Distributed information processing by insect societies

Stephen Pratt School of Life Sciences
Arizona State University

Nest of
 Temnothorax rugatulus

\square

Scouts use tandem runs to recruit other scouts

Scouts transport the inactive majority of the colony

Decision algorithm used by active ants

A

B

C

Colonies can choose the better site

Colonies compare available options

In urgent emigrations, decisions are faster...

Unforced emigration

Urgent emigration

In urgent emigrations, decisions are faster...

Unforced emigration

...but less accurate

Urgency alters behavior at multiple phases of decision-making

Increased	Increased rate search of recruitment effort	initiation

Individual choice vs. collective choice

Does a colony have a greater cognitive capacity than a single ant?

Two treatments: Subjects choose between either two nests or eight nests

Individual ants experience cognitive overload

Two nests

Eight nests

$$
\chi^{2}=4.2, N=43, d f=1, p=0.04
$$

Colonies do not experience cognitive overload

Two nests

Eight nests

$$
\chi^{2}=0.36, N=40, d f=1, p=0.55
$$

Lone ants visit more nests

Do colonies make more precise discriminations than individuals?

Which square is darker?

Constant

Comparison

Plotting a psychophysical function

\square

 1Prob. of choosing constant

$\alpha=$ Detection point

$\lambda=$ Maximum accuracy

Performance of individual ants improves as difference increases

For small differences, performance of colonies exceeds that of individuals

 Brightness difference between nests (lux)

But for large differences individuals outperform colonies

Brightness difference between nests (lux)

Probability of choosing good nest

Personal information

Social information
(quorum)

$$
h_{A}(i)=q_{A}+c \frac{N_{A}^{2}}{N_{A}^{2}+T^{2}}
$$

Probability of choosing mediocre nest

Personal information

Social
information
(quorum)

$$
h_{B}(i)=q_{B}\left(\frac{2 q_{B}}{q_{B}+q_{A}}\right)^{i}+c \frac{N_{B}^{2}}{N_{B}^{2}+T^{2}}
$$

Model predicts switch between group and individual advantage

Acknowledgements

Takao Sasaki David Sumpter Boris Granovskiy Richard Mann Eamonn Mallon Nigel Franks

Uppsala University Arizona State University Human Frontiers Science Program Association for the Study of Animal Behaviour Pew Charitable Trusts

