DISTRIBUTED ALGORITHMS
AND BIOLOGICAL SYSTEMS

Nancy Lynch, Saket Navlakha
BDA-2014

October, 2014
Austin, Texas

L
Distributed Algorithms + Biological Systems

- Distributed algorithms researchers have been considering
biological systems for the past few years, looking for:

- Biological problems and behaviors that they can model and study
using distributed algorithms methods, and

- Biological strategies that might be adapted for use in computer
networks.
- This has yielded interesting distributed algorithms results.

- Q: But what can distributed algorithms contribute to the
study of biological systems?

- This talk:

- Overview fundamental ideas from the

distributed algorithms research area, for
biology researchers.

- Consider how these might contribute to
biology research.

What are distributed algorithms?

- Abstract models for systems consisting of many interacting
components, working toward a common goal.

- Example systems: O

- Wired or wireless network of computers,
communicating or managing data.

- Robot swarm, searching an unknown
terrain, cleaning up, gathering resources,

What are distributed algorithms?

- Abstract models for systems consisting of many interacting
components, working toward a common goal.

- Example systems: O

- Wired or wireless network of computers,
communicating or managing data.

- Robot swarm, searching an unknown
terrain, cleaning up, gathering resources,

- Social insect colony, foraging, feeding,
finding new nests, resisting predators,...
- Components generally interact
directly with nearby components
only, using local communication.

Distributed algorithms research

- Models for distributed system platforms.
- Problems to be solved.

- Algorithms, analysis.

- Lower bounds, impossibility results.

- Typical problems: Communication,
consensus, data management, resource
allocation, synchronization, counting,...

- Models:

- Interacting automata.
- Local communication: individual message-

passing, local broadcast, or shared memory.

- Metrics: Time, amount of communication,
local storage.

Distributed
(,()mputmg

Algorithms

- Some based on simple rules, some use
complex constructions.

- Designed to minimize costs, according
to the cost metrics.

- Often designed to tolerate limited
failures.

- Researchers analyze correctness, (D3)
costs, and fault-tolerance. B D)istributed
“ ey . Computing

- Try to “optimize”, according to the i v
metrics.

Lower bounds and other
impossibility results

’-*:;-“« &vf“ l 3
Distributec
Algorithms [5+

50

- Theorems that say that you can'’t solve
a problem in a particular system model,
or you can’t solve it with a certain cost.

- Distributed computing theory includes
hundreds of impossibility results.
- Unlike sequential computing theory.

- Because distributed platforms are hard to

cope with: locality of knowledge and action '(?isfl'il)ll?<‘<1
impose strong limitations. | .omputing

Formal modeling

- Distributed algorithms can be

AR

complicated: & [i
- Many components act concurrently. | he Theory of
- May have different speeds, failures. Timed I/0 Automata
- Local knowledge and action. Second Edition

- In order to reason about them Dibsun K. Kaynar
carefully, we need clear g
mathematical foundations. |

B
Formal modeling

- Model systems using interacting automata.

- Not finite-state automata, but more elaborate automata that may
include complex states, timing information, probabilistic behavior,
and both discrete and continuous state changes.

- Support composition and abstraction.
- Support rigorous analysis for correctness and costs.

B
Key ideas

- Distinguish among:
- The problems to be solved,
- The platforms on which the problems must be solved, and
- The algorithms that solve the problems on the platforms.

- Define cost metrics, such as time, local storage space, and
amount of communication.

- Use the metrics to analyze and compare algorithms and
prove lower bounds.

- Q: How could this approach help biology research?

Biology research

- Model a system of insects, or cells, using interacting automata.

- Define formally, separately:

- The problems the systems solve (distinguishing cells, building structures,
foraging, reaching consensus, task allocation, ...),

- The physical capabilities of the systems, and
- The strategies (algorithms) that are used by the systems.

- Identify cost metrics (time, energy,...)
- Analyze and compare strategies.
- Prove inherent limitations.

- Use the results to:
- Predict system behavior.

- Explain why a biological system has evolved to have the structure and
behavior it has.

D
The rest of the talk:

Two standard examples from distributed algorithms:
1. Leader election
2. Maximal independent set

How one might apply distributed algorithm ideas in
biology

Two preliminary biology-related examples:
3. Ant foraging
4. Ant task allocation

Saket: More biology-related examples

Example 1: Leader election ~ ®—&
0\ /0
- Ring of processes. \.: .’/

- Computers, programs, robots, insects, cells,...

- Communicate with neighbors by sending “messages’, in
synchronous rounds.

Example 1: Leader election ®— €

O @

| N\

* Ring of processes. O @

- Computers, programs, robots, insects, cells,...

- Communicate with neighbors by sending “messages’, in
synchronous rounds.

- Problem: Exactly one process should (eventually)
announce that it is the leader.

- Motivation:

- Aleader in a computer network or robot swarm could take charge
of a computation, directing everyone else’s activity.

- A leader ant could choose a new nest.

| eader election o—@

Suppose that: ’\\ /:/

Processes start out identical. O‘_

The behavior of each process at each round is determined by its
current state and incoming messages.

Theorem: In this case, it's impossible for any distributed
algorithm to elect a leader.

Proof: By contradiction.
Suppose we have an algorithm that works.
All processes start out identical.

At round 1, they all do the same thing (send the same messages,
make the same state changes), so they are again identical.

Same for round 2, etc.

Since the algorithm solves the problem, some process must
eventually announce that it is the leader.

But then everyone does, contradiction.

If processes aren't identical:

- E.g., they have unique ID numbers.

- Algorithm:

- Send a message containing your ID clockwise.
- When you receive an ID, compare it with your own ID.
- If the incoming ID is:

- Bigger, pass it on.

- Smaller, discard it

- Equal, announce that you are the leader.

- Elects the process with the largest identifier.
- Takes 0(n») communication rounds, 0(272) messages.

If they are identical, but can
make random choices:

- No unique IDs.
- Assume they know n, the total number of processes.

- Algorithm:
- Toss an unfair coin, with probability 1/n of heads.
- If you toss heads, become a “leader candidate”.

- It's “pretty likely” that there is exactly one candidate.

- The processes can verify this by passing messages around and
seeing what they receive.

- If they did not succeed, try again...

- Expected number of attempts is constant.

Example 2: Maximal Independent Set

- Assume a general graph network,
with processes at the nodes:

- Problem: Select some of the

processes, so that they form a
Maximal Independent Set.

- Independent: No two neighbors are both in the set.

- Maximal: We can’t add any more nodes without violating
Independence.

- Motivation:

- Communication networks: Selected processes can take charge of
communication, convey information to all the other processes.

- Developmental biology: Distinguish cells in fruit fly’s nervous system
to become “Sensory Organ Precursor” cells.

Maximal Independent Set

- Problem: Select some of the processes, so that they form
a Maximal Independent Set.

- Independent: No two neighbors are both in the set.

- Maximal: We can’t add any more nodes without violating
iIndependence.

Maximal Independent Set

- Problem: Select some of the processes, so that they form
a Maximal Independent Set.

- Independent: No two neighbors are both in the set.

- Maximal: We can’t add any more nodes without violating
iIndependence.

L
Distributed MIS problem

- Assume processes know a ®
“good” upper bound on n.

- No IDs.

- Problem: Processes should cooperate in a distributed
(message-passing) algorithm to compute an MIS of the
graph.

- Processes in the MIS should output in and the others
should output out.

- Unsolvable by deterministic algorithms, in some graphs.
- Probabilistic algorithm:

B
Probabillistic MIS algorithm

- Algorithm idea: O

- Each process chooses a random
ID from 1 to N.

- N should be large enough so it’s
likely that all IDs are distinct.

- Neighbors exchange IDs.

- If a process’s ID is greater than all its neighbors’ IDs, then the
process declares itself in, and notifies its neighbors.

- Anyone who hears a neighbor is in declares itself out, and
notifies its neighbors.

- Processes construct a reduced graph, omitting those who
have already decided.

- Repeat with the reduced graph, until no nodes remain.

Example

- All nodes start out identical.

9

5

- Everyone chooses an ID.

Example

10

9 13

5

- Processes that chose 16 and 13 are in.
- Processes that chose 11, 5, 2, and 10 are out.

Example

12

- Undecided (gray) processes choose new IDs.

12

- Processes that chose 12 and 18 are in.
- Process that chose 7 is out.

Example

- Undecided (gray) process chooses a new ID.

Example

- It's in.

Properties of the algorithm

- If it ever finishes, it produces a Maximal Independent Set.

- It eventually finishes (with probability 1).
- The expected number of rounds until it finishes is J(
logn) .

More examples

- Building spanning trees that minimize various network
cost measures.

- Motivation:

- Communication networks: Use the tree for sending messages from
the leader to everyone else.

- Slime molds: Build a system of tubes that can transport nutrients
from several food sources.

- Building other network structures:

- Routes ‘
- Clusters with leaders.

More examples

- Reaching consensus, in the presence of faulty
components (stopping, Byzantine).

- Motivation:
- Agree on aircraft altimeter readings.

- Agree on processing of data transactions.
- Ants: Agree on a new nest location.

- Communication

- Resource allocation
- Task allocation

- Synchronization

- Data management
- Failure detection

Distributec £26
Algorithms | 56 2+
) o i

¥ . . 4
-\:.-m'y A },_um:}.

Distributed
(,()mputmg

B
Recent Work: Dynamic Networks

- Most of distributed computing O
theory deals with fixed, wired
networks.

- Now researchers are also studying dynamic networks,
which change while they are operating.

- E.g. wireless networks, robot swarms.
- Participants may join, leave, fail, and recover.
- May move around (mobile systems).

L
Computing in Dynamic Graph Networks

- Network is a graph that changes arbitrarily from round to
round (but it's always connected).

- At each round, each process sends a message, which is
received by all of its neighbors at that round.

- Problems:
- Global message broadcast,
- Determining the minimum input.
- Counting the total number of nodes.
- Consensus '

- Clock synchronization

Robot Coordination Algorithms

- A swarm of cooperating robots, engaged in:
- Search and rescue

- Exploration

- Robots communicate, learn about their
environment, perform coordinated activities.

- Problems:
- Keep the swarm connected for communication.
- Achieve “flocking” behavior.
- Map an unknown environment.

- Determine global coordinates, working from local sensor
readings.

Biological Systems as Distributed
Algorithms

- Biological systems consist of many
components, interacting with nearby
components to achieve common goals.

- Colonies of bacteria, bugs, birds, fish,...

- Cells within a developing organism.

- Brain networks.

Biological Systems as Distributed
Algorithms

- They are special kinds of distributed
algorithms:

- Use simple chemical “messages”.

- Components have simple “state”, follow
simple rules.

- Flexible, robust, adaptive.

Problems

- Leader election: Ants choose a queen.

- Maximal Independent Set: In fruit fly

development, some cells become sensory
organs.

- Building communication structures:
- Slime molds build tubes to connect to food.

- Brain cells form circuits to establish
memories.

More problems

- Consensus: Bees agree on location of a
new hive.

- Reliable local communication: Cells use
chemical signals.

- Robot swarm coordination: Birds, fish,
bacteria travel in flocks / schools /
colonies.

Biological Systems as Distributed
Algorithms '

- S0, we can study biological systems as
distributed algorithms.

- Define models, problem statements.
- Devise algorithms.

- Prove impossibility results.

- Goals:

- Use distributed algorithms to understand
biological system behavior.

- Use biological systems to inspire new
distributed algorithms.

Biology-related examples:

3. Ant foraging
4. Ant task allocation

Example 3: Ant Foraging

- [Lenzen, Lynch, Newport, Radeva, PODC 2014]

- n ants exploring a 2-dimensional grid for food, hidden within
distance 2 of the nest.

- No communication.
- Ants can return to the nest at any time.

- In terms of 2 and 7, we get an upper bound on the expected
time for some ant to find the food.

- We use an algorithm similar to [Feinerman, Korman].

- But we assume strict bounds on: ;‘%
- The size of an ant's memory.

- The fineness of probabilities used in

an ant’s random choices.

B
Ant Foraging

- Algorithm (for each ant):

- Multi-phase
- In successive phases, search to successively greater distances.

- Distances are determined by random choices, using smaller
probabilities at later phases.
- Expected time for some ant to find the food is (roughly) O(
DT2 /n+D).

- Even in the “nonuniform” case, where ants %
don’t have a good estimate of 2.

- Analysis methods: Basic conditional
probability analysis, Chernoff bounds. ®

Ant Foraging

- Assuming slightly smaller bounds on ant memory size and
fineness of probabilities, we get:

- Lower bound: There is a food placement such that, with
high probability, the time for the first ant to find the food is
(roughly) QD72).

- Proof methods:

- Model movement of an ant through its state space as a Markov chain.

- Enhance this chain with information about the ant’s |
movement in the grid. é

- Use properties of the enhanced Markov chain to
analyze probabilities of reaching various locations in
the grid within certain amounts of time. [)

Example 4. Ant Task Allocation

- [Cornejo, Dornhaus, Lynch, Nagpal 2014]

- n ants allocate themselves among a fixed set
of tasks (foraging for food, feeding larvae,
cleaning the nest...)

- No communication.

- Obtain information from the environment about
tasks’ current energy requirements.

- Try to minimize sum of squares of energy
deficits for all tasks.

- Special case we've studied:

- All ants are identical.
- Synchronous rounds of decision-making.
- Simple binary info (deficit/surplus for each task).

Ant Task Allocation

- Algorithm:
- Probabilistic decisions, based on deficit/surplus info.
- States: Resting, Reserve1, Reserve2, TempWorker, CoreWorker.
- Worker ants work on tasks; others are idle.
- Temps are more biased towards becoming idle.
- Reserves are biased towards the task they last worked on.
- Detailed state transition rules, task assignment rules.

- Theorem: In a period of length ©(logz) with unchanging
demand, with high probability, the ants converge to a fixed
allocation that satisfies all demands.

- Proof: Analyzes how oscillations get dampened.

Limited ant memory size...

This is my brother
Dave. He's real smart
- brain the size

