English speech. Vocabulary size of the spotter
is 12. Two different approaches were used and both will be explained in detail.
Discussion will include training/testing database(s), type of filler/keyword
models used, variation of grammar networks and selecting parameters like
relative word insertion penalty, keyword weights and language model scale
factor for an optimal system performance.

3.1 Speech Data

Training/test data is very important for designing any speech recognition system.
The system to be developed here is a speaker dependent one. This essentially
means that the keywords (Bengali) are assumed to be uttered by a single speaker.
Also, isolated keywords uttered by him can be artificially put in the non-
keyword utterances of other speakers and those ‘hybrid” utterances can also be
used for testing the word spotter. Otherwise, the whole utterance could be
uttered by the specific speaker. So, extraneous speech part can be ‘speaker
independent’. This will be kept in mind while choosing training/testing data. In
all cases speech data was in windows “.wav’ format and TIMIT utterances were
used after converting them to windows “.wav’ format from NIST format by using
a software call ‘ch_wave’. Sampling frequency was 16 kHz and there were 16 bits
per sample.

3.1.1 Training data for keywords

Keywords are Bengali words. They are to be trained for a specific speaker. Hence
training data used for them were isolated utterances of the keywords. All
utterances were essentially from the particular speaker. For each of the twelve
(12) Bengali keywords, 25 isolated utterances were used for training. So, total
size of the keyword training data base was 300. The 12 Bengali keywords were as
follows: Ashram, Assam, Bangla, Bazzar, Bramhaputra, Guwahati, Himalaya,
Jungle, Kolkata, Paajama, and Sristi & Yoga.

28

3.1.2 Training data for fillers

Extraneous speech for the system was English. Fillers, representing English, were
whole word based models for one approach and phoneme based for the other.
For the first case the fillers were trained with more than 350 random utterances
in English which include chosen from TIMIT database and utterances from the
specific speaker as well. On the other hand, the phoneme based filler model had
the whole of TIMIT database as its training data.

3.1.3 Test data

Total number of test utterances was 240. These included utterances from the
specific speaker and also from TIMIT test database. They had one, multiple or no
occurrence of Bengali keywords. 120 utterances had one or more Bengali
keywords while rest of them had no such keywords. That means, chances that a
given utterance will contain a Bengali word from the vocabulary is 50%.
Occurrence of keywords instance was unconstrained for a given utterance. For
TIMIT utterances, Bengali keyword was artificially ‘injected” at a random
instance. This was done in two steps. First, the isolated utterances of keywords
were processed with Wavesurfer and then a MATLAB code was used to put the
keyword at a random instance of the utterance. Thus sort of hybrid test
utterances were generated. Reason for doing this was to make sure although the
keywords were speaker dependent, the extraneous speech could be from any
arbitrary speaker.

3.2 Choosing Keyword & Filler models

This is one of the most crucial phases of system design. As already told, there
were two different design approaches. In one approach, whole word based fillers
were used while phoneme based in the other. However, keywords had whole
word models in both cases. Next section will discuss how prototypes HMMs
were chosen for keywords and fillers.

29

3.2.1 Keyword models

For all 12 Bengali keywords identical prototype HMMs were chosen. It might be
more reasonable that each word should have its own unique model. But, there
were NO sub word level information available for Bengali words and hence
prototype HMMs, each of 15 states were chosen. Also, when vocabulary size
increases it won’t be feasible any way to choose unique prototypes for each
individual word. In any case, some ‘common’ prototype has to be chosen. But,
here, pertaining to the fact that vocabulary size was only 12, so, for better system
performance word-specific HMMs could be chosen. At least, for the “classical
Bengali words’ like “Bramhaputra” which is of longest duration and supposed to
be comprising of many sub-words/phones. It is very important that an optimal
model is chosen for such words. Number of states should be chosen after
carefully studying the sub-word level structure. Otherwise, as will be seen in
evaluation section, words like Bramhaputra gets matched ‘too often” to several
segments of utterances as the relative word insertion penalty is increased to
higher values. In those cases, increment in relative word insertion penalty might
NOT lead to increased false alarms and NO increment in hits as well. Most the
utterances will tend to get matched to the word ‘Bramhaputra” as it’s longest in
duration and hence sequences containing this word will have lesser penalty and
a better score. Significance of all these things is that if possible, it's a very good
approach to choose a ‘proper’ model for each word and that will certainly
improve system performance.

Number of streams for each model was one. Density corresponding to each state
was chosen to be single Gaussian initially and then gradually numbers of
mixtures were increased to 2, 4, 8, and 16. Mixture densities give a better
approximation of the original distribution. It's sort of similar to the fact that
neural networks give a universal approximation to any function. So, GMMs
(Gaussian Mixture Models) are supposed to given a better hit rate and a better
system performance.

Mel Frequency Cepstral Coefficients (MFCC) and their temporal derivatives
were used as acoustics parameters/features. In HTK configuration file it was set
as MFCC_0_D_A. Number of cepstral coefficient s were set to be 12. Hence each
observation vector was of dimension 39, with basic cepstral coefficients, the zero-
th cepstral coefficient followed by delta and delta-delta coefficients. The
observation/feature vector structure shown in Figure 3-1.

30

While feature extraction, window size was set at 250 ms and frame rate was
chosen to be 10 ms making sure that speech is stationary with in that interval as
we’ll be assigning fixed distribution parameters (like mean & variance)
corresponding to each frame and rule of probability distribution requires that the
distribution ‘has to be’ stationary for doing that.

MFCC 0 D A | Cl| C1| ‘e |CN|C|] I| iCl|5C1‘ e |5CN| a0 |£ILC1|£'LC£| sae |i%|50|

Figure 3-1 Feature vector structure

3.2.2 Filler models

Word based filler models were exactly similar to the standard keyword models
used. However it is important to decide how many filler models should be used
for training and what is the optimal number of fillers is that gives the best
representation of the extraneous speech i.e. English. It is very important to note
that too much precise filler models i.e. more number of fillers might degrade the
system performance. Because as the number of filler increases the distances
among keywords and fillers decreases in feature vector space. Hence, chances of
confusing fillers with keywords or vise versa become very high.

The other approach uses HMMs with three states to represent an English
phoneme. Though the number of context independent basic phonemes in English
is 41 but a total of 61 phoneme-based models were used for representing the
extraneous speech using an all-phone network to be discussed shortly. Extra 20
phonemes were used to incorporate a little bit of context dependency (but not
like that of tied state triphones) although it has been found that context
dependency hardly improves keyword spotter’s performance. It's obvious.
Because, word spotter has nothing to do with what is the exact transcription of
the filler, rather it just has to differentiate between filler and keywords given an
utterance. Here, of course, keywords have to be distinctly identified or let’s say
transcribed. Hence, in case, there’s a phoneme based model for keywords rather
than a word model then it's going to be a good idea to incorporate context
dependent phonemes (context is ‘in which word they occur’) in keywords as was
done in Video Mail Retrieval Project (VMR) of Cambridge University [7]. But for
tillers which are never going to be precise any way, context dependency does not
seem to make sense, at least for a simple case.

31

However, in a more complicated scenario it might so happen that there could be
close decision between a sequence of phonemes (fillers) and a whole word. In
those cases even ‘a little bit" of context dependency might well help to
discriminate between them as context dependent models are supposed to be
more precise. The extra phoneme-based models included a silence model
(labeled as h#) as well. Others were axr, epi, pcl, gcl ... etc. Acoustic features or
HMM parameters like mixtures/steams etc used were exactly same as keyword
models. Here one point is to be noted that it is not very evident, how more
number of mixtures are going to help the filler models as they are not precise in
themselves. Means, the distribution itself is not going to be precise unlike say,
the case of keywords which has some sort of precise representation. So, use of
mixtures might better optimize the model for the keywords but we can say
‘anything’ like that about filler models. In any case, introduction of more and
more mixture components without insufficient data might lead to ‘over fitting’
and might degrade the performance instead of improving!

3.3 Training

This is the most important step in the word-spotter design. All the system
performance characteristics will depend on how well this phase is carried out.
All the trainings were performed under HTK v 3.2.1 platform. Following section
will have detailed discuss on how the keywords and filler HMMs were trained.

3.3.1 Training of word based keywords and fillers

Before training could be done all the speech “.wav’ data files were converted to
sequence feature vectors in MFCC files “.mfc’ with appropriate configuration
parameters. It was done using HTK tool ‘"HCopy’. Then having set appropriate
prototype, HMM tool ‘HCompV’ was used for parameter initialization of the
model. In this concern it is very important to state that the filler and keywords
here were trained together. That means the global mean and variance calculated
by HCompV included both keywords and fillers. Those parameters were used
for initial estimate of the keyword models as well and it is known that the initial
parameter values influences the ultimate models that come after several iteration
of Baum-Welch algorithm. So, instead of training the keywords and filler
together, they could be trained separately and that is expected to have given a
better initial and hence final estimate of the keyword model parameters. In that

32

way the keyword models could be more ‘orthogonal’ to the filler models which
are good for a better system performance. During system evaluation it will be
investigated what is the affect of separate is training for keywords and fillers or if
there is any affect at all on system performance.

Keyword trainings were similar to isolated words. The training files
corresponding to keywords had their silence part removed. While the non-
keyword training files were used to train ‘one’ or more (Four) ‘concatenated’
tiller models. NO silence model was trained explicitly as it was assumed to have
been included in filler part. There were two types of fillers generated. In one case
each training file was used to train a concatenation four fillers. While, all the non-
keyword utterances were used to train ‘single filler’ in the other case. A
diagrammatic view is given below.

Training Files Labels for training

Isolated KW — Keyword label
utterance{Bengali}
Extraneous Filler 1 Filler 2 Filler 3 Filler 4
>

Concatenation of Four models

—_— -]
Extraneous Filler
speech{English)

Single model
Figure 3-2 Training file labeling

HTK tool ‘HERest” was use to do embedded training an implement Baum-Welch
algorithm. First seven iterations had single Gaussian densities. Then script editor
HHEd was used to increase the mixture components to two. Then after 12t
iteration the mixtures components were increased to 4 and the to 8 after 16
iteration. Finally, from 20" iteration onwards, 16 mixture components were
introduced and the GMMs were further trained up to 23t iteration. During all
these process the pruning threshold was set as 250.0 150.0 1000.0.

33

3.3.2 Training the English phonemes

All-phone network based approach uses English phonemes to represent the
extraneous English speech. All these phonemes were trained using the whole
TIMIT database and its phoneme label transcriptions. The HMMs were trained in
a similar way like that of the whole word models. A MATLAB program
automatically trained all the 61 phonemes (including the extra ones) by accessing
the whole TIMIT database and its phoneme level transcription files. A silence
model was also created in the process although it's never used explicitly in
grammar network and was included in the all-phone network like other
phonemes. So, here also, it’s sort part of the filler model(s). It is important to
remember that what has been done is similar to using 61 filler models and it was
made sure that they were able to represent the extraneous speech, which is a
whole language (English). As phonemes are the basic building blocks of a
particular language, so, using phonemes as fillers (where, filler is the language
itself) with the help of an all-phone network (allowing any sequence of
phonemes) does make sense! The phoneme training phase has been
diagrammatically shown in Figure 3-3. Keywords trained in the previous case
could well be used with these phonemes/all-phone networks.

Transcription Speech data

phoneme level transcription 1.lab — — - =3 speech data file for 1.lwav
phoneme level transcription 2.lab {— - — —}. speech data file for 2.lwav
3 ; :
T : T
phoneme level transcription N-1.lab 4= — — - — 3 speech data file for N- 1.lwav
phoneme level transcription M.lab <L — — - - speech data file ff’" N.lwav

MATLAB
CODE

HMMs for English phonemes

h#({sil}, a, ax, 1, ie... etc
samarjit das, 2005 Total 61 Models

Figure 3-3 Training the English phonemes with TIMIT

34

3.4 Grammar networks

Grammar network is the key factor in differentiating the two approaches used.
Both types of networks will be discussed in detail with appropriate trained
models used. They are unconstrained grammar networks or in other grammar
free networks. This is pertinent to the fact that system should be able to spot
Bengali keywords in ‘unconstrained’” English speech. Also, there’s no constraint
on the occurrence of Bengali words as well.

3.4.1 Approach 1

This utilizes whole word based keywords and fillers. Both one and four filler
models were used separately (M=1 or 4).The keywords were used parallel to the
tillers and they were allowed to generate any possible sequence among
themselves as per the best match with the test utterance. Structure of this
network is shown in Figure 3-4.

- —- —ENGLISH— — — -
: Filler 1
' Filler 2 !
: WF1

l : WF 2
|

— R

Filler M . WE M

Utterance

! | Utterance
y WK 2
strat I @ End
I/;‘IK 1

. : I =4 or1

Can be chosen
|
| | any value

samarjit das, 2005 L .

BENGALI

Figure 3-4 Grammar network using whole word KW/filler model
The feedback kind of a path on top provides the optimal path to traverse through

keywords/fillers any number of times generating free length sequences of
keywords and fillers.

35

The weights corresponding to the keywords are WK i that corresponding to the
tillers are WF i. They are the key factors while playing a tradeoff between hits
and false alarms. As already discussed, relative weights assigned to the
keywords are used to boost to likelihood of keyword being detected. It’s like we
are emphasizing there occurrence beyond just the acoustics matching. They
could be incorporated into the system just like a language model score. Actually,
they are sort of similar to language models from the perspective that both acts as
an extra information about the likelihood of occurrence of a particular word.
When the value of WKi s are more relative to WFi s then we are sort of forcing
the decoder / recognizer to make a decision ‘biased” towards the keywords. Thus
increments of the keyword weights will definitely give a hit detection rate by
boosting acoustics scores for keywords but at the same time it will result in more
and more false alarms. In HTK the weights are assigned as an effective unigram
language model score. The word network file is manually modified for assigning
the weights. Say, all keywords have same weight and so has the fillers. Their
weight ratio is K: 1, i.e. WKi = k .WFi. This is implemented by assigning language
model (LM) score for KWs as ‘K’ (though not a real LM scores) and that for fillers
as 1 in the word network. So, LM scores are effectively serving the purpose of
weights here.

3.4.2 Approach 2

This approach is based on all-phone network. As already discussed, it allows any
sequence of phonemes and hence using all English phonemes in the network, the
purposed of fillers can be served pretty well as the filler it self here is English
language. In this network, setting the value of relative word insertion penalty
plays a major role as it decides the tradeoff between hits and false alarms. It will
be discussed more in detail in the next section. Same word based models for
Bengali keywords were used in parallel to the all-phone network. The network
structure is shown in Figure 3-5.

36

The weights that could be seen corresponding to the keywords are meant for
incorporating some features from the Approach 1 into this and try to better the
performance of the system with an acceptable false alarm rate. This will be
discussed in detail later.

— Allphone network — —

- -
~ =
START r— — — — —/ 71 W"‘j END
| whk 2
. . 2
KW 1: Ashram Iﬁ ek

KW 2: Assam l
| |

I KW 12: Yoga }/l
1

samarjit das 2005 B
— Bengali KWs

Figure 3-5 All phone network based grammar network

The master-macro file of HTK used for decoding /spotting had the entire trained
phoneme set along with the word based keywords models together.

3.5 Decoder and its parameter selection

This was the actual working module of the system or so called ‘Bengali word
spotter’. HTK tool “HVite” with appropriate set of parameters was used for this
purpose. It used Viterbi search algorithm trace out the most optimal path (one
with the best acoustics score) through the trained phonetic/word lattice. It’s
basically a time-synchronous search and sort of a ‘breath first search’ with
pruning. The dictionary of the decoder was modified in such a way that it
displayed the Bengali keywords only, with duration information, if any, in the

37

output transcription file. Also, the decoder could be used in real-time or ‘online’
by using HVite with proper HTK configuration file. Decoder could also provide
with N-best out put with corresponding scores, for a particular utterance and
this is essential for post processing module to reduce FAs and increasing hits as
well. Values of two decoding parameters were to be chosen optimally. The first
one is ‘language model scale factor” and the second one is relative word insertion
penalty. They are discussed is the section to follow.

3.5.1 Language model scale-factor

This is the factor by which the language model score is scaled while decoding. It
influences the relative levels of insertion and deletion errors of the system. The
effect of varying this parameter will be studied during system evaluation. An
optimal value was chosen after detailed performance analysis. In HTK it is set by
the —s option of the tool “HVite’.

3.5.2 Relative Word insertion penalty

This would govern the performance characteristics of the all-phone network
based approach. This is a fixed ‘value/offset’ added to the scaled LM score
during decoding. It was set by the —p option of ‘HVite’. That means the more
negative is the value of p the more is the score deduction up on a symbol
generation (passing through a token) by the decoder. Its effects on the
recognizer’s/word-spotter’s performance and the relevant explanations will be
dealt during system analysis and discussion in the chapter to follow.

3.6 Summary

This chapter has discussed the detailed system design for a speaker dependent
Bengali keyword spotter in unconstrained English speech. Two major
approaches, depending on the type of filler models and grammar networks have
been explained in detail. In the next chapter, the system will be evaluated and
analyzed. Results from various approaches in terms of filler modeling, grammar
networks, and number of filler models used etc will be compared and an optimal
design will be sought.

38

Chapter 4
System evaluations and analysis

This chapter deals with results obtained from evaluations of the word spotter
whose design has been explained in the previous chapter. Relevant discussions
have accompanied each analysis. Different approaches will be compared in terms
of system performance and possibility of utilizing advantages of different
methods into a single system will be explored. All evaluations have been done
under HTK v3.2.1 platform and same acoustic parameters as training phase were
used. Total 240 utterances were used. Half of them had one or more Bengali
keyword embedded in them while rest had none. Evaluation is NOT done on
number of utterances as each could have numbers of keywords and detecting
each of them is important. So, performance is reported relative to number of total
keywords. Total number of keywords embedded in 120 utterances was 144. Total
duration of test data was 0.3010 hrs or nearly 18 minutes. This will be used for
evaluating performance measure in terms of FA/KW/H. In all cases LM scale
factor will be addressed as ‘s” and word insertion penalty as ‘p’.

4.1 Evaluation of Approach 1

This approach used whole word based models for both keywords and fillers.
Details about this approach can be found in Chapter 4. Basically, the system was
evaluated using single Gaussian HMM based four filler models. Results obtained
from ‘one filler model” approach were compared and the effects of introducing
more number of mixtures in HMMs were also studied. It is important to note
that substitutions won’t be considered separately. ‘Substitutions” will be
considered as ‘Deletions’. This is an evaluation criterion that assumes if a
particular keyword is not ‘correctly spotted” i.e. confused with other keyword, it
is NO better than deletion. Although it’s just an assumption and can be modified
if required. Following sections discuss the performance depending on different
parameters and system configurations.

39

4.1.1 Effect of relative word insertion penalty

The value of ‘s” was fixed at 5.0 and the four different values of ‘p” were chosen.
The following table shows the performance. Total number of Bengali keywords
was 144.

Table 4 -1 Performance variation of Approach 1 depending on “p’

1Y Hits FAs Missed FA/KW/H | % Hit
500 52 27 92 0.62 36
50 131 3 13 0.069 90.97
0 130 4 14 0.092 90.27
-50 130 4 14 0.092 90.27
-500 61 0 83 0.00 42.11

In case, the value of p was not too high (like several hundreds) in magnitude, the
results did not seem to depend on p. It became evident after studying results for
p=50, 0 and -50. It was expected, as both fillers and keywords were whole word
based. But results could be unexpected as value of p chosen to arbitrarily on
either side of “zero’. Both for p=500 and p=-500, results were unacceptable. False
alarms is more in case of p=t500; this can be explained by the fact that the
keywords are of shorter duration than prototype fillers because a whole
utterance that might be containing many words was represented by only four
filler models. For the same reason, FA is dropped to zero when score deduction
due to word transition penalty (p=-500) became too high. Still results for p=500
and -500 not in accordance with theoretical expectations. Also, hit rate is too low.
Hence such values should be carefully avoided. A reasonable value ‘p=0" was
chosen for evaluating all other cases of this approach.

40

4.1.2 Effect of LM scale factor

The keywords were weighted five times than the fillers and the value of ‘p” was
set at ‘0’. Performance variations on varying ‘s’ is shown in Table 4-2

Table 4 -2 Results for varying LM scale factor

S Hits FAs Missed FA/KW/H | % Hit
1 130 4 14 0.11 90.27
131 4 13 0.09 90.97

10 132 5 12 0.11 91.66
20 133 15 11 0.34 92.36
25 133 22 11 0.50 92.36
30 133 36 11 0.83 92.36
35 135 51 9 1.17 93.75
40 138 72 6 1.66 95.83
50 138 133 6 3.06 95.38
100 138 1422 6 32.80 95.38

The table above clearly shows that increment of ‘s’ leads to increment in the
number of false alarms. But %hit is also improved. Reason is, as the scale factor
increases relative score difference with fillers increases, give a specific weight
ratio. Or, mathematically, let’s say given a KW: FL weight ratio of W: 1 and s=1
the LM score difference between a specific KW (keyword) and FL (filler) is D; i.e.

D= (LM_score_ KW) — (LM _score_FL) (1
But, when s=k,

D’=k. [(LM_score_KW) - (LM_score_FL)] (2)
Or, D’=k.D (3)

Or, relative score difference increased s times. So, this is to say for given weight
ratio, increase in s will lead to a situation where decoder will be more biased
toward keywords. And, hence increment in the %hit at the cost of high false
alarms. It is also to be noted that as increasing s increases the likelihood of KW
detection (explained above) so, tradeoff between FAs and %hit is reflected in the
table above.

41

Actually, every when there’s an increase in the %hit there will be an increase in
the FA rate. That is inevitable. It doesn’t matter which parameter variation is
leading to that. We always have to make a compromise!

After all the analysis, the optimal value of s was chosen to be 20, at which
95.83% hit was achieved with FA (false alarm) rate of 0.34. This would mean that
out of every three keywords appearing at the output one might be a false alarm.
Value of s will be kept fixed at this value for further analysis.

4.1.3 Effect of relative keyword weights

Keyword weights were also used to forcefully boost the likelihood of keywords
while decoding. All the keywords were set to have same weights. Similar thing
was applicable for the fillers. The ratio between KW weights and FL weights
(WK:WF) was varied and the tradeoff between hit and false alarm was studied.
The ratio was represented as K: 1 (i.e. Wt_KW: Wt_FL). Value of s was set at 20.
Following table shows the system performance variations upon varying K.

Table 4 -3 Results for variation of relative KW weights

K:1 Hits FAs Missed FA/KW/H | % Hit
1:1 130 4 14 0.092 90.27
2:1 131 8 13 0.184 90.97
5:1 133 15 11 0.34 92.36
6:1 134 38 10 0.876 93.05
7:1 136 51 8 1.17 94.44
8:1 137 67 7 1.54 95.25
10:1 139 130 5 2.99 96.52
11:1 139 180 5 4.15 97.22
12:1 140 234 4 5.40 97.22
13:1 141 305 3 7.03 97.92
14:1 141 413 3 9.52 97.92
15:1 141 535 3 12.34 97.92

Diagrammatic representations of Hits, FAs and Misses/Deletions with respect to
varying K are shown in Figure 4 -1 to Figure 4-3.

42

142 4
140

Variation of number of Hits

‘__FF,Q—Q—Q

138

/’—0—0"’-'

136

Vi

134

=~

152
130

-

number of times

128
126

124

12 567 8 10 111213 14 13

value of K

Figure 4 -1 Variation of number of hits with varying K

This finding is in accordance with the theoretical expectations. As value of K
increases the likelihood of keywords relatively increases giving a better hit rate.

Variation of number of FiAs

o B8 54 2
o o o o o O

number of tnes

el

o
!

12 5% B 78 10 11121314 15

VWalue of K

Figure 4 -2 Variation of number of FAs with varying K

This result is also in as expected. As can be seen in the Figure 4 — 2, there was an

exponential increase in the number of FAs for higher values of K.

43

Variation of number of D eleticns

16
14 L
g L
& 10 *\-\
> 8 N
= b
E e
< 2
I:I 1T 1T 1T 1T T T L L

12 56 7 81011 1213 14 15
value of K

Figure 4 — 3 Variation of number of Deletions with varying K

This is just a plot of ‘number of hits” deducted from total number of keywords
i.e. 144.

The tradeoff between FAs and Hits were studied by analyzing FA/KW/H and
percentage Hit. To reflect this, the ROC for the keyword spotter was drawn
which is shown in Figure 4 - 4.

ROC of the Keywoaord Spotter @ Using WWhale ward Filler/ B3 network
1':”:' T T T T T

—

90 .

Percentage Hit [%0ec)

2 4 = a 10 12
Mumber of false alarms/ kW Hour —---=

g5
]

Figure 4 — 4 ROC of the Bengali keyword spotter

44

It is to be noted that some data points of the ROC was a little bit manipulated for
a smother fit. Having analyzed the whole system and studying the ROC, finally
optimal keyword weight could be chosen to be 7. The optimal performance being
94.44% hits with a false alarm rate of 1.17 FA/KW/H which is close to 1.
Physically that means that each keyword at the out put is equally likely to be a
false alarm. Never the less, depending on applications any other design could be
chosen that gives a lower FA rate at the cost of lower %hit.

4.1.4 Overall performance of approach 1

Optimal design chosen for approach 1 is as follows. Single Gaussian HMMs,
Four filler models, LM scale factor s=20, word insertion penalty p=0, relative KW
weight ratio, K: 1=7:1. Overall performance with the optimal design is
%Hits=94.44 and corresponding FA/KW/H=1.17. The maximum %hit achieved by
the system was 97.92 %(~ 98%) with 7.03 FA/KW/H and the corresponding
relative keyword weight ratio was 13: 1.

4.1.5 Some other evaluation issues

Apart from all those discussed above some other evaluation issues were also
taken into consideration. The first one being number of filler models used. The
system was tested with one filler model trained with all non-keyword utterances.
But this did not made a large difference any way as it is sort of similar to using
four concatenated fillers. Ultimately, there would not be many differences in the
single filler model with each of the four concatenated filler as they don’t have
any specific speech reference. So, at the time of decoding sequence generated by
the concatenation of four fillers will be represented by repetitions of the single
tiller model. But this does not hamper the keyword part any way. FA rate also
remained same as the two kinds of fillers were sort of identical as already told.

Separate training for keywords and fillers did not show any significant
performance improvement. This might be due to insufficient training/testing
data. It could be left for further study using large databases.

Already the system had shown close to 100% performance (hits) using single

Gaussian HMMs. After using increased number of mixtures, no significant
improvement in the performance was observed. Rather using large number of

45

mixture Components (say, 16) with insufficient data (as the case here) had shown
to have degraded the system performance due to ‘over fitting’. Of course, it is
expected that with large training/testing data base, introduction of mixtures will
improve the system performance compared to single Gaussian. It that case
problem of over fitting also won't appear provided large enough database is
used for training. During evaluation, it has to be made sure that large enough
test database is used to ‘reflect’ the improvements in the performance due to
more ‘detailed acoustic models’ due to introduction of mixture components.

4.2 Evaluation of Approach 2

This approach used all-phone network. Details about this could be found in
chapter 3. Similar evaluation was also done for this approach like the previous
one. Similar assumptions were considered. Also, single Gaussians were used. As
this approach involves NO keyword weights as such so there should not be any
significant effect on the system performance for varying ‘s’. The value of ‘s” was
kept fixed at 5.0. The value of word insertion penalty ‘p’ was varied to
investigate the tradeoff between FA and correct hit.

4.2.1 Varying the value of LM scale factor

By doing this, as per assumption, NO effect on result was found. The Following
table shows that.

Table 4-4 Results obtained by varying the value of ‘s’

S Hits Missed FAs FA/KW/H | % Hit
25 138 6 47 1.08 95.83
5 138 6 46 1.06 95.83
0 138 6 46 1.06 95.83

4.2.2 Effect of word insertion penalty

The following table shows the results obtained from varying the word insertion

penalty.
Table 4 -5 Results obtained by varying ‘p’
p Hits Missed FA FA/KW/H | % Hit

30 127 17 4 0.09 88.19
20 134 10 19 0.43 93.04
10 138 6 31 0.71 95.83
5 138 6 39 0.90 95.83
0 138 6 46 1.06 95.83
-5 138 6 56 1.29 95.83
-10 138 6 64 1.47 95.83
-15 138 6 77 1.77 95.83
-20 139 5 90 2.07 96.52
-22 139 5 95 2.19 96.52
-24 139 5 102 2.35 96.52
-25 140 4 105 2.42 97.22
-26 140 4 110 2.53 97.22
-27 140 4 110 2.53 97.22
-28 140 4 112 2.58 97.22
-29 139 5 113 2.60 96.52
-30 139 5 113 2.60 96.52
-40 139 5 130 3.00 96.52
-60 140 4 170 3.92 97.22
-75 140 4 192 4.42 97.22
-90 141 3 193 4.45 97.92

Diagrammatic representations of Hits, FAs and Misses/Deletions with respect to
varying p are shown in Figure 4 -5 to Figure 4-7.

47

Variation of number of Hits

145

—_—
=
=]

1;
-
1

135
f —a—Hits
130 I

125

numibrer of imes

12':' rTTr T 11T TrTTrTTT T TTTTTTTTT
W50 -25 .. -4 60 -TS B0

Valuesofp

Figure 4 — 5 Variation of number of Hits with varying p

As can be seen in the Figure 4 -5, increasing p has led to increase in number of
hits but the variation characteristics is different from that of approach. The
analysis will follow in the next section.

Variations of number of Deletions

—_
oo
| 1%

L=
—
=
| —

l%ﬁ,k —dDeletion

ssss

number of im
oy o
[Y OV Y OO T I e Y ¥

W 50.. -25..-40 ..-60-T5-90
Valuesof p

Figure 4 — 6 Variation of number of Deletions with varying p

Like approach 1, in this case as well, it's just a characteristics obtained by
deducting the number of hits from total number of keywords.

48

Variations of FAs

tn
=

=
=

150
W"‘/ —+—FAs
100 ‘/’,

I:I rTrrrrrrrrrrTrTrTTrrTr1TTT

W 50.. -25 .. -4 .60 -T5 -90

number of imes

45]
=

Valuesofp

Figure 4 — 7 Variation of number of FAs with varying p

Number of false alarms variations, as can be seen, showed quite different
characteristics compared to previous approach. Here, a lesser ‘abrupt’ variations
was found. Also, variations range relative to %hit was less as well.

The system’s tradeoff between false alarms and correct hits was captured by the
ROC. But, this time the characteristic was sort of deviated from expected near 2.5
FA/KW/H and hence an approximated version is also presented in the Figure 4-8.
The reasons behind these kinds of deviations have been sought in the section to
follow.

98 T T T T T T T T

-
———
—
—
-

o7 -

= T Approximated
a5

Original

Wit | g, |

D2

91 F

g9 .

EB 1 1 1 1 1 1 1 1
] 0.5 1 1.4 2 25 3 3.5 4 4.5

Humber of False alarm= per keyword per hour —

Figure 4-8 ROC of the system using Approach 2

49

4.2.3 Performance analysis of approach 2

As the value of p becomes more and more negative, more is the “penalty” for each
symbol insertion at the output. In other words, score deducted for traversing
through each token (phonemes/whole keywords) is more. But, it is to be
remembered that equal scores are deducted, be it a phoneme token or a whole
word (keyword) token. So, a segment matched with keywords will have lesser
score deduction compared to that with phonemes. Because, phonemes are of
relatively lesser durations. So, representation of a segment by phonemes will
involve more symbol generation and hence more pruning. This is the reason
behind the fact that as pruning increases (more negative value for p) the out put
gets biased to output keywords (high score due to lesser pruning)instead of
sequence of phonemes (filler) . Thus False alarms also increase.

So, here word insertion penalty is effectively playing the role of keyword
weights in the previous case. But, it is to be noted that the variations are not
similar. FAs don’t vary in the same as they did for increasing keyword weights.
Here some times FAs might remain constant with increasing insertion penalty or
some times might even decrease when value of p is in a higher range. Same can
be said about hits. The reason is ‘Substitutions” were considered to be ‘deletions’.
Now, while a high value of pruning (more negative p) is used then out put even
gets biased to ‘longer’ duration keywords. This leads to substitution which is
considered here as an effective deletion. For the case of false alarms as well,
instead of more and more insertions the output gets mapped to fewer numbers
of ling duration words like ‘Bramhaputra’. This was exactly found to happen
practically. This explains all the performance characteristics found above and
their deviation from what was ideally expected.

4.2.4 Overall performance of approach 2

Approach 2 had been found to out perform approach 1 in terms of trade off
between FAs and %hit. The system showed a maximum hit rate of
97.92 %(~98%) with 4.45 FA/KW/H with value of p=-90. This is way better than
sane hit rate with 7.03 FA/KW/H obtained in approach 1. Also, optimal
performance of 95.83% (~96%) of hit with 0.71 FA/KW/H is better than 94.44% hit
with 1.17 FA/KW/H of approach 1.

50

4.3 Improving the system performance

Although the performance of approach 2 was found to be better than that of
approachl but there was a problem with longer duration words in case of
approach 2. To get rid of this, approach 1 was merged with approach 2 to take
advantage of KW weighting to solve that problem. As it was found that longer
duration words like ‘Bramhaputra’ tends to substitute / Generate FA so, the
word was weighted relatively less compared to all others in a similar way as in
approach 1. This weighted keyword sub network was used with all-phone
network of approach 2. The combined approach, with word Bramhaputra
weighted less than other keywords, but all keywords being more weighted
(relatively) then phonemes in all phone network gave a very high %hit of
98.61(~99%) hit rate but at the cost of 11.30 FA/KW/H !

Several other ways could also be tried for a better system performance. Since the
word spotter is speaker dependent, the %hit is already close to 100 %. But for a
more complicated case detailed model (mixture Gaussian) for keywords could be
used to reduce number of misses. Amount of false alarms should also be
reduced. A better filler model could serve the purpose. Multiple mixture
Gaussians would be a very good choice. But as here, the test database is not too
large so performance improvement could not be reflected. Also, several other
confidence measures could be used to improve the performance in terms of false
alarms. Those were left for future works and will be dealt in next chapter.

4.4 Summary

This chapter has analyzed two major approaches used to develop a Speaker
dependent Bengali keyword spotter in unconstrained English speech. The
methods were compared in terms of several respects. Optimal choice of
parameters with an acceptable FA rate was chosen. Percentage hit was close to
100% even though substitutions were considered as deletions. Depending on
applications substitutions can also be considered as a putative hit. Thus system
performance might even better. Results are ‘good” for speaker dependent case as
far as %hit is concerned. Several methods to reduce FAs for even a better system
design will be discussed in future works section of next chapter.

51

Chapter 5

Conclusions & future works

With the advent of high speed data processing devices, spoken language
interfaces with advanced speech recognition algorithms becoming more
practicable. The speaker dependent Bengali keyword spotter could be used as a
preliminary module for an English-Bengali bi-lingual interface.

5.1 Conclusions

The system was carefully designed using two different approaches. Approach
one gave an optimal performance 94.44% hit at an FA rate of 1.17 FA/KW/H.
Similar performances were obtained while using one and four concatenated filler
models. Single Gaussians worked well. Multiple Gaussians were also used. Due
to unavailability of a large Bengali database, keyword models with many
mixture components showed a problem of over fitting. Relative keyword
weights were used. They were varied to study their effect on system
performance. The %hit increases as keyword weights increases but numbers of
false alarms were also found to increase. Similar results were found when the
language model scale factor was varied. It was found to be a good idea to set the
word insertion penalty at ‘0" for this approach. Overall system performance was
satisfactory (above 90% hit) with very low FA rate (0.092 FA/KW/H).

Approach two had all phoneme models for English extraneous speech. It used an
all phone network to implement the filler part. Same whole word based keyword
models were used in parallel. Performance was found to be better than approach
one. It achieved a maximum hit rate of 97.92% with 4.45 FA/KW/H. An optimal
performance was chosen. It had 95.83% hit with just 0.71 FA/KW/H. It was found
that relative word transition penalty should be kept at a reasonable value.
Otherwise, some unpredictable results might come up. Long duration words
seemed to create problems while decoding using high word insertion penalty. A
hybrid approach was attempted to assign lesser priority to the long duration
words by relative word weighting and that, used with all phone network gave a
high %hit as high as ~99%. Never the less, it is firmed believed that several post
processing techniques can improve performance in terms of FAs. Use of
Gaussian mixtures densities will also be useful for large training/test database
systems. This concludes the design and analysis of a ‘Speaker dependent Bengali
Keyword spotting system in unconstrained English speech.’

52

5.2 Future works

There are ample lot of things that can be done to improve the system and making
it even more efficient. Most important thing is to note that NO database for
Bengali available. It was rather created by few hundred utterances from a single
speaker. Therefore, a lot of compromise had to be done regarding the system
design. Further works using appropriate testing and training databases will
definitely lead to a better and speaker independent Bengali word-spotter. Some
discussion follows.

5.2.1 Speaker independent system design

The system designed in this project is a Speaker dependent one. This is basically
due to unavailability of training data representing a wide class of Bengali
speaker. The same system can be further trained with a large Bengali database.
This is supposed to give keyword models optimized for a ‘specific Bengali word’
and independent of speaker uttering it. So, this kind of Speaker independent
Bengali keyword spotter will be more useful for bi-lingual systems to be
discussed soon.

5.2.2 Post processing & confidence measure

The results from already existing system can be fed to a post processing module
to reduce false alarms and improve system performance. Number of confidence
measure schemes can be used for this purpose. N-best out put can be used to
make a ‘better choice’ and avoid false alarms (FAs).Duration normalized
rescoring and likelihood ratio scoring (Rose and Paul, 1990) be used to use
duration information to remove false alarms. Discriminative technique like
support vector machines (SVM) can also be used to generate confidence measure
for implementing a better rejection strategy.

5.2.3 English-Bengali bi-lingual interface

A speaker independent language specific keyword spotter can be used to find
‘language boundary information” in a bi-lingual system which is very crucial for
any multilingual system. So, the existing word spotter can be very useful if it is
upgraded to a speaker independent system and provided with a larger keyword
vocabulary. Finally, all of these and beyond are left for “future works’ to explore.

53

References

[1] R. Rose and D. Paul, "A Hidden Markov Model Based Key- word Recognition
System," 1990 IEEE ICASSP, pp. 129- 132

[2] J.G. Wilpon, L.R. Rabiner, C.H. Lee, and E.R. Goldman, "Automatic
Recognition of Keywords in Unconstrained Speech Using Hidden Markov
Models," 1990 IEEE Trans. ASSP, Vo138. No. 11, pp. 1870-1878.

[3] R. Rohlicek, W. Russell, S. Roukos, H. Gish, "Continuous Hidden Markov
Modeling for Speaker-Independent Word Spotting," 1989 IEEE ICASSP, pp. 627-
630

[4] Lam Hiu Sing, “ Audio search of surveillance data using keyword spotting
and dynamic models,” M.Phil thesis , the Chinese University of Hong Kong, 2001.

[6] K. Ohtsuki et al “Topic extraction with multiple topic-words in broadcast-
news search,” Proceedings of ICASSP, Vol 1,pp 329-332

[6] Peter Schwartz et al “Phoneme based acoustic keyword spotting in
informal continuous speech,” Faculty of Technology, Brno University, Czech
Republic.

[7] S.] Young et al” Video Mail Retrieval”, Cambridge University Engineering
Department, Cambridge, UK.

[8] Bridle,]J.S., “An efficient elastic-template method for detecting given words
in running speech,” Proc. of the Brit. Acoust.Soc. Meeting, pp. 1-4, April 1973.

[9] Mitch Weintraub et al “Neural network based measure of confidence for
word recognition,” Speech Technology and research laboratory, SRI international
Menlo Park ,CA.

[10] Higgins, A. L., Wohlford, Robert E., "Keyword Recognition
UsingTemplateConcatenation,"ICASSP'1985, 3: 1233-1236, 1985

[11] J. G. Wilpon, C.-H. Lee, and L. R. Rabiner, " Application of Hidden Markov

Models for recognition of a limited set of word in unconstrained speech", in
Proceedings of 1989 ICASSP, Glasgow, April 1989, IEEE, vol. I, pp. 254--257.

54

[12] Joe Drish et all, “ A support vector machine based rejection technique for
speech recognition,” Department of Computer Science, University of California,
San Diego, CA.

[13] Silaghi, M.-C. and Bourlard H., “Posterior-Based Keyword Spotting
Approaches Without Filler Models,” Swiss Federal Institute of Technology
Lausanne (EPFL), Technical Report,1999.

[14] L. R. Rabiner, A tutorial on Hidden Markov Models and selected
applications in speech recognition", Proceedings of the IEEE, vol. 77, no. 2, pp. 257-
-286, February 1989.

[15] Lleida, J. B. Marifio, and A. Moreno, Telemaco - a real time keyword

spotting application for voice dialing", in Proceedings of EUROSPEECH'93, Berlin,
September 1993, vol. I1I, pp. 1801--1804.

55

Bibliography

“

1. “Automatic Speech Recognition”, Spring 2003. Instructor Prof. Jim Glass.
MIT Open Courseware”. MIT. Cambrigde,Massachussets. USA.

2. ” Digital Processing of Speech signal”, Spring 2005, Instructor Prof. Tan Lee.
Department of EE, the Chinese University of Hong Kong. Hong Kong.

3. “Spoken Language Processing”. Xuedong Huang, Alex Acero, Hsiao-wuen
Hon., Microsoft Research. Prentice Hall. New Jersey,2001.

4. “Robustness in Automatic Speech Recognition”, Jean-Claude Junqua, Jean-
Paul Haton, CRIN-INRIA, France. Kluwer Academic Publishers.

5. “The HTK book.” Steve Young et al , Cambridge University. Cambridge, UK.

56

