Numerical Methods within the Ant Colony: The **Illuminating** Case of Multi-Objective Macronutrient Regulation in Eusocial Insects

Theodore (Ted) P. Pavlic
tpavlic@asu.edu

Stephen C. Pratt
Stephen.Pratt@asu.edu

Sunday, October 12, 2014, 3:50 – 4:10

Colony-level Macronutrient Regulation
(Dussutour and Simpson 2009)

Nutrient Regulation
Colony Regulation
Quantifying Behavior
Insights
Algorithm
Conclusions

(250 ants)

Feeder 1
(high protein)

Feeder 2
(high carbohydrate)

1p:3c

2p:1c
Colony-level Macronutrient Regulation
(Dussutour and Simpson 2009)

Nutrient Regulation
Colony Regulation
Quantifying Behavior
Insights
Algorithm
Conclusions

(250 ants)

Feeder 1
(2p:1c)

Feeder 2
(1p:3c)

Protein (mg/ant)
Carbohydrates (mg/ant)

12.5
10
2
1

Feeder 1
[2p:1c]

Feeder 2
[1p:3c]
Colony-level Macronutrient Regulation
(Dussutour and Simpson 2009)

Nutrient Regulation
Colony Regulation
Quantifying Behavior
Insights
Algorithm
Conclusions

Feeder 2
(high carbohydrate)

Feeder 1
(high protein)

Mixture without Larvae
[10p:12.5c]

Mixture with Larvae
[10p:8c]

1p:3c
(250 ants)
(100 larvae)

BDA 2014
Theodore P. Pavlic and Stephen C. Pratt
Colony-level Macronutrient Regulation
(Dussutour and Simpson 2009)

Nutrient Regulation
Colony Regulation
Quantifying Behavior
Insights
Algorithm
Conclusions

(250 ants)

(100 larvae)

Feeder 2
(high carbohydrate)

Feeder 1
(high protein)

Mixture with Larvae
[10p:12c]

Mixture with Larvae
[10p:8c]

Mixture without Larvae
[10p:12c]
Colonies-level Macronutrient Regulation

(Dussutour and Simpson 2009)

Nutrient Regulation

Colony Regulation

Quantifying Behavior

Insights

Algorithm

Conclusions

Ultimate cause is clear, but what is the mechanism/implementation?
Colony-level Macronutrient Regulation
Mathematics of Allocation

Nutrient Regulation
Colony Regulation
Quantifying Behavior
Insights
Algorithm
Conclusions

![Graph showing protein and carbohydrate consumption]

- Feeder 1 (2p:1c)
- Feeder 2 (1p:3c)

0.58 g
0.45 g

Protein (mg/ant)
Carbohydrates (mg/ant)
Colony-level Macronutrient Regulation
Mathematics of Allocation

Nutrient Regulation
Colony Regulation
Quantifying Behavior
Insights
Algorithm
Conclusions

Protein (mg/ant)
Carbohydrates (mg/ant)

0 0.2 0.4 0.6 0.8
0 0.2 0.4 0.6 0.8

Feeder 1 [2p:1c]
Feeder 2 [1p:3c]

0.58 g protein
0.45 g carbohydrates

x1
x2

Feeder 1 [2p:1c] (ants)
Feeder 2 [1p:3c] (ants)

0 2 4 6 8
0 2 4 6 8

0.58 g protein
0.45 g carbohydrates

Theodore P. Pavlic and Stephen C. Pratt
Colony-level Macronutrient Regulation
Mathematics of Allocation

- Nutrient Regulation
- Colony Regulation
- Quantifying Behavior
- Insights
- Algorithm
- Conclusions

\[
\begin{align*}
\frac{a_{p1} x_1^* + a_{p2} x_2^*}{a_{c1} x_1^* + a_{c2} x_2^*} &= c_p \\
0.58 g &= a_{p1} x_1^* + a_{p2} x_2^* \\
0.45 g &= a_{c1} x_1^* + a_{c2} x_2^*
\end{align*}
\]
Colony-level Macronutrient Regulation
Mathematics of Allocation

\[
\begin{align*}
\mathbf{A} \mathbf{x}^* &= \mathbf{c} \\
\begin{cases}
 a_{p1} x_1^* + a_{p2} x_2^* &= c_p \\
 a_{c1} x_1^* + a_{c2} x_2^* &= c_c
\end{cases}
\end{align*}
\]
Colony-level Macronutrient Regulation

Mathematics of Allocation

\[\begin{align*}
 a_{p1}x_1^* + a_{p2}x_2^* &= c_p \\
 a_{c1}x_1^* + a_{c2}x_2^* &= c_c
\end{align*} \]

\[\vec{x}^* = A^{-1} \vec{c} \quad \text{– Ants are doing } \text{decentralized} \text{ matrix inversion?} \]
In natural settings, there are more feeders than vital nutrients.
Colony-level Macronutrient Regulation
Mathematics of Allocation

\[
\begin{align*}
\begin{cases}
 a_{11} x_1^* + \cdots + a_{1n} x_n^* &= c_1 \\
 \vdots \\
 a_{m1} x_1^* + \cdots + a_{mn} x_n^* &= c_m \\
\end{cases}
\iff
A_{m \times n} \bar{x}^* = \vec{c}_m
\end{align*}
\]

Solutions may not exist.
Colony-level Macronutrient Regulation

Mathematics of Allocation

Nutrient Regulation
Colony Regulation
Quantifying Behavior
Insights
Algorithm
Conclusions

Continuum of solutions! Which solution is best?
Do ants have a pseudoinverse?
Colony-level Macronutrient Regulation
Mathematics of Allocation

minimize \(F(\vec{x}) \)
subject to \(A_{m \times n} \vec{x} \geq \vec{c}_m \)

minimal effort example:
\[
F(\vec{x}) \triangleq x_1 + \cdots + x_n
\]

Alternative model: Optimization under constraints
Solutions exist and are unique!
minimize $F(\vec{x})$
subject to $A_{m \times n} \vec{x} \geq \vec{c}_m$

minimal effort example:
$F(\vec{x}) \triangleq x_1 + \cdots + x_n$

Alternative model: **Optimization under constraints**
Decentralized solver implementable on ants?
minimize $F(\vec{x})$
subject to $A_{m \times n}\vec{x} \geq \vec{c}_m$

“minimal effort:” $F(\vec{x}) \triangleq x_1 + \cdots + x_n$
minimize $F(\vec{x})$

subject to $A_{m \times n} \vec{x} \geq \vec{c}_m$

“minimal effort:” $F(\vec{x}) \triangleq x_1 + \cdots + x_n$
minimize $F(\vec{x})$
subject to $A_{m \times n} \vec{x} \geq \vec{c}_m$

"minimal effort:"
$F(\vec{x}) \triangleq x_1 + \cdots + x_n$
minimize $F(\vec{x})$
subject to $A_{m \times n} \vec{x} \geq \vec{c}_m$

"minimal effort:"

$F(\vec{x}) \triangleq x_1 + \cdots + x_n$
Existing IFD-inspired dynamic resource allocation strategies in engineering

- AAV cooperative control (Finke and Passino 2007; Moore et al. 2009)
- Water distribution (Ramirez-Llanos and Quijano 2010)
- Temperature control (Pantoja et al. 2011)
Algorithmic Insights

Social Foraging – Ideal Free Distribution (Fretwell and Lucas 1969; Fretwell 1972)

Nutrient Regulation

Insights

Lighting

Social Foraging

Algorithm

Conclusions

$x_1 = 3$

$x_2 = 2$

$x_3 = 5$

$s_i(x_i)$

minimize $\max\{s_i(x_i)\}$

subject to $x_1 + \cdots + x_n = N$

$s_1(x_1^*) \approx s_2(x_2^*) \approx s_3(x_3^*)$
Algorithmic Insights

Social Foraging – Ideal Free Distribution (Fretwell and Lucas 1969; Fretwell 1972)

Nutrient Regulation
Insights
Lighting
Social Foraging
Algorithm
Conclusions

\[
x_1 = 3 \\
x_2 = 2 \\
x_3 = 5
\]

\[
s_i(x_i) \\
\minimize \sum \int_0^{x_i} \frac{1}{s_i(\tau)} d\tau
\]

subject to \(x_1 + \cdots + x_n \geq N \)

BDA 2014 Theodore P. Pavlic and Stephen C. Pratt
Algorithmic Insights

Social Foraging – Ideal Free Distribution (Fretwell and Lucas 1969; Fretwell 1972)

Nutrient Regulation

Insights

Lighting

Social Foraging

Algorithm

Conclusions

\[
\begin{align*}
 x_1 &= 3 \\
 x_2 &= 2 \\
 x_3 &= 5 \\

 s_i(x_i) \\

 x_1 + x_2 + x_3 &= N \\
 s_1(x_1^*) &\approx s_2(x_2^*) &\approx s_3(x_3^*) \\

 \text{minimize} \quad F(\bar{x}) \\
 \text{subject to} \quad a_1 x_1 + \cdots + a_n x_n \geq c
\end{align*}
\]
MultiIFD discrete-time realization with speed–accuracy tradeoff parameter δ:

A violation of constraint $j \in \{1, 2, \ldots, m\}$ induces marginal IFD:

$$\bar{x}_{\text{next}} - \bar{x}_{\text{prev}} \propto \left[\frac{a_{j1}}{\nabla_1 F(x)}, \frac{a_{j2}}{\nabla_2 F(x)}, \ldots, \frac{a_{jn}}{\nabla_n F(x)} \right]^T.$$
MultiIFD discrete-time realization with speed–accuracy tradeoff parameter δ:

- A violation of constraint $j \in \{1, 2, \ldots, m\}$ induces marginal IFD:

 $$\vec{x}_{\text{next}} - \vec{x}_{\text{prev}} \propto \begin{bmatrix} a_{j1} \nabla_1 F(\vec{x}) & a_{j2} \nabla_2 F(\vec{x}) & \cdots & a_{jn} \nabla_n F(\vec{x}) \end{bmatrix}^T.$$

- For each patch $i \in \{1, 2, \ldots, n\}$, animals regularly deallocate:

 $$x_{i,\text{next}} - x_{i,\text{prev}} = -\delta.$$
“MultiIFD” Asynchronous Distributed Solver

- **MultiIFD** discrete-time realization with speed–accuracy tradeoff parameter δ:
 - A violation of constraint $j \in \{1, 2, \ldots, m\}$ induces **marginal** IFD:

 $$
 \vec{x}_{\text{next}} - \vec{x}_{\text{prev}} \propto \begin{bmatrix}
 a_{j1} \nabla_1 F(\vec{x}) \\
 a_{j2} \nabla_2 F(\vec{x}) \\
 \vdots \\
 a_{jn} \nabla_n F(\vec{x})
 \end{bmatrix}^T .
 $$

 - For each patch $i \in \{1, 2, \ldots, n\}$, animals regularly deallocate:

 $$
 x_{i,\text{next}}^* - x_{i,\text{prev}}^* = -\delta.
 $$

Figure: A diagram illustrating the allocation and deallocation of resources between two patches, highlighting the impact of constraint violations and speed–accuracy tradeoff on the system's dynamics.
MultiIFD discrete-time realization with speed–accuracy tradeoff parameter δ:

- A violation of constraint $j \in \{1, 2, \ldots, m\}$ induces **marginal** IFD:

 $$\vec{x}^\text{next} - \vec{x}^\text{prev} \propto \begin{bmatrix}
a_{j1} \nabla_1 F(\vec{x}) \\
a_{j2} \nabla_2 F(\vec{x}) \\
\vdots \\
a_{jn} \nabla_n F(\vec{x})
\end{bmatrix}^\top.$$

- For each patch $i \in \{1, 2, \ldots, n\}$, animals regularly deallocate:

 $$\vec{x}^\text{next}_i - \vec{x}^\text{prev}_i = -\delta.$$
MultiIFD discrete-time realization with speed-accuracy tradeoff parameter δ: A violation of constraint $j \in \{1, 2, \ldots, m\}$ induces marginal IFD:

$$\vec{x}_{\text{next}} - \vec{x}_{\text{prev}} \propto \left[a_j^1 \nabla_1 F(\vec{x}), a_j^2 \nabla_2 F(\vec{x}), \ldots, a_j^n \nabla_n F(\vec{x}) \right]^\top.$$

For each patch $i \in \{1, 2, \ldots, n\}$, animals regularly reallocate:

$$x_{\text{next}}^i - x_{\text{prev}}^i = -\delta.$$
Validation with Animal Models

Simulated trajectory

Feeder 1 [2p:1c] (ants)

Feeder 2 [1p:3c] (ants)

0.58 g protein
0.45 g carbohydrates

\[x_1 + x_2 = 17 \]
\[x_1 + x_2 = 15 \]
\[x_1 + x_2 = 13 \]
\[x_1 + x_2 = 11 \]
Validation with Animal Models

Simulated trajectory
Outcomes from simulated experiments

Feeder 1 [2p:1c] (ants)

Feeder 2 [1p:3c] (ants)

0.58 g protein

0.45 g carbohydrates
Simulated trajectory
Outcomes from simulated experiments

Outcomes from Dussutour and Simpson (2009)

Feeder 1 [2p:1c] (ants)
Feeder 2 [1p:3c] (ants)

0.58 g protein

0.45 g carbohydrates

$x_1 + x_2 = 17$
$x_1 + x_2 = 15$
$x_1 + x_2 = 13$
$x_1 + x_2 = 11$
$x_1 + x_2 = 9$
$x_1 + x_2 = 7$
$x_1 + x_2 = 5$

BDA 2014
Theodore P. Pavlic and Stephen C. Pratt
Validation on Small-scale Lighting Testbed
Real-time Shoebox

- Real-time control hardware
- Asynchronous events
- Auto-commissioning period

nb: CDMA and VLC

(Linnartz et al. 2008)
Validation on Small-scale Lighting Testbed
Centralized Solver Results
Validation on Small-scale Lighting Testbed
MultiIFD Results – Slide Along Constraint
Summary and Conclusions

- **Summary:**
 - Social-insect colonies regulate macronutrient intake
 - Colonies *somehow* solve non-separable allocation problem
 - Optimization under multiple constraints is useful conceptual tool
 - Lighting analogy suggests new experiments

- **MultiIFD principles:**
 - *Stigmergic* coordination – colony nutrients are a *shared memory*
 - Decentralized implementation is robust and adaptive

- **Ongoing work:** *Temnothorax* as model system
 - Very high resolution possible
 - Measurement of small quantities of ingested food is challenging

- **Future work:** Stoichiometry; *Camponotus; Solenopsis; Paratrechina*
Summary:
- Social-insect colonies regulate macronutrient intake
- Colonies *somehow* solve non-separable allocation problem
- Optimization under multiple constraints is useful conceptual tool
- Lighting analogy suggests new experiments

MultiIFD principles:
- *Stigmergic* coordination – colony nutrients are a *shared memory*
- Decentralized implementation is robust and adaptive

Ongoing work: *Temnothorax* as model system
- Very high resolution possible
- Measurement of small quantities of ingested food is challenging

Future work: Stoichiometry; *Camponotus; Solenopsis; Paratrechina*
Summary and Conclusions

Summary:

- Social-insect colonies regulate macronutrient intake
- Colonies *somehow* solve non-separable allocation problem
- Optimization under multiple constraints is useful conceptual tool
- Lighting analogy suggests new experiments

MultiIFD principles:

- *Stigmergic* coordination – colony nutrients are a *shared memory*
- Decentralized implementation is robust and adaptive

Ongoing work: *Temnothorax* as model system

- Very high resolution possible
- Measurement of small quantities of ingested food is challenging

Future work: Stoichiometry; *Camponotus; Solenopsis; Paratrechina*
Summary and Conclusions

- **Summary:**
 - Social-insect colonies regulate macronutrient intake
 - Colonies *somehow* solve non-separable allocation problem
 - Optimization under multiple constraints is useful conceptual tool
 - Lighting analogy suggests new experiments

- **MultiIFD principles:**
 - *Stigmergic* coordination – colony nutrients are a *shared memory*
 - Decentralized implementation is robust and adaptive

- **Ongoing work:** *Temnothorax* as model system
 - Very high resolution possible
 - Measurement of small quantities of ingested food is challenging

- **Future work:** Stoichiometry; *Camponotus*; *Solenopsis*; *Paratrechina*
Thanks!

Thanks! Questions?
Thanks!

Acknowledgments:

- ASU SIRG, Pratt lab, Zachary Shaffer, Jessica D. Ebie, Alex Nachman, Hana Putnam, Jon F. Harrison, Rebecca M. Clark, Arianne Cease, Ian M. Hamilton, Swanand Phadke, Kevin M. Passino, Paolo A. G. Sivilotti

NSF EECS-0931669 (CPS)
NSF CCF-1012029 (CIF)
NSF DBI-0959514 (BIO)

BDA 2014
Thanks!

Acknowledgments:

- ASU SIRG, Pratt lab, Zachary Shaffer, Jessica D. Ebie, Alex Nachman, Hana Putnam, Jon F. Harrison, Rebecca M. Clark, Arianne Cease, Ian M. Hamilton, Swanand Phadke, Kevin M. Passino, Paolo A. G. Sivilotti

NSF EECS-0931669 (CPS)
NSF CCF-1012029 (CIF)
NSF DBI-0959514 (BIO)

BDA 2014

Questions? Comments?