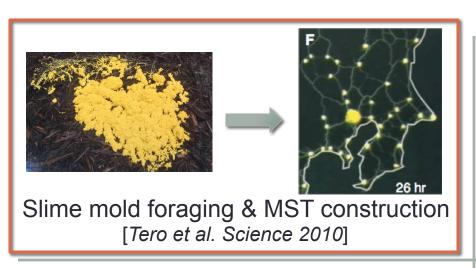
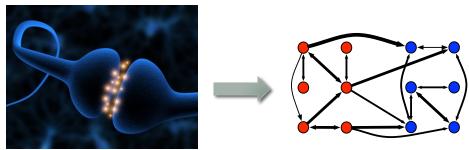
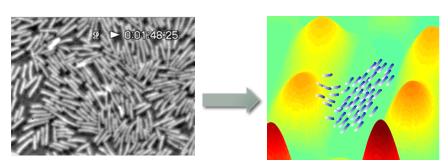
4 examples

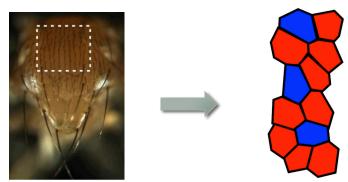




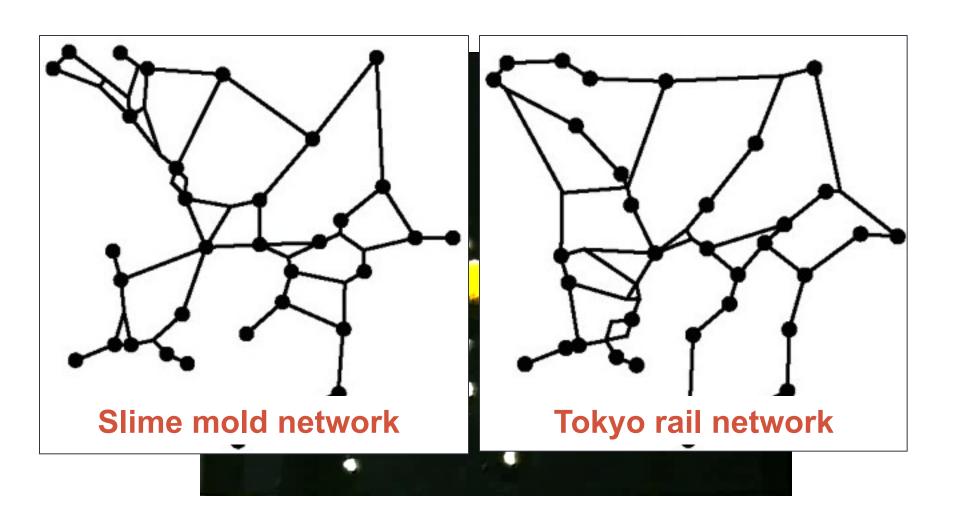
Synaptic pruning & network design



E coli foraging & consensus navigation [Shklarsh et al. PLoS Comput. Biol 2013]



Fly brain development & MIS [Afek et al. Science 2010]



Very similar transport efficiency and resilience

Slime mold model

Problem:

Design a network to connect food

Platform:

- Distributed (no centralized controller)
- Food locations unknown
- Message passing between nodes

Algorithm:

- Feedback: the greater the internal protoplasmic flow, the thicker the tube
- <u>Idea</u>: reinforce preferred routes; remove unused or overly redundant edges

Evaluation:

network efficiency, robustness, wiring

Slime mold algorithm

Pressure difference

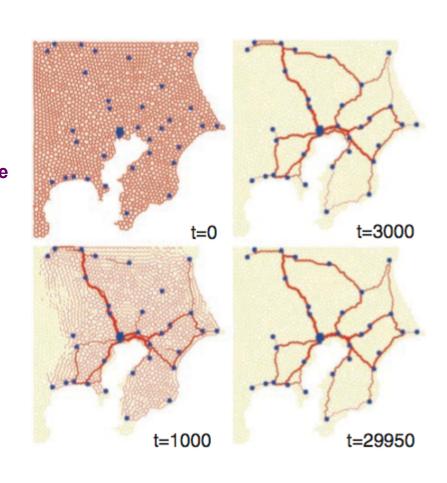
Start with meshed lattice

The flux through a tube (edge) is calculated as:

 $Q_{ij} = \frac{D_{ij}(p_i - p_j)}{L_{ij}}$ Conductance of tube

Think "network flow": in each time step, choose two random food sources:

 $\sum_{j}Q_{2j}=-I_{0}$ Sink consumes now $\sum_{j}Q_{ij}=0$ Else pass flow along (conservation)



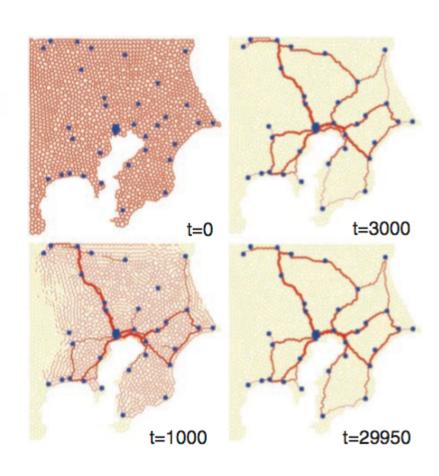
Update rule for tube weights

$$\frac{\mathrm{d}}{\mathrm{d}t}D_{ij}=f(|Q_{ij}|)-D_{ij},$$

First term: expansion of tubes in response to the flux

Second term: the rate of tube constriction; the tube gradually disappears if no flow

f(|Q|) = sigmoidal curve

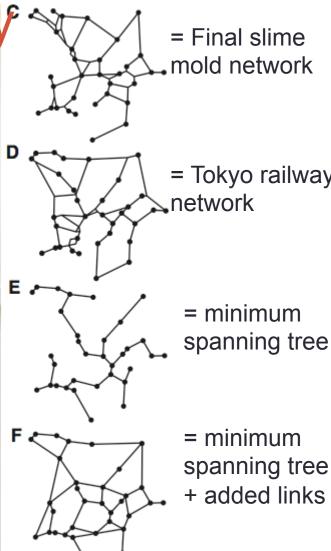


Evaluating network quality

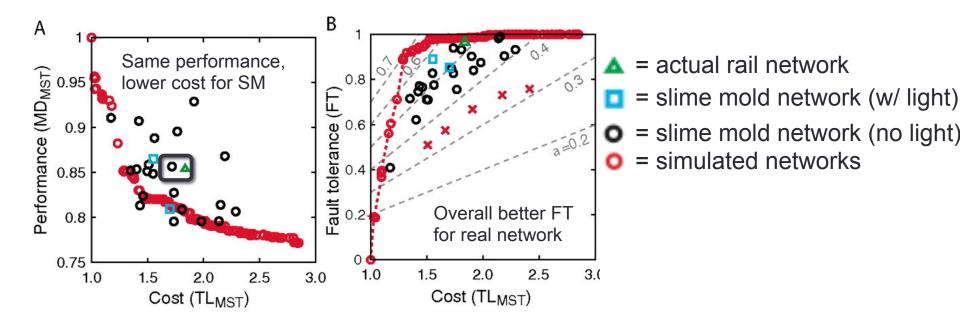
TL = wiring length used

 MD = avg minimum distance between any pair of food sources

 FT = tolerance to disconnection after single link failure



Slime mold and human-engineered networks have similar structural properties

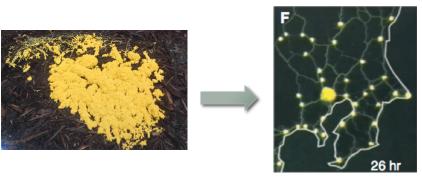


Cost: $TL_{MST}(\triangle) = 1.80$ and $TL_{MST}(\bigcirc) = 1.75 + /-0.30$ SIMILAR

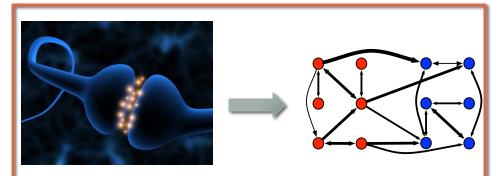
Efficiency: $MD_{MST}(\triangle) = 0.85$ and $MD_{MST}(\bigcirc) = 0.85 +/-0.04$ SIMILAR

Fault tolerance: 4% of links cause rail network disconnection; 14-20% for mold

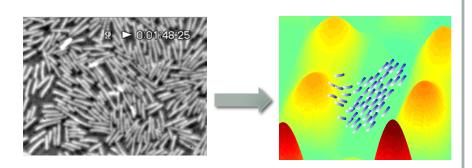
4 examples



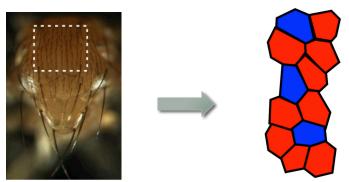
Slime mold foraging & MST construction [Tero et al. Science 2010]



Synaptic pruning & network design

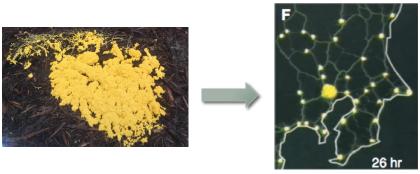


E coli foraging & consensus navigation [Shklarsh et al. PLoS Comput. Biol 2013]

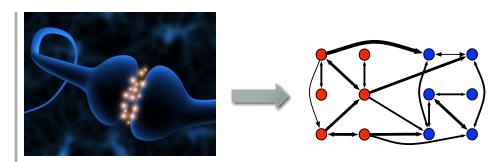


Fly brain development & MIS [Afek et al. Science 2010]

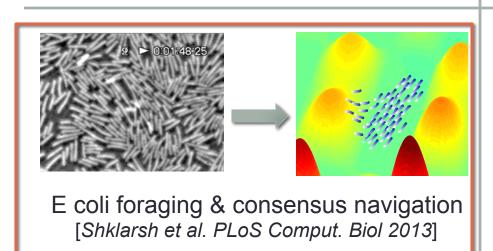
4 examples

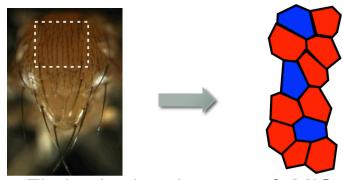


Slime mold foraging & MST construction [Tero et al. Science 2010]



Synaptic pruning & network design





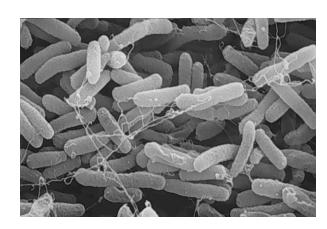
Fly brain development & MIS [Afek et al. Science 2010]

Bacterial foraging

 Problem: how does a collection of bacteria collectively navigate to find food in a complicated terrain?

Platform:

- Distributed (no centralized controller)
- Food location unknown
- Broadcast-like messages: individual and neighbor knowledge
- Bounded message complexity [see talk by Shashank Singh tomorrow]
- Algorithm: (next slides)
- Evaluation:
 - Detection accuracy and time

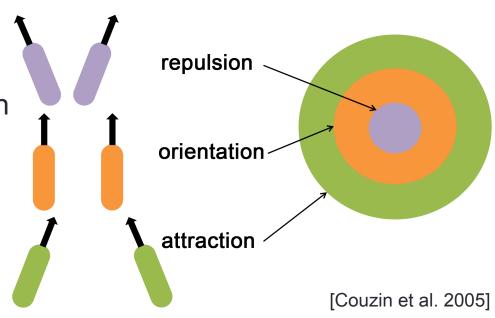


Bacterial chemotaxis

- Bacteria navigate via chemotaxis: move according to gradients in the chemical concentration (food)
- If low food concentration, tumble more (move randomly)

Bacteria also acquire cues from neighbors:

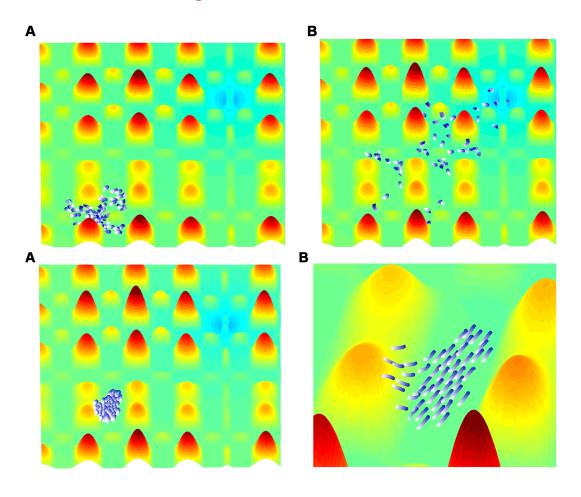
- Repulsion to avoid collision
- Orientation
- Attraction to avoid fragmentation



Bacterial automata

- Treat bacteria as automata with two information sources:
 - Individual belief based on food source gradient
 - Interaction with neighbors' beliefs
- Parameter w(i)_t controls how much bacterium i "listens" to its neighbors at time t

Analysis of different interaction weights



No interactions: inefficient collective navigation

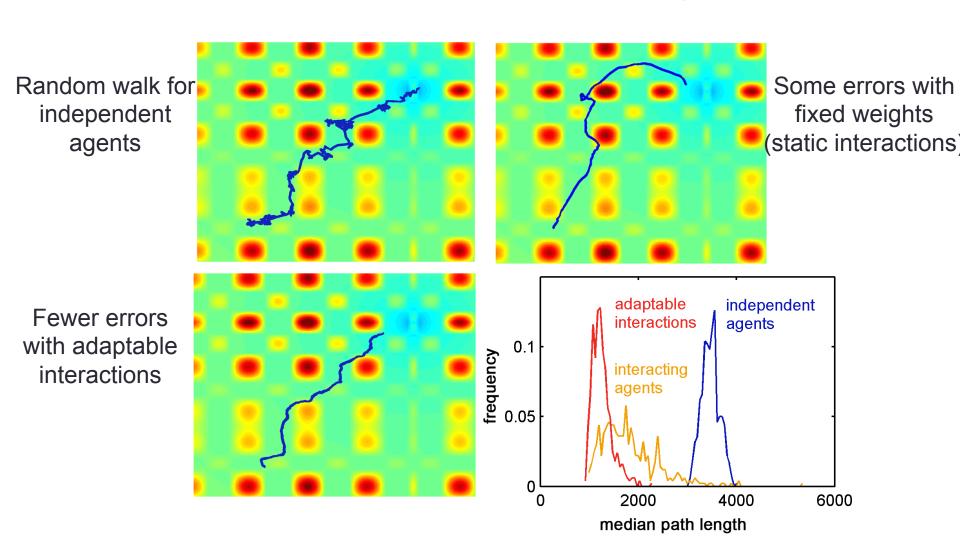
Static interactions:
erroneous positive
feedback leads bacteria
astray: a subgroup gets
"bad" information and
leads others along an
incorrect trajectory

Solution: adaptive interaction weights

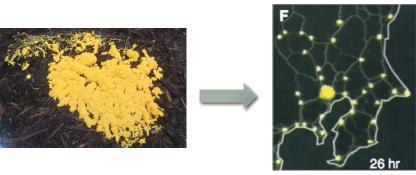
- Parameter w(i)_t controls how much bacterium i "listens" to its neighbors at time t
- Adjust interaction weight w(i), based on "self-confidence":
 - When a bacteria finds a beneficial path (strong gradient), downweight w(i)_t and listen less to neighbors
 - When unsure, upweight w(i)_t to increase neighbor influence
- A simple interaction rule: Change in gradient detected

$$w_i(t) = \begin{cases} 1 & \text{if } \Delta c_i(t) \gg 0 \\ 0 & \text{else} \end{cases}$$

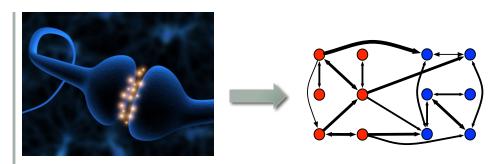
Plasticity of the interaction network leads to more efficient collective navigation



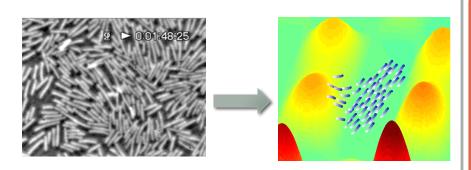
4 examples



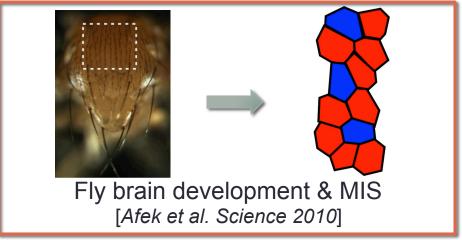
Slime mold foraging & MST construction [Tero et al. Science 2010]



Synaptic pruning & network design



E coli foraging & consensus navigation [Shklarsh et al. PLoS Comput. Biol 2013]



Trans vs. cis inhibition

- Recent findings suggest that Notch is also suppressed in cis by delta's from the same cell
- Only when a cell is 'elected' it communicates its decision to the other cell

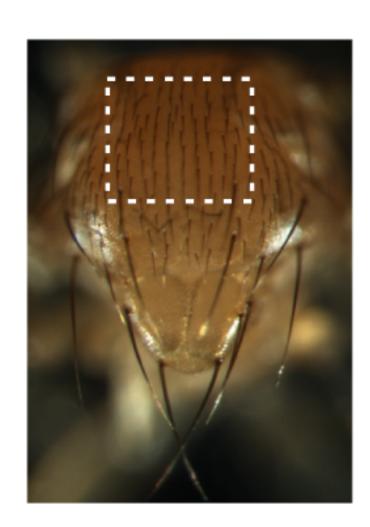
Trans model Cis+Trans model

Miller et al Current Biology 2009, Sprinzak et al Nature 2010, Barad et al Science Signaling 2010

SOP selection in fruit flies

- During nervous system development, some cells are selected as sensory organ precursors (SOPs)
- SOPs are later attached to the fly's sensory bristles
- Like MIS, each cell is either:
 - Selected as a SOP; or
 - Laterally inhibited (via Delta-Notch signaling) by a neighboring SOP so it cannot become a SOP

No two SOPs connected



MIS vs SOP

Stochastic

- Proven for MIS
- Experimentally validated for SOP

Constrained by time

- An uninhibited cell eventually becomes a SOP
- Reduced communication
 - A node (cell) only sends messages if it joins the MIS

- Compared to previous algs:
 - Unlike Luby, SOP cells do not know its number of neighbors (nor network topology)
 - For SOP, messages are binary

Can we improve MIS algorithms by understating how the biological process is performed?

Maximal independent set 'on the fly'

Problem: Elect a MIS

Platform:

- Distributed (no node receives all inputs or observes all outputs)
- Binary message passing between nodes, and no knowledge of topology or number of neighbors (unlike Luby)

Algorithm ingredients:

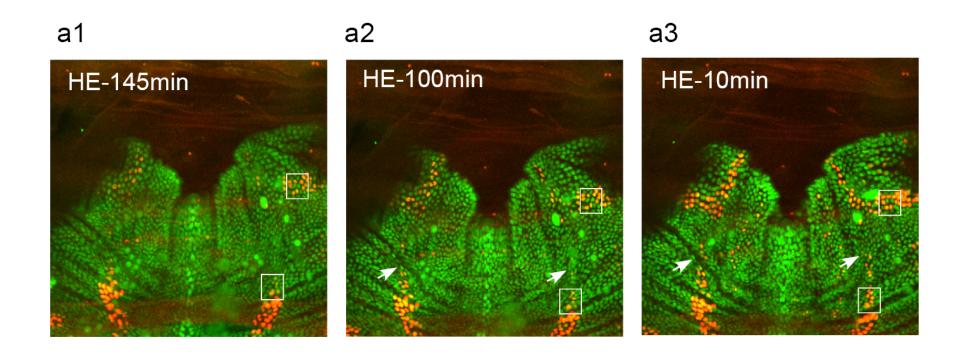
- Stochastic (proven for MIS; experimentally validated for SOP)
- Constrained by time (an uninhibited cell eventually becomes a SOP)
- Low communication: a node only sends messages if it joins the MIS

Evaluation:

- Message complexity
- Running time

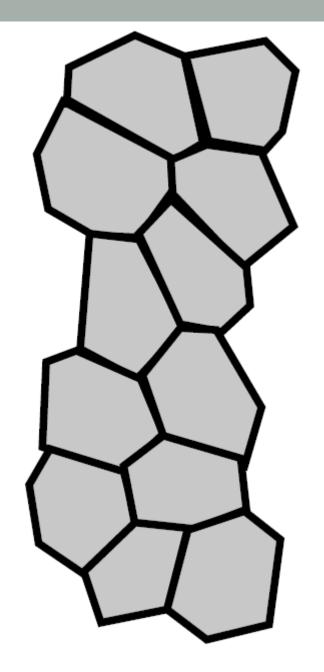
Can we improve MIS algorithms by understating how the fly solves this problem?

Movie



Simulations

- 2 by 6 grid
- Each cell touches all adjacent and diagonal neighbors



Simulations

- A cell becomes a SOP by accumulating the protein Delta until it passes some threshold (nodes increase prob. of being elected as # of active nodes decreases)

Four models:

1. Accumulation

- Accumulating Delta based on a Gaussian distribution

2. Fixed Accumulation

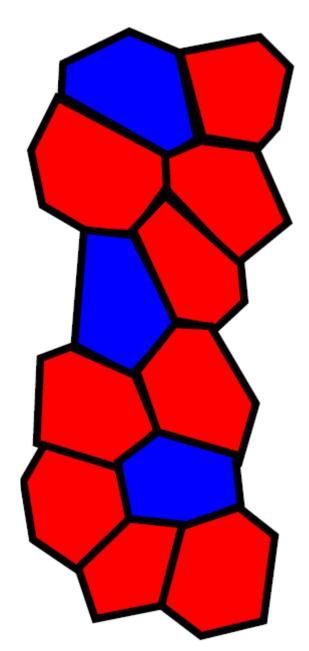
- Randomly select an accumulation rate only once

3. Rate Change

 Increase accumulation probability as time goes by using feedback loop

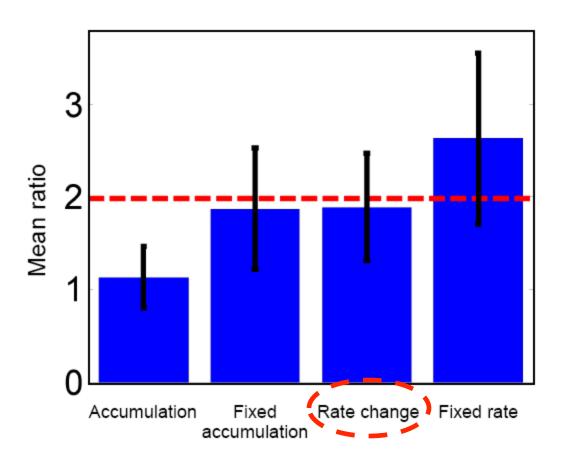
4. Fixed rate

- Fix accumulation probability, use the same probability in all rounds



Comparing time of selection experimentally and via simulations

Ratio between selection time differences



New MIS Algorithm

MIS Algorithm (n,D) // n – upper bound on number of nodes
D - upper bound on number of neighbors

Table 1. MIS algorithm.

```
1. Algorithm: MIS (n, D) at node u
                                                               - W.h.p., the algorithm computes
2. For i = 0: log D
                                                               a MIS in O(log<sup>2</sup>n) rounds
   3. For j = 0: M \log n // M is constant derived below
                                                               - All msgs are 1 bit
       4. * exchange 1*
       5. v = 0
       6. With probability \frac{1}{2\log D^{-i}} broadcast B to neighbors and set v = 1 // B is one bit
       7. If received message from neighbor, then v = 0
       8. * exchange 2 *
       9. If v = 1 then
          10. Broadcast B; join MIS; exit the algorithm
       11. Else
          12. If received message B in this exchange, then mark node u inactive; exit the algorithm
       13. End
   14. End
15. End
```

Biological distributed algorithms

- Problem: what computational problem is the system trying to solve?
 - MIS, network construction, distributed search & consensus, task allocation
- Platform: what are the constraints and assumptions that need to be abided by?
 - Distributed, simple messages, dynamic networks, unknown environments, no UIDs
- Algorithm: what strategy solves the problem within the platform?
 - Exploring broadly to deal with uncertainty, and then exploiting [see also Chris Reid tomorrow]
 - Feedback processes, to reinforce good solutions/edges/paths [slime mold, pruning]
 - Rates of communication/contact [MIS, pruning, ants]
 - The importance of stochasticity, to overcome noise & break symmetry
- <u>Evaluation</u>: what needs to be optimized?
 - Run-time efficiency, communication cost, flexibility, robustness, adaptation, resources
 - And their trade-offs! [MIS: higher run-time, lower complexity; pruning: wasteful but adaptive]

Conclusions

- What can biology contribute to distributed algorithms research?
 - New robust/flexible/adaptive algorithms
 - Revisiting problems with more or different constraints
- What can distributed algorithms contribute to biology research?
 - Formal models to evaluate performance and predict behavior
 - Identification of parameters critical for algorithmic optimization but ignored; raise new, testable hypotheses

Thanks!