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How Honeybees Break
a Decision-Making Deadlock

Jeremy E. Niven

or a honeybee swarm of potentially
F thousands of individuals, choosing a

home is a momentous decision. Fail-
ing to choose a single location may cause
the swarm to split and the queen to be lost
(1); choosing poorly may limit the swarm’s
growth or expose it to freezing temperatures
during the winter (2). Studies over the past
60 years have shown that honeybee swarms
use quorum sensing, a form of decentral-
ized decision-making, to choose a suit-
able nest site, but many gaps remain in our
understanding of this process. On page 108
in this issue, Seeley et al. (3) show that an
inhibitory signal between bees advocating
different locations allows them to make a
decision even when potential nest sites are
equally favorable.

Honeybee colonies reproduce through
budding, whereby the queen and some
workers leave the nest and bivouac on a
branch. Some of the most experienced
workers leave to locate suitable nest sites
(4). Upon their return, these scouts adver-
tise potential locations and their qualities
by performing a waggle dance. During
the dance, the scout walks straight across
the bivouacking bees, making side-to-side
waggles of her body. She then stops, turns
left or right, and walks a semicircular return
path to her starting point. The waggle run’s
duration and orientation encode the length
and the angle of the outward flight, respec-
tively, whereas the number of dance circuits

encodes the quality of the potential nest site
(5). Waggle dances recruit additional scouts
to a site until a quorum number is reached
and the swarm prepares to move to its new
home (2).

Scouts advocating less attractive sites
produce fewer dance circuits and make
fewer trips to the site (6). Along with the
recruitment of uncommitted scouts to more
attractive sites, this was assumed to be suf-
ficient to enable the bees to reach a quorum,
thereby deciding which site to choose (2).
However, foraging workers use an additional
type of signal to communicate with other
bees. Upon returning from a feeder that is
crowded or where a predator is present, for-
ager bees produce a brief vibrational signal
that discourages other bees from producing
waggle dances that advertise the location of
that feeder (7). Hypothesizing that a similar
signal may be used by house-hunting bees,
Seeley et al. set out to observe scout behav-
ior. They found that scouts received “stop”
signals—head butts mainly to their head and
thorax—from other bees during the return
run of the waggle dance (see the figure).
These stop signals occurred more frequently
just before a scout stopped dancing.

The authors next established swarms on
Appledore Island (Maine), which lacks nat-
ural nest sites, and gave them a choice of
two identical nest boxes. Scouts visiting one
box were marked with yellow paint; those
visiting the other were marked with pink
paint. Most of the bees giving “stop” signals

During the search for a new nest site, use
of an inhibitory signal enables honeybees
to reach a decision.

selection process, dancing scouts with yel-
low paint received many more stop signals
from scouts with pink paint and vice versa,
showing that scouts from one site preferen-
tially inhibit the dances of those advertis-
ing a competing site (see the figure, panel
A). Once the scouts started implementing
the decision, dancing scouts received stop
signals from scouts that had visited either
site. When swarms were given only one nest
box, scouts received few stop signals dur-
ing the decision phase but many during the
implementation phase. This general inhibi-
tion of dancing during the implementation
phase presumably ensures that all the bees
are present when the swarm takes flight.

To demonstrate a role for the observed
cross inhibition between scouts advertising
competing sites, Seeley et al. constructed a
series of computational models of the col-
lective decision-making process, based
on the interaction rules they had observed
among the scouts. Models that incorporated
no or indiscriminate stop signaling pre-
dicted that the scouts would reach a stable
deadlock, failing to choose between two

Cease and desist. (A) Seeley et al. have found
that during house hunting, scouts advertising one
nest site preferentially inhibit scouts advertising
another site during the decision-making process.
Inhibition is conveyed by a “stop” signal, given
mainly to the head and thorax of a scout during
the return phase of the waggle dance. (B) Stop sig-
nals from scout bees inhibit other scouts, discour-
aaina them from advertisina a potential site. These
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During the search for a new nest site, use
of an inhibitory signal enables honeybees
to reach a decision.

School of Life Sciences, University of Sussex, Falmer, Brigh-
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had paint marks, showing they were scouts.
During the decision phase of the nest-site

e
inhibitory stop signals comblne with recruitment of
neutral scouts to produce a winning site.
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SPONTANEOUS POSITIVE

ACTIVATION FEEDBACK
e AY CROSS-
!NI—HB'(T‘ION
dya (Yyuya — yA(OéA — yupA +ypop))dt
+k/yt + y5 + v yadWa
dys = (yuvvs —yB(aB —Yups +yaoca))dt

+hyE +yE +yEyLdWi

\ PAIS ET AL. (2012)
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[1 PECISION-MAKERS IMPLEMENTING (SOMETHING LIKE)
THIS MECHANISM SHOULD EXHIBIT:

[0 WEBER'S LAW (STANDARD OBSERVATION)

[1 SPEED-ACCURACY TRADE-OFFS (STANDARD OBS.)

T REACTION-TIME SENSITIVITY TO ABSOLUTE VALUE

[l PECISION-MEMORY BASED ON PREVIOUS STIMULI
VALUES
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[0l TWOo REWARD INSTRUCTIONS:
[0 PERCEPTUAL: FIXED REWARD FOR CORRECT CHOICE, ZERO FOR INCORRECT

[l VALUE: REWARD PROPORTIONAL TO NUMBER OF DOTS
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[l INCONSISTENT WITH:

[ SIMPLE DRIFT-DIFFUSION
MODEL

[0 CONSISTENT WITH:
[0 sTOoP-SIGNAL MODEL

0 ACCUMULATOR MODELS

[l RACE/SERUENTIAL CHOICE
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(MUSHROOM BODIES)

( PROTOCEREBRA )

& ( Cortex ) SUPERMEDIAL
e PROTOCEREBRUM

( FAN-SHAPED BODY ) “

ey
RAIN

BOGACZ § GURNEY, 2007 STRAUSFELD § HIRTH, 2013

LATERAL
ACCESSORY LOBE

l

CENTRAL COMPLEX
OUTPUT

(v. Inhibition —— Excitation —A\ Diffuse excitationj




RO @OKINGTFORTMPEEMENTATIOIN G
VALUE-SENSITIVE DECISION-MAKING

dya = (yuya —ya(laa —yuvpa +ysor))dt
+kv/y2 +y3 +yEyidWa
dyp = (yuvvs —yslaB —yups +yaca))dt

+k\yE + v + yZyndWs

PAIS ET AL. (20132)
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[1 AS WELL AS DESIRARLE DECISION
PROPERTIES, STOP-SIGNAL MODEL
IMPLEMENTS ENERQGY EFFICIENT
PESIGION-MAKING

[1 SHOULD BE SUWTARBRLE FOR
CONTROLLER DESIGN FOR
COLLECTIVE BEHAVIOUR

RODERICH GROSS
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