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Distributed Algorithms + Biological Systems 
• Distributed algorithms researchers have been considering 

biological systems for the past few years, looking for: 
•  Biological problems and behaviors that they can model and study 

using distributed algorithms methods, and  
•  Biological strategies that might be adapted for use in computer 

networks. 
•  This has yielded interesting distributed algorithms results. 
• Q:  But what can distributed algorithms contribute to the 

study of biological systems?  
•  This talk:   

•  Overview fundamental ideas from the 
distributed algorithms research area, for 
biology researchers.  

•  Consider how these might contribute to 
biology research. 



What are distributed algorithms? 
• Abstract models for systems consisting of many interacting 

components, working toward a common goal. 

 

• Example systems: 
•  Wired or wireless network of computers, 

communicating or managing data.  
•  Robot swarm, searching an unknown 

terrain, cleaning up, gathering resources,
… 



What are distributed algorithms? 
• Abstract models for systems consisting of many interacting 

components, working toward a common goal. 

 

• Example systems: 
•  Wired or wireless network of computers, 

communicating or managing data.  
•  Robot swarm, searching an unknown 

terrain, cleaning up, gathering resources,
… 

•  Social insect colony, foraging, feeding, 
finding new nests, resisting predators,… 

• Components generally interact 
directly with nearby components 
only, using local communication. 



Distributed algorithms research 
• Models for distributed system platforms. 
• Problems to be solved. 
• Algorithms, analysis. 
•  Lower bounds, impossibility results. 
•  Typical problems:  Communication, 

consensus, data management, resource 
allocation, synchronization, counting,… 

• Models:   
•  Interacting automata. 
•  Local communication:  individual message-

passing, local broadcast, or shared memory. 
•  Metrics:  Time, amount of communication, 

local storage. 



Algorithms 
• Some based on simple rules, some use 

complex constructions. 
• Designed to minimize costs, according 

to the cost metrics. 
• Often designed to tolerate limited 

failures. 
• Researchers analyze correctness, 

costs, and fault-tolerance. 
•  Try to “optimize”, according to the 

metrics. 



Lower bounds and other 
impossibility results 
•  Theorems that say that you can’t solve 

a problem in a particular system model, 
or you can’t solve it with a certain cost. 

• Distributed computing theory includes 
hundreds of impossibility results. 
•  Unlike sequential computing theory. 
•  Because distributed platforms are hard to 

cope with:  locality of knowledge and action 
impose strong limitations. 



Formal modeling  
• Distributed algorithms can be 

complicated: 
•  Many components act concurrently. 
•  May have different speeds, failures. 
•  Local knowledge and action. 

•  In order to reason about them 
carefully, we need clear 
mathematical foundations. 



Formal modeling 

• Model systems using interacting automata. 
•  Not finite-state automata, but more elaborate automata that may 

include complex states, timing information, probabilistic behavior, 
and both discrete and continuous state changes.   

•  Support composition and abstraction.   
•  Support rigorous analysis for correctness and costs. 



Key ideas 
• Distinguish among: 

•  The problems to be solved,  
•  The platforms on which the problems must be solved, and  
•  The algorithms that solve the problems on the platforms. 

• Define cost metrics, such as time, local storage space, and 
amount of communication. 

• Use the metrics to analyze and compare algorithms and 
prove lower bounds. 

• Q:  How could this approach help biology research? 



Biology research 
•  Model a system of insects, or cells, using interacting automata. 
•  Define formally, separately: 

•  The problems the systems solve (distinguishing cells, building structures, 
foraging, reaching consensus, task allocation, …), 

•  The physical capabilities of the systems, and  
•  The strategies (algorithms) that are used by the systems. 

•  Identify cost metrics (time, energy,…) 
•  Analyze and compare strategies. 
•  Prove inherent limitations. 
•  Use the results to: 

•  Predict system behavior. 
•  Explain why a biological system has evolved to have the structure and 

behavior it has. 



The rest of the talk: 
Two standard examples from distributed algorithms: 

1.  Leader election 
2.  Maximal independent set 

How one might apply distributed algorithm ideas in 
biology 

Two preliminary biology-related examples: 
3.  Ant foraging 
4.  Ant task allocation 

Saket:  More biology-related examples 



Example 1:  Leader election 

• Ring of processes. 
• Computers, programs, robots, insects, cells,… 
• Communicate with neighbors by sending “messages”, in 

synchronous rounds. 



Example 1:  Leader election 

• Ring of processes. 
• Computers, programs, robots, insects, cells,… 
• Communicate with neighbors by sending “messages”, in 

synchronous rounds. 
• Problem:  Exactly one process should (eventually) 

announce that it is the leader. 
• Motivation: 

•  A leader in a computer network or robot swarm could take charge 
of a computation, directing everyone else’s activity. 

•  A leader ant could choose a new nest. 



Leader election 

     

•  Suppose that:   
•  Processes start out identical. 
•  The behavior of each process at each round is determined by its 

current state and incoming messages. 
•  Theorem:  In this case, it’s impossible for any distributed 

algorithm to elect a leader. 
•  Proof:  By contradiction.   

•  Suppose we have an algorithm that works. 
•  All processes start out identical. 
•  At round 1, they all do the same thing (send the same messages, 

make the same state changes), so they are again identical. 
•  Same for round 2, etc. 
•  Since the algorithm solves the problem, some process must 

eventually announce that it is the leader. 
•  But then everyone does, contradiction. 

 



If processes aren’t identical: 

• E.g., they have unique ID numbers. 

• Algorithm:   
•  Send a message containing your ID clockwise. 
•  When you receive an ID, compare it with your own ID. 
•  If the incoming ID is: 

•  Bigger, pass it on. 
•  Smaller, discard it 
•  Equal, announce that you are the leader. 

• Elects the process with the largest identifier.   
• Takes 𝑂(𝑛) communication rounds, 𝑂( ​𝑛↑2 ) messages. 



If they are identical, but can 
make random choices: 
• No unique IDs. 
• Assume they know n, the total number of processes. 

• Algorithm:   
•  Toss an unfair coin, with probability 1/n of heads. 
•  If you toss heads, become a “leader candidate”. 
•  It’s “pretty likely” that there is exactly one candidate. 
•  The processes can verify this by passing messages around and 

seeing what they receive. 
•  If they did not succeed, try again… 

• Expected number of attempts is constant. 



Example 2:  Maximal Independent Set 
• Assume a general graph network, 

with processes at the nodes: 
• Problem:  Select some of the 

processes, so that they form a 
Maximal Independent Set. 

•  Independent:  No two neighbors are both in the set. 
• Maximal:  We can’t add any more nodes without violating 

independence. 
• Motivation: 

•  Communication networks:  Selected processes can take charge of 
communication, convey information to all the other processes. 

•  Developmental biology:  Distinguish cells in fruit fly’s nervous system 
to become “Sensory Organ Precursor” cells. 



Maximal Independent Set 

• Problem:  Select some of the processes, so that they form 
a Maximal Independent Set. 

•  Independent:  No two neighbors are both in the set. 
• Maximal:  We can’t add any more nodes without violating 

independence. 



Maximal Independent Set 

• Problem:  Select some of the processes, so that they form 
a Maximal Independent Set. 

•  Independent:  No two neighbors are both in the set. 
• Maximal:  We can’t add any more nodes without violating 

independence. 



Distributed MIS problem 

• Problem:  Processes should cooperate in a distributed 
(message-passing) algorithm to compute an MIS of the 
graph. 

• Processes in the MIS should output in and the others 
should output out. 

• Unsolvable by deterministic algorithms, in some graphs. 
• Probabilistic algorithm: 

• Assume processes know a 
“good” upper bound on n. 

• No IDs. 



Probabilistic MIS algorithm 
• Algorithm idea: 

•  Each process chooses a random 
ID from 1 to N. 

•  N should be large enough so it’s 
likely that all IDs are distinct. 

•  Neighbors exchange IDs. 

•  If a process’s ID is greater than all its neighbors’ IDs, then the 
process declares itself in, and notifies its neighbors. 

•  Anyone who hears a neighbor is in declares itself out, and 
notifies its neighbors. 

•  Processes construct a reduced graph, omitting those who 
have already decided. 

•  Repeat with the reduced graph, until no nodes remain. 



Example 

• All nodes start out identical. 



Example 

• Everyone chooses an ID. 
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Example 
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• Processes that chose 16 and 13 are in.  
• Processes that chose 11, 5, 2, and 10 are out. 



Example 
4 

12 

18 7 

• Undecided (gray) processes choose new IDs. 



Example 
4 

12 

18 7 

• Processes that chose 12 and 18 are in. 
• Process that chose 7 is out.  



Example 
12 

• Undecided (gray) process chooses a new ID. 



Example 
12 

•  It’s in. 



Properties of the algorithm 
•  If it ever finishes, it produces a Maximal Independent Set. 
•  It eventually finishes (with probability 1). 
•  The expected number of rounds until it finishes is 𝑂( ​
log ⁠𝑛) . 



More examples 
• Building spanning trees that minimize various network 

cost measures. 
• Motivation: 

•  Communication networks:  Use the tree for sending messages from 
the leader to everyone else. 

•  Slime molds:  Build a system of tubes that can transport nutrients 
from several food sources. 

• Building other network structures: 
•  Routes 
•  Clusters with leaders. 
•  … 



 More examples 
•  Reaching consensus, in the presence of faulty 

components (stopping, Byzantine). 
•  Motivation: 

•  Agree on aircraft altimeter readings. 
•  Agree on processing of data transactions. 
•  Ants:  Agree on a new nest location. 

•  Communication 
•  Resource allocation 
•  Task allocation 
•  Synchronization 
•  Data management  
•  Failure detection 
• … 

 



Recent Work:  Dynamic Networks 
• Most of distributed computing 

theory deals with fixed, wired 
networks. 

• Now researchers are also studying dynamic networks, 
which change while they are operating. 

• E.g. wireless networks, robot swarms. 
• Participants may join, leave, fail, and recover. 
• May move around (mobile systems). 



Computing in Dynamic Graph Networks 
• Network is a graph that changes arbitrarily from round to 

round (but it’s always connected). 
• At each round,  each process sends a message, which is 

received by all of its neighbors at that round. 

• Problems: 
•  Global message broadcast, 
•  Determining the minimum input. 
•  Counting the total number of nodes.  
•  Consensus 
•  Clock synchronization 



Robot Coordination Algorithms 

• Problems: 
•  Keep the swarm connected for communication. 
•  Achieve “flocking” behavior. 
•  Map an unknown environment. 
•  Determine global coordinates, working from local sensor 

readings. 
 

• A swarm of cooperating robots, engaged in: 
•  Search and rescue 
•  Exploration 

• Robots communicate, learn about their 
environment, perform coordinated activities. 



Biological Systems as Distributed 
Algorithms 
• Biological systems consist of many 

components, interacting with nearby 
components to achieve common goals. 

• Colonies of bacteria, bugs, birds, fish,… 
• Cells within a developing organism. 
• Brain networks. 



Biological Systems as Distributed 
Algorithms 
•  They are special kinds of distributed 

algorithms: 
•  Use simple chemical “messages”. 
•  Components have simple “state”, follow 

simple rules. 
•  Flexible, robust, adaptive. 



Problems 
•  Leader election:  Ants choose a queen. 
• Maximal Independent Set:  In fruit fly 

development, some cells become sensory 
organs.  

• Building communication structures: 
•  Slime molds build tubes to connect to food. 
•  Brain cells form circuits to establish 

memories. 
 



More problems 
• Consensus: Bees agree on location of a 

new hive. 
• Reliable local communication:  Cells use 

chemical signals. 
• Robot swarm coordination:  Birds, fish, 

bacteria travel in flocks / schools / 
colonies. 



Biological Systems as Distributed 
Algorithms 
• So, we can study biological systems as 

distributed algorithms. 
• Define models, problem statements. 
• Devise algorithms. 
• Prove impossibility results.   
• Goals: 

• Use distributed algorithms to understand 
biological system behavior. 

• Use biological systems to inspire new 
distributed algorithms.	
  

 



Biology-related examples: 

3.  Ant foraging 
4.  Ant task allocation 



Example 3:  Ant Foraging 
•  [Lenzen, Lynch, Newport, Radeva, PODC 2014]

•  𝑛 ants exploring a 2-dimensional grid for food, hidden within 

distance 𝐷  of the nest. 
• No communication. 
• Ants can return to the nest at any time. 
•  In terms of 𝐷  and 𝑛, we get an upper bound on the expected 

time for some ant to find the food. 
• We use an algorithm similar to [Feinerman, Korman]. 
• But we assume strict bounds on: 

•  The size of an ant’s memory. 
•  The fineness of probabilities used in 

an ant’s random choices. 



Ant Foraging 
• Algorithm (for each ant): 

•  Multi-phase 
•  In successive phases, search to successively greater distances. 
•  Distances are determined by random choices, using smaller 

probabilities at later phases. 

• Expected time for some ant to find the food is (roughly) 𝑂(​​
𝐷↑2 /𝑛 +𝐷). 

• Even in the “nonuniform” case, where ants 
don’t have a good estimate of 𝐷. 

• Analysis methods:  Basic conditional 
probability analysis, Chernoff bounds.  



• Assuming slightly smaller bounds on ant memory size and 
fineness of probabilities, we get: 

•  Lower bound:  There is a food placement such that, with 
high probability, the time for the first ant to find the food is 
(roughly) Ω(​𝐷↑2 ).  

• Proof methods:  
•  Model movement of an ant through its state space as a Markov chain. 

Ant Foraging 

•  Enhance this chain with information about the ant’s 
movement in the grid. 

•  Use properties of the enhanced Markov chain to 
analyze probabilities of reaching various locations in 
the grid within certain amounts of time. 



 Example 4:  Ant Task Allocation 
•  [Cornejo, Dornhaus, Lynch, Nagpal 2014] 
•  𝑛 ants allocate themselves among a fixed set 

of tasks (foraging for food, feeding larvae, 
cleaning the nest…) 

• No communication. 
• Obtain information from the environment about 

tasks’ current energy requirements. 
•  Try to minimize sum of squares of energy 

deficits for all tasks. 
• Special case we’ve studied: 

•  All ants are identical. 
•  Synchronous rounds of decision-making. 
•  Simple binary info (deficit/surplus for each task). 



 Ant Task Allocation 
• Algorithm: 

•  Probabilistic decisions, based on deficit/surplus info. 
•  States:  Resting, Reserve1, Reserve2, TempWorker, CoreWorker. 
•  Worker ants work on tasks; others are idle. 

•  Temps are more biased towards becoming idle. 
•  Reserves are biased towards the task they last worked on. 

•  Detailed state transition rules, task assignment rules. 

•  Theorem:  In a period of length Θ( ​log ⁠𝑛)   with unchanging 
demand, with high probability, the ants converge to a fixed 
allocation that satisfies all demands. 

• Proof:  Analyzes how oscillations get dampened. 



Limited ant memory size… 


