4 examples

Slime mold foraging & MST construction
[Tero et al. Science 2010]

E coli foraging & consensus navigation
[Shklarsh et al. PLoS Comput. Biol 2013]

Fly brain development & MIS
[Afek et al. Science 2010]



Slime mold network Tokyo rail network

Very similar transport efficiency and resilience



Slime mold model

Problem:
- Design a network to connect food

Platform:

- Distributed (no centralized controller)
- Food locations unknown

- Message passing between nodes

Algorithm:

- Feedback: the greater the internal
protoplasmic flow, the thicker the tube

- Idea: reinforce preferred routes; remove
unused or overly redundant edges

Evaluation:
- network efficiency, robustness, wiring




Slime mold algorithm

Start with meshed lattice

The flux through a tube (edge) is

calculated as:
Pressure difference
between ends of tube

Qi = D;;i(pi—p;)
1] .

1]
Conductance \
of tube Length of tube

Think “network flow”: in each time step,
choose two random food sources:

Zj Q1 ;= Iy Source pumps flow +-1000 1=20950

Zj Q2j — — ] Sink consumes flow
Zj Qz’j — () Else pass flow along (conservation)




Update rule for tube weights

d

First term: expansion of tubes in
response to the flux

Second term: the rate of tube

constriction; the tube gradually
disappears if no flow

f(|Q|) = sigmoidal curve

t=29950



Evaluating network quality?

hey
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- TL = wiring length used

- MD = avg minimum distance
between any pair of food sources

- FT = tolerance to disconnection after
single link failure

= Final slime
mold network

= Tokyo railway
network

= minimum
spanning tree

= minimum
spanning tree
+ added links



Slime mold and human-engineered networks
have similar structural properties
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Efficiency: MD,,s7( & )= 0.85 and MD,,sr( © )=0.85+/-0.04  SIMILAR

Fault tolerance: 4% of links cause rail network disconnection; 14-20% for mold
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Bacterial foraging

- Problem: how does a collection of bacteria collectively navigate
to find food in a complicated terrain?

- Platform:
- Distributed (no centralized controller)
- Food location unknown
- Broadcast-like messages: individual and neighbor knowledge
- Bounded message complexity [see talk by Shashank Singh tomorrow]

- Algorithm: (next slides)

- Evaluation:
- Detection accuracy and time




Bacterial chemotaxis

- Bacteria navigate via chemotaxis: move according to
gradients in the chemical concentration (food)

- If low food concentration, tumble more (move randomly)

Bacteria also acquire cues
from neighbors: repulsion

- Repulsion to avoid collision

- Orientation orientation
- Attraction to avoid

fragmentation
‘nttractlon
[Couzin et al. 2005]




Bacterial automata

- Treat bacteria as automata with two information sources:
- Individual belief based on food source gradient
- Interaction with neighbors’ beliefs

- Parameter w(i), controls how much bacterium i “listens” to
its neighbors at time ¢



Analysis of different interaction weights

_ a . . Nointeractions:
inefficient collective
navigation

W
u
Static interactions:
erroneous positive
feedback leads bacteria
astray: a subgroup gets
“bad” information and

leads others along an
iIncorrect trajectory




Solution: adaptive interaction weights

- Parameter w(i), controls how much bacterium i “listens” to
its neighbors at time ¢

- Adjust interaction weight w(i), based on “self-confidence”:

- When a bacteria finds a beneficial path (strong gradient),
downweight w(i), and listen less to neighbors

- When unsure, upweight w(i), to increase neighbor influence

- A simple interaction rule: Change in gradient detected
'
1 it Aci (t) > 0

i(t) =
wi(t) 0 else



Plasticity of the interaction network leads to
more efficient collective navigation

-
Random walk fory - = Some errors with
independent fixed weights
agents - static interactions
-
-
adaptable independent
Fewer errors - interactions | agents
with adaptable > 0.1
. . 2] . .
interactions - < Interacting
2 agents
8 2 0.05} \‘
0 2 —~a A L
b 0 2000 4000 6000

median path length



4 examples

Slime mold foraging & MST construction
[Tero et al. Science 2010]

E coli foraging & consensus navigation
[Shklarsh et al. PLoS Comput. Biol 2013]

Fly brain development & MIS
[Afek et al. Science 2010]




Trans vs. cis inhibition

- Recent findings suggest that Notch is also
suppressed in cis by delta’s from the same cell

_____ Delta - Only when a cell is ‘elected’ it communicates its
decision to the other cell

Notch

Trans model Cis+Trans model

Miller et al Current Biology 2009, Sprinzak et al Nature 2010, Barad et al Science Signaling 2010



SOP selection In fruit flies

- During nervous system development,
some cells are selected as sensory
organ precursors (SOPs)

- SOPs are later attached to the fly's
sensory bristles

- Like MIS, each cell is either:
- Selected as a SOP; or

- Laterally inhibited (via Delta-
Notch signaling) by a neighboring
SOP so it cannot become a SOP

No two SOPs connected




B
MIS vs SOP

- Stochastic - Compared to previous algs:
- Proven for MIS - Unlike Luby, SOP cells do not
- Experimentally validated for know its number of neighbors
SOP (nor network topology)

- Constrained by time

- An uninhibited cell
eventually becomes a SOP

- Reduced communication

- A node (cell) only sends
messages if it joins the MIS

- For SOP, messages are binary




Maximal independent set ‘on the fly’

- Problem: Elect a MIS

- Platform:
- Distributed (no node receives all inputs or observes all outputs)

- Binary message passing between nodes, and no knowledge of topology or
number of neighbors (unlike Luby)

- Algorithm ingredients:
- Stochastic (proven for MIS; experimentally validated for SOP)
- Constrained by time (an uninhibited cell eventually becomes a SOP)
- Low communication: a node only sends messages if it joins the MIS

- Evaluation:
- Message complexity
- Running time
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Simulations

« 2 by 6 grid

» Each cell touches all adjacent and
diagonal neighbors



Simulations

- A cell becomes a SOP by accumulating
the protein Delta until it passes some

threshold (nodes increase prob. of being
elected as # of active nodes decreases)

Four models:
1. Accumulation
- Accumulating Delta based on a Gaussian distribution

2. Fixed Accumulation
- Randomly select an accumulation rate only once
3. Rate Change

- Increase accumulation probability as time goes by
using feedback loop

4. Fixed rate

- Fix accumulation probability, use the same
probability in all rounds




Comparing time of selection experimentally
and via simulations

Ratio between selection time differences

Mean ratio

Accumulation Fixed { Rate change‘ Fixed rate
accumulation = == =



B
New MIS Algorithm

MIS Algorithm (n,D) // n — upper bound on number of nodes

D - upper bound on number of neighbors
Table 1. MIS algorithm.

1. Algorithm: MIS (n, D) at node u - W.h.p., the algorithm computes

2. Fori=0:log D , , a MIS in O(log2n) rounds
3. Forj=0:Mlog n/l M is constant derived below :
- All msgs are 1 bit

4. * exchange 1*

5.v=
6.|With probability -1~ broadcast 'dto neighbors and set v = 1 // B is one bit
7. If received message from neighbor, then v = 0

8. * exchange 2 *
9. If v =1 then
10. Broadcast B; join MIS; exit the algorithm
11. Else
12. If received message B in this exchange, then mark node u inactive; exit the algorithm
13. End
14. End
15. End

Afek et al Science 2011, DISC 2011



Biological distributed algorithms

Problem: what computational problem is the system trying to solve?

- MIS, network construction, distributed search & consensus, task allocation

Platform: what are the constraints and assumptions that need to be abided by?

- Distributed, simple messages, dynamic networks, unknown environments, no UIDs

Algorithm: what strategy solves the problem within the platform?

- Exploring broadly to deal with uncertainty, and then exploiting [see also Chris Reid tomorrow]
- Feedback processes, to reinforce good solutions/edges/paths [slime mold, pruning]

- Rates of communication/contact [MIS, pruning, ants]

- The importance of stochasticity, to overcome noise & break symmetry

Evaluation: what needs to be optimized?

- Run-time efficiency, communication cost, flexibility, robustness, adaptation, resources
- And their trade-offs! [MIS: higher run-time, lower complexity; pruning: wasteful but adaptive]



Conclusions

- What can biology contribute to distributed algorithms
research?

- New robust/flexible/adaptive algorithms
- Revisiting problems with more or different constraints

- What can distributed algorithms contribute to biology
research?

- Formal models to evaluate performance and predict behavior

- ldentification of parameters critical for algorithmic optimization but
ignored; raise new, testable hypotheses



Thanks!



