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ABSTRACT

Endotracheal intubation (ETI) is a very crucial medical procedure
performed on critically ill patients. It involves insertion of a breath-
ing tube into the trachea i.e. the windpipe connecting the larynx and
the lungs. Often, this procedure is performed by the paramedics (aka
providers) under challenging prehospital settings e.g. roadside, am-
bulances or helicopters. Successful intubations could be lifesaving,
whereas, failed intubation could potentially be fatal. Under prehos-
pital environments, ETI success rates among the paramedics are sur-
prisingly low and this necessitates better training and performance
evaluation of ETI skills. Currently, few objective metrics exist to
quantify the differences in ETI techniques between providers of var-
ious skill levels. In this pilot study, we develop a quantitative frame-
work for discriminating the kinematic characteristics of providers
with different experience levels. The system utilizes statistical anal-
ysis on spatio-temporal multimodal features extracted from optical
motion capture, accelerometers and electromyography (EMG) sen-
sors. Our experiments involved three individuals performing intu-
bations on a dummy, each with different levels of expertise. Quan-
titative performance analysis on multimodal features revealed dis-
tinctive differences among different skill levels. In future work, the
feedback from these analysis could potentially be harnessed towards
enhancing ETI training.

Index Terms— Multimodal feature analysis, 3D landmark
shape, EMG, endotracheal intubation, emergency medicine

1. INTRODUCTION

Endotracheal intubation (ETI), or insertion of a breathing tube into
the trachea (the windpipe connecting the larynx and the lungs), is a
very crucial life-saving procedure performed on critically ill patients
under emergency settings [1]. Successful intubations provide an un-
obstructed airway to the lungs of the patients under trauma and/or
severe injuries who are unable to breathe otherwise. Most often, this
procedure is performed by the paramedics under challenging pre-
hospital settings and very critical time constraints. In those situa-
tions, the timing and outcome of intubation attempts can be the de-
ciding factor between life and death. Unsuccessful intubation and/or
a delay in performing the task can often lead to fatal consequences.
Given its critical importance, it is quite surprising and alarming that
the success rate of ETI among paramedics in the US is as low as
45% [2, 3, 4]. Thus it is it is of utmost importance to efficiently train
and evaluate the task performances of the paramedics providing this
crucial emergency service.

Endotracheal intubation is performed with the help of a laryn-
goscope, an instrument with a curved blade for visualization of the
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glottis i.e. the front door to the trachea. During intubation, the
paramedics insert the laryngoscope into the mouth for a direct vi-
sualization of the glottis before inserting the breathing tube into it.
This is a very crucial step and delicate maneuvers with the laryngo-
scope is necessary for a successful intubation. Few objective metrics
exist to quantify the differences in ETI techniques between providers
of various skill levels. Current evaluation schemes including binary
success/failure methods [5] or video laryngoscopy based analysis [6]
are inadequate for providing impactful feedback towards training as
well as lack the ability to objectively track the learning curve of a in-
tubation trainee. In this pilot study, we develop a quantitative frame-
work for discriminating the kinematic characteristics of providers
with different experience levels. The system utilizes statistical anal-
ysis on spatio-temporal multimodal features extracted from optical
motion capture, accelerometers and electromyography (EMG) sen-
sors while the providers attempted to intubate a dummy. It is to be
noted that motion capture has previously been used for evaluating
medical procedures e.g. ocular [7] and laparoscopic surgery [8].

Motion capture enabled us to track the 3D movements of the
provider’s upper body, the dummy and the laryngoscope simulta-
neously. We parameterized the dynamics of arm/head movements
w.r.t the dummy using a piece-wise stationary 3D landmark shape
deformation model (see Sec. 2.1.1 for details). The basic idea is
to capture the distinctive pattern of motor movements during intu-
bation as a sequence of deforming landmark shapes [9, 10]. Our
analysis was motivated by the fact that different skill levels would
be reflected in the temporal movement patterns and thus leading to
discriminative shape dynamical parameters. Apart from shape defor-
mation features, we also computed spatio-temporal features from the
EMG and accelerometer sensors placed at the wrist and biceps of the
providers. These include DC level, power/energy, spectral entropy
and cross-correlation [11]. Several features were also extracted from
the 3D orientation profile of the laryngoscope during ETI.

Our experiments involved three individuals; each with differ-
ent levels of expertise, performing multiple trials of ETI. Quantita-
tive performance analysis on multimodal features revealed distinc-
tive differences among different skill levels. Further work in this
direction might have useful impact on more objective evaluation and
training of ETI as well as any other job-coaching application involv-
ing skillful motor movements.

2. METHODS

In this section, we first discuss our multi-sensor system setup and
then move on to discuss the feature computation frameworks.

2.1. System Description

The intubations were performed on a mannequin (i.e. dummy) using
a laryngoscope as shown in Fig. 1. The laryngoscope was equipped



Fig. 1. This figure demonstrates the experimental setup. The
providers are fitted with reflective markers (white spheres) as well
as EMG/accelerometer sensors while they performed intubation on
a dummy. The 3D marker trajectories of all the markers were tracked
during the entire procedure (one frame is shown on the right).

with a video camera that enabled us to verify the successful place-
ment of the breathing tube. For motion capture, we used a Vicon [12]
system with 16 near-infrared cameras. Each capable of recording 4
megapixel resolution images at 120 Hz. A total of 50 retro-reflective
markers were placed on the upper body of the subjects, another 18
were placed on the dummy and 3 were placed on the laryngoscope
handle. Motion capture facilitated highly accurate tracking of the
3D trajectories corresponding to all the markers during intubation.
This enabled us to accurately record the movements of the body,
arms and head of the subjects, 3D orientation of the laryngoscope
and their movements w.r.t the dummy. We also placed EMG sensors
at various muscle locations of the arms in order to track the spatio-
temporal muscle activation patterns during intubation. Each of these
sensors were also equipped with a triaxial accelerometer that could
record abrupt motion variations/jerks associated with the arms. All
EMG/accelerometer time-series data were transmitted wirelessly to
a hub and they were synchronized with the motion capture data for
joint multimodal feature analysis.

2.2. Multimodal Feature Extraction

First, we discuss the 3D landmark shape deformation framework
to model the temporal dynamics associated with the movements of
arm/head of the subjects w.r.t the dummy. Then we explain the
feature extraction techniques for laryngoscope orientation variation
profile as well as EMG/accelerometer data. All these features were
computed over overlapping temporal windows during ETI. The in-
tubation time interval is defined from the instant the laryngoscope is
inserted into the mouth to the instant when it is removed following
the placement of the tube.

2.2.1. 3D Landmark Shape Deformation Model

A 3D landmark shape is represented by an ordered set of points (aka
landmarks) in the 3-dimensional space [9]. Thus, a k-dimensional
landmark shape is represented by a k× 3 matrix with each row con-
taining the x,y,z coordinates of the corresponding point. In our case,
the markers are treated as landmark points. At each instant, we repre-
sent the collective 3D locations of the head and the left arm1 together
with the dummy’s mouth as a 8-dimensional 3D landmark shape as
shown in Fig. 2. Now, temporal movement patterns associated with
the head and left arm w.r.t the dummy’s mouth can be modeled as a
deforming landmark shape sequence (see Fig. 2). The corresponding

1The left arm performs crucial maneuvers with the laryngoscope and its
dynamics is of particular interest to us.

Fig. 2. This figure demonstrates how we represent the temporal
movement patterns of left arm/head w.r.t the dummy’s mouth as a
sequence of deforming 3D landmark shapes.

feature vector is computed as the parameters of shape deformation
dynamics over the window. Our goal is to capture the distinctive pat-
tern of motor movements associated with different ETI skill levels in
terms of the shape dynamical parameters.

For modeling the shape deformations, we use a piece-wise sta-
tionary shape activity (PSSA) model. This is similar in spirit to Non-
stationary Shape Activity or NSSA model (see [10] for details). The
difference is, in PSSA, we define a single procrustes mean shape,
µ [9], over the temporal window and model the shape deformation
dynamics w.r.t it (see Fig. 2). In other words, we consider a sta-
tionary shape sequence within each window, and hence the name
piecewise stationary model. This is unlike NSSA, where the mean
shape changes at each time instant [10]. The PSSA shape deforma-
tion feature computation framework goes as follows.

Say, we haveN time frames in the temporal window. The corre-
sponding locations of the subject’s head, left arm and the dummy’s
mouth is represented by the sequence {St}Nt=1 : St ∈ R8×3 (see
Fig. 2). As shown in [9], we compute the procrustes mean shape µ
from {St} and define a tangent space U w.r.t µ in the shape space.
The columns of U contain the orthonormal basis set that spans the
tangent space. Now at each t, St is scale, translation and rotation
normalized w.r.t. µ to compute the landmark shape zt aligned to the
local mean shape (details in [9, 10]). The relative shape deformation
w.r.t. the mean shape i.e. zt − µ is then projected to the tangent
space to compute vt. The temporal shape deformation characteristic
over the window is modeled by learning the parameters governing
the time evolution of vt i.e. we fit parametric time series model to
{vt}Nt=1. The time-series parameters gives the feature vector over
the current window. This process is repeated for each temporal win-
dow. The entire procedure is summarized in Algorithm 1.

2.3. Other Features

For a successful intubation, it is crucial to perform the right ma-
neuvers with the laryngoscope. Hence, we compute several features
associated with the orientation variations of the laryngoscope dur-
ing ETI. These are computed from the 3D trajectories of the markers
placed on the laryngoscope. One such feature is the laryngoscopic
plane (LP) feature. We denote it as LP (θt) which is defined as:
LP (θt) =

√
θ2x + θ2y + θ2z where θx, θy, θz are the angles at time

t, made by the normal to plane formed by the three markers placed
on the laryngoscope (front, side and back of the handle). The tem-
poral variations of LP (θt) can be used to characterize various steps
in the intubation process. A typical profile of LP (θt) is plotted for a
single intubation attempt in Fig. 3. Notice that the ETI time interval



Algorithm 1 Computation of Shape Deformation Features
Input: {St}Nt=1 : St ∈ Rk×3 (landmark configurations, k = 8)
Output: 3D landmark shape deformation parameters

First, compute the mean shape µ = µ(S1, ..., SN ) and the tangent
space basis set U = U(µ) as shown in [9, 10]. Then do:

1. For each t, compute zt = wtUVT where, VΛUT =
SVD(µTwt). The term SVD means singular value decom-
position and wt is the scale-translation normalized version of
St [9]

2. For each t, compute tangent space projection of shape devia-
tion vt(zt, µ) = [I3k−vec(µ)vec(µ)T ]vec(zt). Here, vec()
denotes vectorization operation. I denotes identity matrix.

3. Compute tangent space projection coefficients {ct}Nt=1 from
{vt}Nt=1 as ct = UT vt

4. Compute B by performing Principal Component Analysis or
PCA on {ct}Nt=1 and then compute {pt}Nt=1 with pt = BT ct
where pt ∈ Rd, d << N and columns of B contains top d
eigen vectors of the covariance matrix of {ct} [13]

5. Learn AR(1) model [A Σ] with pt = Apt−1 + nt, nt ∼
N (0,Σ) from {pt}Nt=1 whereN (0,Σ) denotes a multivariate
normal distribution with mean 0 and covariance matrix Σ.

6. Output feature vectors as: Diag(Σ) = [σ2
1 , σ

2
2 . . . , σ

2
d]T

can be split into four distinct zones: A, B, C and D. The temporal
information of these four zones would be used to localize the dis-
criminative features so that the training procedure can focus more
on the corresponding step. Other features include the mean and vari-
ance of LP angular speed ∝ LP (θt) − LP (θt−1), spectral entropy
of LP (θt) and mean/variances associated with vertical movements
of the LP.

The features for EMG and accelerometer data were only com-
puted at the wrist and biceps locations. These features, computed
over the temporal windows for each location, include : mean (DC)
level, power and spectral entropy [11]. We also computed the tem-
poral cross-correlation between EMG muscle activation signals from
the biceps and the wrist (left arm). We hypothesize that the key
motor movements associated with different skill levels will leave
some signature on the corresponding spatio-temporal muscle acti-
vation patterns. In the next section, we demonstrate visual as well as
quantitative comparisons of the multimodal features across individ-
uals with different skill levels in ETI.

3. EXPERIMENTS AND FEATURE ANALYSIS RESULTS

Our experiments involved three subjects with different levels of ex-
periences in ETI - one experienced (attending physician), one inter-
mediate (resident in Emergency Medicine) and one novice provider
(with no previous ETI experience; went through a quick training ses-
sion prior to the experiments). Each performed four ETI attempts on
a dummy. All twelve trials were successful as reviewed by the laryn-
goscope video. The mean durations of ETI attempt (std. deviation)
in seconds were 5.50 (0.68) for the experienced, 6.32 (1.13) for the
intermediate and 12.38 (1.06) for the novice provider.

Next, we compared the temporal variation characteristics of the
shape deformation features (Sec. 2.1.1) over all the trials across the
three subjects. The profile of σ2

1 over all the trials is compared for the

Fig. 3. Various time zones during ETI. The first down sloping por-
tion of the curve corresponds to the laryngoscope entering the mouth
(A). The upslope corresponds to obtaining the view of the vocal
cords (B). The plateau corresponds to holding the view constant
while placing the breathing tube (C). The final downslope represents
removal of the laryngoscope after successfully placing the tube (D).
The red arrows indicate laryngoscope orentation.

experienced, intermediate and the novice in Fig. 4a. It can be clearly
seen that the repetitive pattern occurring at the end of zone C for the
experienced reduces in amplitude for the intermediate and finally di-
minishes in case of the novice. Similar variation profiles were also
observed for other components of Σ. This signifies a key maneuver
at the time of tube placement (zone C terminus) predominantly as-
sociated with the experienced provider. In Fig. 4b, we compare the
cross-correlation feature between EMG signals from the left wrist
and biceps. The novice clearly has more zero crossings which can be
attributed to the frequent changes in untrained spurious arm move-
ment patterns. We also compared the variance profiles of LP angular
speed (Sec. 2.3) in Fig. 4c. The modes of the curve corresponds to
small back and forth movements with the laryngoscope. More the
number of modes, more is the extent of redundant movements. The
experienced is found to have the least of these movements whereas,
the novice has been found to have the most. Next, we also compared
the muscle activation patterns using EMG signals from the left wrist
as well as the inter-trial variability of the laryngoscopic orientation
profile i.e. LP (θt) (see Fig. 5). The relative quantitative compar-
isons across various features are shown in Fig. 6. It is to be noted
that we omit the discussion of features that did not have significant
discrimination across skill levels (e.g. accelerometer features).

Finally, we performed PCA on the multimodal feature space
(see Fig. 7a) and computed the distance D(.) among the cluster
centers corresponding to different subjects in a 3-dimensional sub-
space. It was found to be: D(Experienced, Intermediate) = 12.40,
D(Experienced, Novice) = 151.67 and D(Intermediate, Novice) =
150. Further, in order to compare the discriminative aspects of the
features over various zones of ETI, we performed a k-means (k =
10) clustering over all the feature data points and represented various
zones as a histogram of associated cluster centers. The comparison
results indicate that zone A and B are the most discriminative across
skill levels (i.e. the maneuvers starting from laryngoscope insertion
and glottis visualization). The histogram representation for zone A
and B is shown in Fig. 7b. Observe the similarity of representations
for the experienced the intermediate provider.

In conclusion, the quantitative performance analysis on multi-
modal features revealed distinctive differences among different skill
levels. We were also able to localize some of the differences across
various zone of ETI. The feedback from these analysis could be used
for more objective performance evaluation as well as improving ETI
training.



a) Shape deformation feature b) Cross-Correlation feature (EMG) c) Variance of LP angular speed

Fig. 4. Fig. a compares σ2
1 variation profile across subjects (the four trials are cascaded together, window length 240, slide length 20). Notice

that the distinctive repetitive patterns associated with the experienced provider. Fig. b and Fig. c compares the EMG cross-correlation of
wrist-biceps and variance profile of LP angular speed respectively. The significance of these discriminative patterns are discussed in Sec. 3

Fig. 5. Inter-trial variability of LP (θt) profile. Multiple trials of a
subject were aligned using generalized time warping or GTW [14]

Fig. 6. Relative quantitative comparisons across various features av-
eraged over all trials. LP variability means inter-trial variability of
LP (θt) profile. Max σ2

1 is computed as the peak amplitude of tem-
poral variation of shape deformation parameters. Corr change de-
noted the number of zero-crossings in the EMG cross-correlation
profile. VAS means the number of modes associated with the vari-
ance profile of LP angular speed.
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