Ants Nearby Treasure Search

- Infinite grid
- k ants
 - Initially at the origin
- Food at distance D
- Ants have to find the food
- Optimal run-time:
 Ω(D + D²/k)

[Feinerman, Korman, Lotker, Sereni, 2012]

Pheromones

Ants emit pheromones
 [Lenzen, Radeva, 2013]

- Or not
- And sense them
- No other communication
- Biological resource
- Goal: minimize pheromone count

Ground Rules

- Every ant runs same algorithm (locally)
 - With same initial state
- Only uniform algorithms, ants have no knowledge of:
 - k, total number of ants
 - D, distance to the food

Synchronous Model

Rounds:
 all ants move once
 per round

Synchronous Model

Rounds:
 all ants move once
 per round

 Assumption: ant emission scheme [Emek, Langner, Uitto,

Wattenhofer, 2013]

 At most one ant is emitted in each round

Asynchronous Model

 Adversary repeatedly schedules one ant

Test&Set:

 Sense and emit a pheromone is one atomic step

- Definition of Rounds:
 - Round ends when every ant took at least one step
- Only for (time) complexity

Ants Models

- FSM: Finite State Machines
 Constant size memory
- TM: Turing Machines
 Unlimited memory
- Both deterministic

	Lower Bound	Algorithm
FSM (Deterministic)	Ω(D) pheromones to find the food	O(D) pheromones O(D + D ² /k) time
TM (Deterministic)	Ω(k) pheromones for optimal run time	O(k) pheromones O(D + D ² /k) time

Previously known: O(D²) pheromones [Lenzen, Radeva, 2013] Results hold for Synchronous and Asynchronous models

	Lower Bound	Algorithm
FSM (Deterministic)		
TM (Deterministic)		

Previously known: O(D2) pheromones [Lenzen, Radeva, 2013]

	Lower Bound	Algorithm
FSM (Deterministic)	Ω(D) pheromones to find the food	O(D) pheromones O(D + D ² /k) time
TM (Deterministic)		

Previously known: O(D2) pheromones [Lenzen, Radeva, 2013]

	Lower Bound	Algorithm
FSM (Deterministic)	Ω(D) pheromones to find the food	O(D) pheromones O(D + D ² /k) time
TM (Deterministic)		

Previously known: O(D²) pheromones [Lenzen, Radeva, 2013] Results hold for Synchronous and Asynchronous models

Layers

- Definition: layer L
 - All grid cells at distance L from origin

FSM Need $\Omega(D)$ Pheromones

- Assume FSM with S states
 - Uses o(D) pheromones
- S+1 consecutive pheromone-free layers exist
- Path starts and ends in same state
 - Infinite loop

FSM Algorithms

Problem: FSM can't count

Solution:
 Use pheromones
 as turning points

 Similar to the idea of guides [Emek, Langner, Uitto, Wattenhofer, 2013]

Asynchronous FSM Algorithm

Mark E, S, W, N

Explore from N

 N never longer than E, S or W

 Test&Set prevents multiple ants from exploring same layer

Synchronous FSM Algorithm

 Emission scheme breaks initial symmetry

But what happens if two ants collide?

 Veteran ants behave differently than Newbie ants

	Lower Bound	Algorithm
FSM (Deterministic)	Ω(D) pheromones to find the food	O(D) pheromones O(D + D ² /k) time
TM (Deterministic)		

Previously known: O(D²) pheromones [Lenzen, Radeva, 2013] Results hold for Synchronous and Asynchronous models

	Lower Bound	Algorithm
FSM (Deterministic)	Ω(D) pheromones to find the food	O(D) pheromones O(D + D ² /k) time
TM (Deterministic)	Ω(k) pheromones for optimal run time	O(k) pheromones O(D + D ² /k) time

Previously known: O(D²) pheromones [Lenzen, Radeva, 2013] Results hold for Synchronous and Asynchronous models

Async TM Need $\Omega(k)$ Pheromones

 Assume one ant does not emit pheromones

Async TM Need $\Omega(k)$ Pheromones

- Assume one ant does not emit pheromones
- Consider same scheduling but with extra ants
 - All new ants follow that one ant

 Runtime remains the same (but more ants)

Sync TM Need $\Omega(k)$ Pheromones

- Emit one ant
 - Until all pheromones are placed
- Emit second ant
 - Until all pheromones are placed w←
- Continue
 - Delay is constant
- If no new pheromones _ are placed, all following ants behave the same

Asynchronous TM Algorithm

- TM can count!
- Use pheromones to assign IDs to ants
- Static partition
 - Explore layersL = ID (mod Total)
 - Occasionally update estimated Total
- Also works for the synchronous model

Future Directions

- Fault tolerance (with pheromones)
- Employ randomization
 - To implement emission schemes
 - To further reduce pheromone counts
- Avoid Test&Set semantics
- Direct rest of ants to the found treasure
 - And/or back to the nest

Thanks

Questions?