
DISTRIBUTED ALGORITHMS
AND BIOLOGICAL SYSTEMS

Nancy Lynch, Saket Navlakha
BDA-2014
October, 2014
Austin, Texas

Distributed Algorithms + Biological Systems
• Distributed algorithms researchers have been considering

biological systems for the past few years, looking for:
•  Biological problems and behaviors that they can model and study

using distributed algorithms methods, and
•  Biological strategies that might be adapted for use in computer

networks.
•  This has yielded interesting distributed algorithms results.
• Q: But what can distributed algorithms contribute to the

study of biological systems?
•  This talk:

•  Overview fundamental ideas from the
distributed algorithms research area, for
biology researchers.

•  Consider how these might contribute to
biology research.

What are distributed algorithms?
• Abstract models for systems consisting of many interacting

components, working toward a common goal.

• Example systems:
•  Wired or wireless network of computers,

communicating or managing data.
•  Robot swarm, searching an unknown

terrain, cleaning up, gathering resources,
…

What are distributed algorithms?
• Abstract models for systems consisting of many interacting

components, working toward a common goal.

• Example systems:
•  Wired or wireless network of computers,

communicating or managing data.
•  Robot swarm, searching an unknown

terrain, cleaning up, gathering resources,
…

•  Social insect colony, foraging, feeding,
finding new nests, resisting predators,…

• Components generally interact
directly with nearby components
only, using local communication.

Distributed algorithms research
• Models for distributed system platforms.
• Problems to be solved.
• Algorithms, analysis.
•  Lower bounds, impossibility results.
•  Typical problems: Communication,

consensus, data management, resource
allocation, synchronization, counting,…

• Models:
•  Interacting automata.
•  Local communication: individual message-

passing, local broadcast, or shared memory.
•  Metrics: Time, amount of communication,

local storage.

Algorithms
• Some based on simple rules, some use

complex constructions.
• Designed to minimize costs, according

to the cost metrics.
• Often designed to tolerate limited

failures.
• Researchers analyze correctness,

costs, and fault-tolerance.
•  Try to “optimize”, according to the

metrics.

Lower bounds and other
impossibility results
•  Theorems that say that you can’t solve

a problem in a particular system model,
or you can’t solve it with a certain cost.

• Distributed computing theory includes
hundreds of impossibility results.
•  Unlike sequential computing theory.
•  Because distributed platforms are hard to

cope with: locality of knowledge and action
impose strong limitations.

Formal modeling
• Distributed algorithms can be

complicated:
•  Many components act concurrently.
•  May have different speeds, failures.
•  Local knowledge and action.

•  In order to reason about them
carefully, we need clear
mathematical foundations.

Formal modeling

• Model systems using interacting automata.
•  Not finite-state automata, but more elaborate automata that may

include complex states, timing information, probabilistic behavior,
and both discrete and continuous state changes.

•  Support composition and abstraction.
•  Support rigorous analysis for correctness and costs.

Key ideas
• Distinguish among:

•  The problems to be solved,
•  The platforms on which the problems must be solved, and
•  The algorithms that solve the problems on the platforms.

• Define cost metrics, such as time, local storage space, and
amount of communication.

• Use the metrics to analyze and compare algorithms and
prove lower bounds.

• Q: How could this approach help biology research?

Biology research
•  Model a system of insects, or cells, using interacting automata.
•  Define formally, separately:

•  The problems the systems solve (distinguishing cells, building structures,
foraging, reaching consensus, task allocation, …),

•  The physical capabilities of the systems, and
•  The strategies (algorithms) that are used by the systems.

•  Identify cost metrics (time, energy,…)
•  Analyze and compare strategies.
•  Prove inherent limitations.
•  Use the results to:

•  Predict system behavior.
•  Explain why a biological system has evolved to have the structure and

behavior it has.

The rest of the talk:
Two standard examples from distributed algorithms:

1.  Leader election
2.  Maximal independent set

How one might apply distributed algorithm ideas in
biology

Two preliminary biology-related examples:
3.  Ant foraging
4.  Ant task allocation

Saket: More biology-related examples

Example 1: Leader election

• Ring of processes.
• Computers, programs, robots, insects, cells,…
• Communicate with neighbors by sending “messages”, in

synchronous rounds.

Example 1: Leader election

• Ring of processes.
• Computers, programs, robots, insects, cells,…
• Communicate with neighbors by sending “messages”, in

synchronous rounds.
• Problem: Exactly one process should (eventually)

announce that it is the leader.
• Motivation:

•  A leader in a computer network or robot swarm could take charge
of a computation, directing everyone else’s activity.

•  A leader ant could choose a new nest.

Leader election

•  Suppose that:
•  Processes start out identical.
•  The behavior of each process at each round is determined by its

current state and incoming messages.
•  Theorem: In this case, it’s impossible for any distributed

algorithm to elect a leader.
•  Proof: By contradiction.

•  Suppose we have an algorithm that works.
•  All processes start out identical.
•  At round 1, they all do the same thing (send the same messages,

make the same state changes), so they are again identical.
•  Same for round 2, etc.
•  Since the algorithm solves the problem, some process must

eventually announce that it is the leader.
•  But then everyone does, contradiction.

If processes aren’t identical:

• E.g., they have unique ID numbers.

• Algorithm:
•  Send a message containing your ID clockwise.
•  When you receive an ID, compare it with your own ID.
•  If the incoming ID is:

•  Bigger, pass it on.
•  Smaller, discard it
•  Equal, announce that you are the leader.

• Elects the process with the largest identifier.
• Takes 𝑂(𝑛) communication rounds, 𝑂(​𝑛↑2 ) messages.

If they are identical, but can
make random choices:
• No unique IDs.
• Assume they know n, the total number of processes.

• Algorithm:
•  Toss an unfair coin, with probability 1/n of heads.
•  If you toss heads, become a “leader candidate”.
•  It’s “pretty likely” that there is exactly one candidate.
•  The processes can verify this by passing messages around and

seeing what they receive.
•  If they did not succeed, try again…

• Expected number of attempts is constant.

Example 2: Maximal Independent Set
• Assume a general graph network,

with processes at the nodes:
• Problem: Select some of the

processes, so that they form a
Maximal Independent Set.

•  Independent: No two neighbors are both in the set.
• Maximal: We can’t add any more nodes without violating

independence.
• Motivation:

•  Communication networks: Selected processes can take charge of
communication, convey information to all the other processes.

•  Developmental biology: Distinguish cells in fruit fly’s nervous system
to become “Sensory Organ Precursor” cells.

Maximal Independent Set

• Problem: Select some of the processes, so that they form
a Maximal Independent Set.

•  Independent: No two neighbors are both in the set.
• Maximal: We can’t add any more nodes without violating

independence.

Maximal Independent Set

• Problem: Select some of the processes, so that they form
a Maximal Independent Set.

•  Independent: No two neighbors are both in the set.
• Maximal: We can’t add any more nodes without violating

independence.

Distributed MIS problem

• Problem: Processes should cooperate in a distributed
(message-passing) algorithm to compute an MIS of the
graph.

• Processes in the MIS should output in and the others
should output out.

• Unsolvable by deterministic algorithms, in some graphs.
• Probabilistic algorithm:

• Assume processes know a
“good” upper bound on n.

• No IDs.

Probabilistic MIS algorithm
• Algorithm idea:

•  Each process chooses a random
ID from 1 to N.

•  N should be large enough so it’s
likely that all IDs are distinct.

•  Neighbors exchange IDs.

•  If a process’s ID is greater than all its neighbors’ IDs, then the
process declares itself in, and notifies its neighbors.

•  Anyone who hears a neighbor is in declares itself out, and
notifies its neighbors.

•  Processes construct a reduced graph, omitting those who
have already decided.

•  Repeat with the reduced graph, until no nodes remain.

Example

• All nodes start out identical.

Example

• Everyone chooses an ID.

16

5
13

2

10

1

11

9

8 7

Example

16

5
13

2

10

1

11

9

8 7

• Processes that chose 16 and 13 are in.
• Processes that chose 11, 5, 2, and 10 are out.

Example
4

12

18 7

• Undecided (gray) processes choose new IDs.

Example
4

12

18 7

• Processes that chose 12 and 18 are in.
• Process that chose 7 is out.

Example
12

• Undecided (gray) process chooses a new ID.

Example
12

•  It’s in.

Properties of the algorithm
•  If it ever finishes, it produces a Maximal Independent Set.
•  It eventually finishes (with probability 1).
•  The expected number of rounds until it finishes is 𝑂(​
log ⁠𝑛) .

More examples
• Building spanning trees that minimize various network

cost measures.
• Motivation:

•  Communication networks: Use the tree for sending messages from
the leader to everyone else.

•  Slime molds: Build a system of tubes that can transport nutrients
from several food sources.

• Building other network structures:
•  Routes
•  Clusters with leaders.
•  …

 More examples
•  Reaching consensus, in the presence of faulty

components (stopping, Byzantine).
•  Motivation:

•  Agree on aircraft altimeter readings.
•  Agree on processing of data transactions.
•  Ants: Agree on a new nest location.

•  Communication
•  Resource allocation
•  Task allocation
•  Synchronization
•  Data management
•  Failure detection
• …

Recent Work: Dynamic Networks
• Most of distributed computing

theory deals with fixed, wired
networks.

• Now researchers are also studying dynamic networks,
which change while they are operating.

• E.g. wireless networks, robot swarms.
• Participants may join, leave, fail, and recover.
• May move around (mobile systems).

Computing in Dynamic Graph Networks
• Network is a graph that changes arbitrarily from round to

round (but it’s always connected).
• At each round, each process sends a message, which is

received by all of its neighbors at that round.

• Problems:
•  Global message broadcast,
•  Determining the minimum input.
•  Counting the total number of nodes.
•  Consensus
•  Clock synchronization

Robot Coordination Algorithms

• Problems:
•  Keep the swarm connected for communication.
•  Achieve “flocking” behavior.
•  Map an unknown environment.
•  Determine global coordinates, working from local sensor

readings.

• A swarm of cooperating robots, engaged in:
•  Search and rescue
•  Exploration

• Robots communicate, learn about their
environment, perform coordinated activities.

Biological Systems as Distributed
Algorithms
• Biological systems consist of many

components, interacting with nearby
components to achieve common goals.

• Colonies of bacteria, bugs, birds, fish,…
• Cells within a developing organism.
• Brain networks.

Biological Systems as Distributed
Algorithms
•  They are special kinds of distributed

algorithms:
•  Use simple chemical “messages”.
•  Components have simple “state”, follow

simple rules.
•  Flexible, robust, adaptive.

Problems
•  Leader election: Ants choose a queen.
• Maximal Independent Set: In fruit fly

development, some cells become sensory
organs.

• Building communication structures:
•  Slime molds build tubes to connect to food.
•  Brain cells form circuits to establish

memories.

More problems
• Consensus: Bees agree on location of a

new hive.
• Reliable local communication: Cells use

chemical signals.
• Robot swarm coordination: Birds, fish,

bacteria travel in flocks / schools /
colonies.

Biological Systems as Distributed
Algorithms
• So, we can study biological systems as

distributed algorithms.
• Define models, problem statements.
• Devise algorithms.
• Prove impossibility results.
• Goals:

• Use distributed algorithms to understand
biological system behavior.

• Use biological systems to inspire new
distributed algorithms.	

Biology-related examples:

3.  Ant foraging
4.  Ant task allocation

Example 3: Ant Foraging
•  [Lenzen, Lynch, Newport, Radeva, PODC 2014]

•  𝑛 ants exploring a 2-dimensional grid for food, hidden within

distance 𝐷 of the nest.
• No communication.
• Ants can return to the nest at any time.
•  In terms of 𝐷 and 𝑛, we get an upper bound on the expected

time for some ant to find the food.
• We use an algorithm similar to [Feinerman, Korman].
• But we assume strict bounds on:

•  The size of an ant’s memory.
•  The fineness of probabilities used in

an ant’s random choices.

Ant Foraging
• Algorithm (for each ant):

•  Multi-phase
•  In successive phases, search to successively greater distances.
•  Distances are determined by random choices, using smaller

probabilities at later phases.

• Expected time for some ant to find the food is (roughly) 𝑂(​​
𝐷↑2 /𝑛 +𝐷).

• Even in the “nonuniform” case, where ants
don’t have a good estimate of 𝐷.

• Analysis methods: Basic conditional
probability analysis, Chernoff bounds.

• Assuming slightly smaller bounds on ant memory size and
fineness of probabilities, we get:

•  Lower bound: There is a food placement such that, with
high probability, the time for the first ant to find the food is
(roughly) Ω(​𝐷↑2 ).

• Proof methods:
•  Model movement of an ant through its state space as a Markov chain.

Ant Foraging

•  Enhance this chain with information about the ant’s
movement in the grid.

•  Use properties of the enhanced Markov chain to
analyze probabilities of reaching various locations in
the grid within certain amounts of time.

 Example 4: Ant Task Allocation
•  [Cornejo, Dornhaus, Lynch, Nagpal 2014]
•  𝑛 ants allocate themselves among a fixed set

of tasks (foraging for food, feeding larvae,
cleaning the nest…)

• No communication.
• Obtain information from the environment about

tasks’ current energy requirements.
•  Try to minimize sum of squares of energy

deficits for all tasks.
• Special case we’ve studied:

•  All ants are identical.
•  Synchronous rounds of decision-making.
•  Simple binary info (deficit/surplus for each task).

 Ant Task Allocation
• Algorithm:

•  Probabilistic decisions, based on deficit/surplus info.
•  States: Resting, Reserve1, Reserve2, TempWorker, CoreWorker.
•  Worker ants work on tasks; others are idle.

•  Temps are more biased towards becoming idle.
•  Reserves are biased towards the task they last worked on.

•  Detailed state transition rules, task assignment rules.

•  Theorem: In a period of length Θ(​log ⁠𝑛)  with unchanging
demand, with high probability, the ants converge to a fixed
allocation that satisfies all demands.

• Proof: Analyzes how oscillations get dampened.

Limited ant memory size…

