Ants Nearby Treasure Search

- Infinite grid
- k ants
- Initially at the origin
- Food at distance D
- Ants have to find the food
- Optimal run-time:

$$
\Omega\left(D+D^{2} / k\right)
$$

[Feinerman, Korman,

Lotker, Sereni, 2012]

Pheromones

- Ants emit pheromones
[Lenzen, Radeva, 2013]
- Or not
- And sense them
- No other communication
- Biological resource
- Goal: minimize pheromone count

Ground Rules

- Every ant runs same algorithm (locally)
- With same initial state
- Only uniform algorithms, ants have no knowledge of:
- k, total number of ants
- D, distance to the food

Synchronous Model

- Rounds: all ants move once per round

Synchronous Model

- Rounds:
all ants move once per round
- Assumption: ant emission scheme [Emek, Langner, Uitto, Wattenhofer, 2013]
- At most one ant is emitted in each round

Asynchronous Model

- Adversary repeatedly schedules one ant
- Test\&Set:
- Sense and emit a pheromone is one atomic step
- Definition of Rounds:
- Round ends when every ant took at least one step
- Only for (time) complexity

Ants Models

- FSM: Finite State Machines Constant size memory
- TM: Turing Machines

Unlimited memory

- Both deterministic

Results

	Lower Bound	Algorithm
FSM (Deterministic)	$\Omega(D)$ pheromones to find the food	$O(D)$ pheromones $O\left(D+D^{2} / k\right)$ time
TM (Deterministic)	$\Omega(k)$ pheromones for optimal run time	O(k) pheromones $O\left(D+D^{2} / k\right)$ time

Previously known: O(D2²) pheromones [Lenzen, Radeva, 2013]
Results hold for Synchronous and Asynchronous models

Results

	Lower Bound	Algorithm
FSM (Deterministic)		
TMM (Deterministic)		

Previously known: $O\left(D^{2}\right)$ pheromones [Lenzen, Radeva, 2013]

Results

	Lower Bound	Algorithm
FSM (Deterministic)	$\Omega(D)$ pheromones to find the food	O(D) pheromones O(D + D2/k) time
TM (Deterministic)		

Previously known: $\mathrm{O}\left(\mathrm{D}^{2}\right)$ pheromones [Lenzen, Radeva, 2013]

Results

	Lower Bound	Algorithm		
FSM (Deterministic)	$\Omega(D)$ pheromones to find the food	O(D) pheromones O(D + D2/k) time		
$\underset{\text { TMM }}{\text { (Deterministic) }}$			\quad	
:---:				

Previously known: O(D2²) pheromones [Lenzen, Radeva, 2013]
Results hold for Synchronous and Asynchronous models

Layers

- Definition: layer L - All grid cells at distance L from origin

FSM Need $\Omega(\mathrm{D})$ Pheromones

- Assume FSM with S states
- Uses o(D) pheromones
- $\mathrm{S}+1$ consecutive pheromone-free layers exist
- Path starts and ends in same state
- Infinite loop

FSM Algorithms

- Problem:

FSM can't count

- Solution:

Use pheromones as turning points

- Similar to the idea of guides [Emek, Langner, Uitto, Wattenhofer, 2013]

Asynchronous FSM Algorithm

- Mark E, S, W, N
- Explore from N - N never longer than E, S or W
- Test\&Set prevents multiple ants from exploring same layer

Synchronous FSM Algorithm

- Emission scheme breaks initial symmetry
- But what happens if two ants collide?
- Veteran ants behave differently than Newbie ants

Results

	Lower Bound	Algorithm		
FSM (Deterministic)	$\Omega(D)$ pheromones to find the food	O(D) pheromones O(D + D2/k) time		
$\underset{\text { TMM }}{\text { (Deterministic) }}$			\quad	
:---:				

Previously known: O(D2²) pheromones [Lenzen, Radeva, 2013]
Results hold for Synchronous and Asynchronous models

Results

	Lower Bound	Algorithm
FSM (Deterministic)	$\Omega(D)$ pheromones to find the food	$O(D)$ pheromones $O\left(D+D^{2} / k\right)$ time
TM (Deterministic)	$\Omega(k)$ pheromones for optimal run time	O(k) pheromones $O\left(D+D^{2} / k\right)$ time

Previously known: O(D2²) pheromones [Lenzen, Radeva, 2013]
Results hold for Synchronous and Asynchronous models

Async TM Need $\Omega(\mathrm{k})$ Pheromones

- Assume one ant does not emit pheromones

Async TM Need $\Omega(\mathrm{k})$ Pheromones

- Assume one ant does not emit pheromones
- Consider same scheduling but with extra ants
- All new ants follow that one ant
- Runtime remains the same (but more ants)

Sync TM Need $\Omega(\mathrm{k})$ Pheromones

- Emit one ant
- Until all pheromones are placed
- Emit second ant
- Until all pheromones are placed
- Continue
- Delay is constant
- If no new pheromones are placed, all following ants behave the same

Asynchronous TM Algorithm

- TM can count!
- Use pheromones to assign IDs to ants
- Static partition
- Explore layers
$\mathrm{L}=\mathrm{ID}($ mod Total)
- Occasionally update estimated Total
- Also works for the synchronous model

Future Directions

- Fault tolerance (with pheromones)
- Employ randomization
- To implement emission schemes
- To further reduce pheromone counts
- Avoid Test\&Set semantics
- Direct rest of ants to the found treasure
- And/or back to the nest

Thanks

Questions?

