
FROM HOUSE-HUNTING HONEYBEES TO 
NEURAL MODELS AND PSYCHOPHYSICS

JAMES A. R. MARSHALL 
DEPARTMENT OF COMPUTER SCIENCE AND KROTO RESEARCH INSTITUTE, 

UNIVERSITY OF SHEFFIELD

T
H

O
M

A
S

 S
C

H
L

E
G

E
L

U
N

IV
E

R
S

IT
Y

 O
F

 B
R

IS
T

O
L

P
E

T
E

R
 S

W
A

IN



3

online atlas of the antennal lobe (fig. 2.1)32, and experimental data on neuronal and neural 
population interactions47,48, including unpublished data from Prof Giurfa’s lab. In the course of 
building this model, areas in which sufficient knowledge of the olfactory pathway is lacking may be 
identified and supplemented by additional biological experiments conducted by the members of 
Prof Giurfa’s lab. The main challenges in this objective will be the consolidation of previous 
modelling work, data fusion of the wealth of experimental data from different experiments, 
laboratories and measurement technologies between data sets and with the model, and the multi-
scale model description of the resulting body of knowledge on the olfactory pathway. Milestone 1 
will be a mechanistic model of the complete olfactory learning pathway, informed by learning and 
classification theory and based on neurological data, that is able to account for existing 
experimental data and make testable predictions. Papers on the modelling and on the analysis of 
experimental results will also be published as part of this milestone.

   

Figure 2. (1) Odour-stimulus presentation device and manual presentation of sucrose reward to a 
restrained honeybee and (inset) real-time calcium-fluorescent brain imaging from odour-
conditioned honeybee, with outlines of glomeruli superimposed (brain imaging apparatus not 
pictured). (2) Simulated flight device used with Lucilia flies (from Kimmerle & Egelhaaf49); a similar 
visual stimulation device and in-vivo optic tubercle imaging techniques have recently been 
developed for honeybees at Université Paul Sabatier50.

Objective 2: Modelling of the honeybee visual system and its learning pathways
This objective will study the brain subsystems involved in vision and visual learning. Optic flow, 
which is already well studied, is not considered in this objective, but in objective 4. The visual 
learning and categorisation abilities of honeybees appear sophisticated51, yet the neural bases of 
these abilities are comparatively unknown.

The modelling of these capabilities will take advantage of recent research from our 
collaborator on the anatomy and physiology of the honeybee’s visual system50. This work 
constitutes a major advance in our understanding of the bee visual system, and places us in a 
unique position to tackle the modelling of bee vision. In particular, the new data suggest several 
new substructures and their interconnection in the anterior optic turbcle  (AOTu) - a major centre of 
visual processing in the bee – together with projections from, and inputs to, the AOTu from other 
brain areas. Thus,  the AOTu is comprised of four main compartments and receives input from 
other visual areas (the medulla and lobula) and projects to the protocerebrum. The AOTu also 
receives input from the mushroom body via a single identified neuron. The use of such neurons in 
the honeybee (including the VUMmx1 reward neuron) is a key pointer to critical function, and 
innervation from the mushroom body is indicative of a role for the AOTu in cognitive processing.   
Calcium imaging data in50 also identify specific processing streams within the AOTu which reflect a 
spatial segregation of visual processing into dorsal and ventral areas (above and below the bee’s 
body respectively). This is another vital cue to functional segregation in which different systems 
might deal with processing from sky cues (spectral gradients, position of the sun etc)  and ground-
based cues associated with form and colour. 

We will use these anatomical and functional data to constrain models of the bee visual 
system at the population and microcircuit levels. In this regard, Gurney’s experience with multilevel 
modeling53 and in reverse engineering of biological microcircuits54,55 will be invaluable. Specifically, !
we!will develop model-based hypotheses on object recognition (orientation of grids or shapes)56 
and colour discrimination adopting, for instance, mechanisms from57. Further, we will seek 
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Part 2: Case for Support

Abstract
The development of an ‘artificial brain’ is one of the greatest challenges in artificial intelligence, and 
its success will have innumerable benefits in many and diverse fields, from robotics to cognitive 
psychology. Most research effort is spent on modelling vertebrate brains. Yet smaller brains can 
display comparable cognitive sophistication, while being more experimentally accessible and 
amenable to modelling. The ‘Green Brain’ project will combine computational neuroscience 
modelling, learning and decision theory, modern parallel computing methods and robotics with data 
from state-of-the-art neurobiological experiments on cognition in the honeybee Apis mellifera, to 
build and deploy a modular model of the honeybee brain describing detection, classification and 
learning in the olfactory and optic pathways as well as multi-sensory integration across these 
sensory modalities. Unlike other brain models which use expensive traditional supercomputing 
resources, the ‘Green Brain’ will be implemented on massively parallel, but affordable GPU 
technology. The ‘Green Brain’ will be deployed for the real-time control of a flying robot able to 
sense and act autonomously; this robot testbed will be used to demonstrate the development of 
new biomimetic control algorithms for artificial intelligence and robotics applications. Further, by 
modelling complete sensorimotor loops endowed with behaviour, we will be able to begin 
examining the nature of embodied cognition in biological brains rather than abstract agents.

Background
In the study of cognition to date, researchers have typically studied the vertebrate brain, while 
‘simpler’ organisms such as social insects have often been considered as simple reactive 
automata. However, in reality, individual social insects of many species have surprisingly advanced 
cognitive abilities, and in particular a great capacity for learning15,16. These abilities are particularly 
well demonstrated in the honeybee Apis mellifera. Individual honeybees have been known to 
exhibit sophisticated individual behaviours for several decades now, starting at least with the 
identification of the waggle dance17. More recent studies have addressed the visual processing 
capabilities of honeybees in estimating flight duration18, regulating flight speed19, and landing20. 
This has led to the development of a variety of control algorithms for ground and aerial robots21. 
While these abilities are in themselves impressive, even more exciting are recent demonstrations 
of the surprising cognitive sophistication of individual honeybees. Honeybees have been found 
capable of speed-accuracy trade-offs in individual decision-making22, positive 23,24,25 and negative26 
reinforcement learning, contextual learning27, learning advanced concepts such as ‘same’ and 
‘different’28, and transfer of concepts across sensory modalities28, among other advanced cognitive 
abilities.

1          2

              
Figure 1. (1) Digital honeybee brain atlas, with sample brain structures highlighted and labelled 
(from Neurobiology Unit, FU Berlin). (2) Morphology of VUMmx1 reward neuron (a, a'), olfactory 
pathway (b) and VUMmx1’s response to sucrose reward (c) (from Hammer29).  

The kind of cognitive sophistication described above is achieved despite the very limited size of the 
honeybee brain, on the order of 106 neurons. In comparison the average human brain is estimated 
to contain 1011 neurons and even rats or mice have brains on the order of 108 neurons.  However, 
brain size (and neuron count in particular) is not necessarily a good indicator of functional 
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The problem of how to compromise between speed and accuracy in decision-making faces

organisms at many levels of biological complexity. Striking parallels are evident between

decision-making in primate brains and collective decision-
making in social insect coloni

es: in

both systems, separate populations accum
ulate evidence for alternative choices; when one

population reaches a threshold
, a decision is made for the correspo

nding alternative, a
nd this

threshold may be varied to compromise between the speed and the accuracy of decision-

making. In primate decision-making, simple models of these processes have been shown,

under certain parametrizations, to implement the statistically optimal procedure that

minimizes decision time for any given error rate. In this paper, we adap
t these same analysis

techniques and apply them to new models of collective decision-making in social insect

colonies. We show that social insect co
lonies may also be able to achi

eve statistically optimal

collective decision-making in a very similar way to primate brains, via direct competition

between evidence-accumulating populations. This
optimality result makes testable predic-

tions for how collective decision-
making in social insects shoul

d be organized. Our approach

also represents the
first attempt to identify a common theoretical framework for the study of

decision-making in diverse biological systems.

Keywords: decision-
making; diffusion model; optimality; neurons; soci

al insects;

sequential probabi
lity ratio test

1. INTRODUCTION

Animals constantly make decisions. Habitat
selection,

mate selection and foraging require investigation of,

and choice between, alternati
ves that may determine

an animal’s reproductive success. For example, many

animals invest considera
ble time and energy in finding a

safe home (Hazlett 1981; Seeley 1982; Hansell 1984;

Franks et al. 2002).
Similarly, an animal may frequently

have to deal with ambiguous sensory information in

deciding whether a
predator is present

or not (Trimmer

et al. 2008).

There has been ongoing speculation as to whether

decision-making mechanisms in brains and in colonies

of social insects might be closely related to each other,

beginning at least with Hofstadter (1979) and gener-

ating continued interest (Seeley & Buhrman 2001;

Visscher 2007; Passino et al. 2008). In this paper, we

examine a model of decision-making in the primate

brain (Usher & McClelland 2001) and compare it with

three new models of collective
decision-making during

house-hunting by social insect colonies. These models

are based on a proposed model for emigration in the

rock ant Temnothorax albipennis (Pratt et al. 2002),

and two models proposed for nest-site selection in the

honeybee Apis mellifera (Britton et al. 2002). The

similarities are striking: both systems are modelled

with mutually interacting
populations; in both systems,

a decision is made when one population exceeds some

threshold; and in both systems, this threshold can be

varied to mediate between the speed and the accuracy

of the decision-making process. As well as examining

the structural similarities and differences between the

neuron model and social insect models, we examine

optimality criteria for decision-making in the social

insect models. Bogacz et al. (2006) showed how the

model of decision-making in the brain proposed by

Usher & McClelland (2001) can be parametrized to

implement the statistically optimal strategy for choos-

ing between two alternatives. Here,
we analyse to what

extent each of the social insect m
odels can implement or
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F
or a honeybee swarm of potentially 
thousands of individuals, choosing a 
home is a momentous decision. Fail-

ing to choose a single location may cause 
the swarm to split and the queen to be lost 
( 1); choosing poorly may limit the swarm’s 
growth or expose it to freezing temperatures 
during the winter ( 2). Studies over the past 
60 years have shown that honeybee swarms 
use quorum sensing, a form of decentral-
ized decision-making, to choose a suit-
able nest site, but many gaps remain in our 
understanding of this process. On page 108 
in this issue, Seeley et al. ( 3) show that an 
inhibitory signal between bees advocating 
different locations allows them to make a 
decision even when potential nest sites are 
equally favorable.

Honeybee colonies reproduce through 
budding, whereby the queen and some 
workers leave the nest and bivouac on a 
branch. Some of the most experienced 
workers leave to locate suitable nest sites 
( 4). Upon their return, these scouts adver-
tise potential locations and their qualities 
by performing a waggle dance. During 
the dance, the scout walks straight across 
the bivouacking bees, making side-to-side 
waggles of her body. She then stops, turns 
left or right, and walks a semicircular return 
path to her starting point. The waggle run’s 
duration and orientation encode the length 
and the angle of the outward fl ight, respec-
tively, whereas the number of dance circuits 

encodes the quality of the potential nest site 
( 5). Waggle dances recruit additional scouts 
to a site until a quorum number is reached 
and the swarm prepares to move to its new 
home ( 2).

Scouts advocating less attractive sites 
produce fewer dance circuits and make 
fewer trips to the site ( 6). Along with the 
recruitment of uncommitted scouts to more 
attractive sites, this was assumed to be suf-
fi cient to enable the bees to reach a quorum, 
thereby deciding which site to choose ( 2). 
However, foraging workers use an additional 
type of signal to communicate with other 
bees. Upon returning from a feeder that is 
crowded or where a predator is present, for-
ager bees produce a brief vibrational signal 
that discourages other bees from producing 
waggle dances that advertise the location of 
that feeder ( 7). Hypothesizing that a similar 
signal may be used by house-hunting bees, 
Seeley et al. set out to observe scout behav-
ior. They found that scouts received “stop” 
signals—head butts mainly to their head and 
thorax—from other bees during the return 
run of the waggle dance (see the figure). 
These stop signals occurred more frequently 
just before a scout stopped dancing.

The authors next established swarms on 
Appledore Island (Maine), which lacks nat-
ural nest sites, and gave them a choice of 
two identical nest boxes. Scouts visiting one 
box were marked with yellow paint; those 
visiting the other were marked with pink 
paint. Most of the bees giving “stop” signals 
had paint marks, showing they were scouts. 
During the decision phase of the nest-site 

selection process, dancing scouts with yel-
low paint received many more stop signals 
from scouts with pink paint and vice versa, 
showing that scouts from one site preferen-
tially inhibit the dances of those advertis-
ing a competing site (see the fi gure, panel 
A). Once the scouts started implementing 
the decision, dancing scouts received stop 
signals from scouts that had visited either 
site. When swarms were given only one nest 
box, scouts received few stop signals dur-
ing the decision phase but many during the 
implementation phase. This general inhibi-
tion of dancing during the implementation 
phase presumably ensures that all the bees 
are present when the swarm takes fl ight.

To demonstrate a role for the observed 
cross inhibition between scouts advertising 
competing sites, Seeley et al. constructed a 
series of computational models of the col-
lective decision-making process, based 
on the interaction rules they had observed 
among the scouts. Models that incorporated 
no or indiscriminate stop signaling pre-
dicted that the scouts would reach a stable 
deadlock, failing to choose between two 
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tions in the relevant recruitment and interaction rates. For the sim-
plest case of a decision over two alternatives, the time-evolution of
the general model is described entirely by a two-dimensional system
of coupled stochastic differential equations as

8
>><

>>:

dyA := (yU�A � yA(↵A � yU⇢A + yB�B)) dt

+k

p
y

2
U + y

2
A + y

2
Uy

2
AdWA

dyB := (yU�B � yB(↵B � yU⇢B + yA�A)) dt

+k

p
y

2
U + y

2
B + y

2
Uy

2
BdWB

[1]

where yA and yB are the proportion of scout bees recruiting to po-
tential nest sites A and B respectively, and yU = 1 � yA � yB is
the proportion of uncommitted scouts in the colony. Greek letters are
used to denote parameters of the colony’s decision-making system,
that could be tuned by evolution. Latin letters are used to denote pa-
rameters of the decision problem faced by the colony that are outside
of its control. Here, �i is the rate at which scouts independently dis-
cover and begin recruiting to potential nest site i, ↵i is the rate at
which scouts spontaneously abandon their commitment to site i, ⇢i

is the rate at which scouts committed to site i recruit uncommitted
scouts via the ‘waggle dance’ [26], and �i is the rate at which scouts
committed to site i convert scouts recruiting for the competitor site to
a state of non-commitment, using the ‘stop-signal’ to disrupt waggle-
dancing bees [16, 23].

A collective decision is reached when one of the scout popula-
tions reaches a (variable) quorum threshold !. We assume that all of
the rates depend on the value vi of the relevant potential nest site. As
in previous work we set �i = ⇢i = vi and ↵i = 1/vi [23]. Mov-
ing beyond the model of [23], we further assume that these crucial
decision rates �i, ↵i and ⇢i are subject to some stochastic variability,
due to the inherently noisy evaluations of nest site quality vi under-
taken by individual scout bees. We assume independent white-noise
(Wiener) processes added to these rates, but with identical variances
k

2. Since white noise is additive, these independent processes can be
combined into a single process with variance equal to the sum of the
variances of its component processes. This is captured in the dWA

and dWB terms in Eq. 1 in which dWi is a normally-distributed in-
crement of the Wiener process i, with mean 0 and variance 1. Thus
the parameter k controls the noisiness, or difficulty, of the decision
problem, where higher k means noisier evaluations. For our dynam-
ical systems analyses, we will set k = 0 in Eq. 1, recovering the
noise-free dynamics of [23], while for our stochastic decision dy-
namics analyses, we will set k > 0.

Results
General Decision Dynamics — Separation of Timescales. A well-
established technique for studying models of binary decision-making
similar to that described in Eq. 1 is to reduce the system of equa-
tions to a one-dimensional description of the decision dynamics
(e.g. [3, 13]). Denote the mean value of alternatives v̄ := (vA +
vB)/2 and the difference in value of alternatives �v := vA � vB .
For large v̄ and small �v/v̄, it can be shown that there is a sep-
aration of timescales: a singular perturbation analysis of the zero-
noise (k = 0) dynamics (SI Text, Fig. S1) reveals fast convergence,
dominated by the dynamics of the uncommitted population yU , to
a stable one-dimensional decision manifold, followed by slow time-
evolution, dominated by the relative dynamics of the committed pop-
ulations yA and yB , along this manifold as illustrated in Fig. 1. We
note that the slow manifold, defined implicitly by (SI Text)

yAyB =
2v̄

�

yU (1 + yA)(1 + yB)
3� yU

, [2]

depends on v̄ and � but not on �v, whereas the dynamics along the
slow manifold depend explicitly on v̄, �, and �v (SI Text). The slow
manifold is superimposed on the simulated decision-making dynam-
ics in Fig. 1 and in Fig. S2, where it can be seen that the slow mani-

fold approximates the slow dynamics well over a range of parameter
values, deteriorating only when �v is on the order of v̄.

Thus, analysing the stochastic decision dynamics along the sta-
ble one-dimensional manifold will give a good understanding of the
decision-making properties of the system as a whole. This is par-
ticularly relevant because the reduced dynamics resemble classical
models of binary decision-making. For example, the general one-
dimensional stochastic differential equation

dx := (a + bx)dt + cdW, [3]
where dW is the Wiener increment as in Eq. 1, includes O-U pro-
cesses (a 6= 0, b 6= 0) and the drift-diffusion model (DDM —
a 6= 0, b = 0) as special cases. In these models as applied to
decision-making, a represents the signal in the stimulus presented to
the decision-maker, and c the noise in that stimulus. The decision-
variable x models the tendency to choose one of two alternatives
where a decision is made in favor of one alternative when x crosses
a positive threshold and the other alternative when x crosses a nega-
tive threshold. In the statistically-optimal DDM parameterisation, x

represents the log likelihood ratio of the alternatives so that x = 0
corresponds to equal evidence for each alternative.
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Fig. 1. Decision-making dynamics on the unit simplex with vertex U correspond-
ing to a fully uncommitted swarm (yU = 1), vertex A to a swam fully committed
to site A (yA = 1), and vertex B to a swarm fully committed to site B (yB = 1).
When the proportion of scouts committed to site A or B (yA or yB ) surpasses
a quorum threshold, illustrated with a dashed line, the corresponding alternative
is selected by the swarm. Flow lines indicate sample noise-free trajectories over
time, demonstrating fast convergence to a slow, invariant manifold. A singular
perturbation analysis (SI Text) proves this separation of timescales, and gives
the expression Eq. 2 for the slow manifold (magenta line), which is independent
of �v (thus, the slow manifold is the same in the right and left plots). The dy-
namics on the slow manifold depend on parameters of the decision problem v̄
and �v and of the decision-making swarm �: stable attractors (filled circles) can
co-exist with unstable saddle-nodes (hollow circles) on the slow manifold. Thus,
decision-making in the swarm can be reduced to decision-making with a single
decision-variable; this is the form of several classic models of decision-making,
including those implementing provably optimal statistical tests.

Bogacz et al. previously recovered O-U processes and the DDM
from two-dimensional connectionist models of choice in the visual
cortex, while we recovered the DDM from two-dimensional models
of nest-site selection by social insect colonies [13]. The DDM [21] is
of particular interest to researchers interested in studying decision-
making because it corresponds to the statistically-optimal test for
compromising between speed and accuracy of decision-making, as
well as giving the best fits to reaction-time and error-rate distribu-
tions of subjects undertaking psychophysical decision tasks [3]. The
analyses of [3] and [13] were facilitated by studying equations that
converged to a linear stable manifold, whereas the stable manifold
for Eq. 1 is clearly non-linear (Fig. 1; SI Text). Nevertheless ap-
proximations to this manifold, as well as stochastic simulations, will
enable us to analyse decision-making along it.

Minimum Value of Acceptable Equal Alternatives.Our previous
analysis showed that the decision-making model of Eq. 1 with k = 0,
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SEPARATION OF TIMESCALES

tions in the relevant recruitment and interaction rates. For the sim-
plest case of a decision over two alternatives, the time-evolution of
the general model is described entirely by a two-dimensional system
of coupled stochastic differential equations as
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where yA and yB are the proportion of scout bees recruiting to po-
tential nest sites A and B respectively, and yU = 1 � yA � yB is
the proportion of uncommitted scouts in the colony. Greek letters are
used to denote parameters of the colony’s decision-making system,
that could be tuned by evolution. Latin letters are used to denote pa-
rameters of the decision problem faced by the colony that are outside
of its control. Here, �i is the rate at which scouts independently dis-
cover and begin recruiting to potential nest site i, ↵i is the rate at
which scouts spontaneously abandon their commitment to site i, ⇢i

is the rate at which scouts committed to site i recruit uncommitted
scouts via the ‘waggle dance’ [26], and �i is the rate at which scouts
committed to site i convert scouts recruiting for the competitor site to
a state of non-commitment, using the ‘stop-signal’ to disrupt waggle-
dancing bees [16, 23].

A collective decision is reached when one of the scout popula-
tions reaches a (variable) quorum threshold !. We assume that all of
the rates depend on the value vi of the relevant potential nest site. As
in previous work we set �i = ⇢i = vi and ↵i = 1/vi [23]. Mov-
ing beyond the model of [23], we further assume that these crucial
decision rates �i, ↵i and ⇢i are subject to some stochastic variability,
due to the inherently noisy evaluations of nest site quality vi under-
taken by individual scout bees. We assume independent white-noise
(Wiener) processes added to these rates, but with identical variances
k

2. Since white noise is additive, these independent processes can be
combined into a single process with variance equal to the sum of the
variances of its component processes. This is captured in the dWA

and dWB terms in Eq. 1 in which dWi is a normally-distributed in-
crement of the Wiener process i, with mean 0 and variance 1. Thus
the parameter k controls the noisiness, or difficulty, of the decision
problem, where higher k means noisier evaluations. For our dynam-
ical systems analyses, we will set k = 0 in Eq. 1, recovering the
noise-free dynamics of [23], while for our stochastic decision dy-
namics analyses, we will set k > 0.

Results
General Decision Dynamics — Separation of Timescales. A well-
established technique for studying models of binary decision-making
similar to that described in Eq. 1 is to reduce the system of equa-
tions to a one-dimensional description of the decision dynamics
(e.g. [3, 13]). Denote the mean value of alternatives v̄ := (vA +
vB)/2 and the difference in value of alternatives �v := vA � vB .
For large v̄ and small �v/v̄, it can be shown that there is a sep-
aration of timescales: a singular perturbation analysis of the zero-
noise (k = 0) dynamics (SI Text, Fig. S1) reveals fast convergence,
dominated by the dynamics of the uncommitted population yU , to
a stable one-dimensional decision manifold, followed by slow time-
evolution, dominated by the relative dynamics of the committed pop-
ulations yA and yB , along this manifold as illustrated in Fig. 1. We
note that the slow manifold, defined implicitly by (SI Text)

yAyB =
2v̄

�

yU (1 + yA)(1 + yB)
3� yU

, [2]

depends on v̄ and � but not on �v, whereas the dynamics along the
slow manifold depend explicitly on v̄, �, and �v (SI Text). The slow
manifold is superimposed on the simulated decision-making dynam-
ics in Fig. 1 and in Fig. S2, where it can be seen that the slow mani-

fold approximates the slow dynamics well over a range of parameter
values, deteriorating only when �v is on the order of v̄.

Thus, analysing the stochastic decision dynamics along the sta-
ble one-dimensional manifold will give a good understanding of the
decision-making properties of the system as a whole. This is par-
ticularly relevant because the reduced dynamics resemble classical
models of binary decision-making. For example, the general one-
dimensional stochastic differential equation

dx := (a + bx)dt + cdW, [3]
where dW is the Wiener increment as in Eq. 1, includes O-U pro-
cesses (a 6= 0, b 6= 0) and the drift-diffusion model (DDM —
a 6= 0, b = 0) as special cases. In these models as applied to
decision-making, a represents the signal in the stimulus presented to
the decision-maker, and c the noise in that stimulus. The decision-
variable x models the tendency to choose one of two alternatives
where a decision is made in favor of one alternative when x crosses
a positive threshold and the other alternative when x crosses a nega-
tive threshold. In the statistically-optimal DDM parameterisation, x

represents the log likelihood ratio of the alternatives so that x = 0
corresponds to equal evidence for each alternative.
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Fig. 1. Decision-making dynamics on the unit simplex with vertex U correspond-
ing to a fully uncommitted swarm (yU = 1), vertex A to a swam fully committed
to site A (yA = 1), and vertex B to a swarm fully committed to site B (yB = 1).
When the proportion of scouts committed to site A or B (yA or yB ) surpasses
a quorum threshold, illustrated with a dashed line, the corresponding alternative
is selected by the swarm. Flow lines indicate sample noise-free trajectories over
time, demonstrating fast convergence to a slow, invariant manifold. A singular
perturbation analysis (SI Text) proves this separation of timescales, and gives
the expression Eq. 2 for the slow manifold (magenta line), which is independent
of �v (thus, the slow manifold is the same in the right and left plots). The dy-
namics on the slow manifold depend on parameters of the decision problem v̄
and �v and of the decision-making swarm �: stable attractors (filled circles) can
co-exist with unstable saddle-nodes (hollow circles) on the slow manifold. Thus,
decision-making in the swarm can be reduced to decision-making with a single
decision-variable; this is the form of several classic models of decision-making,
including those implementing provably optimal statistical tests.

Bogacz et al. previously recovered O-U processes and the DDM
from two-dimensional connectionist models of choice in the visual
cortex, while we recovered the DDM from two-dimensional models
of nest-site selection by social insect colonies [13]. The DDM [21] is
of particular interest to researchers interested in studying decision-
making because it corresponds to the statistically-optimal test for
compromising between speed and accuracy of decision-making, as
well as giving the best fits to reaction-time and error-rate distribu-
tions of subjects undertaking psychophysical decision tasks [3]. The
analyses of [3] and [13] were facilitated by studying equations that
converged to a linear stable manifold, whereas the stable manifold
for Eq. 1 is clearly non-linear (Fig. 1; SI Text). Nevertheless ap-
proximations to this manifold, as well as stochastic simulations, will
enable us to analyse decision-making along it.

Minimum Value of Acceptable Equal Alternatives.Our previous
analysis showed that the decision-making model of Eq. 1 with k = 0,
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tions in the relevant recruitment and interaction rates. For the sim-
plest case of a decision over two alternatives, the time-evolution of
the general model is described entirely by a two-dimensional system
of coupled stochastic differential equations as
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where yA and yB are the proportion of scout bees recruiting to po-
tential nest sites A and B respectively, and yU = 1 � yA � yB is
the proportion of uncommitted scouts in the colony. Greek letters are
used to denote parameters of the colony’s decision-making system,
that could be tuned by evolution. Latin letters are used to denote pa-
rameters of the decision problem faced by the colony that are outside
of its control. Here, �i is the rate at which scouts independently dis-
cover and begin recruiting to potential nest site i, ↵i is the rate at
which scouts spontaneously abandon their commitment to site i, ⇢i

is the rate at which scouts committed to site i recruit uncommitted
scouts via the ‘waggle dance’ [26], and �i is the rate at which scouts
committed to site i convert scouts recruiting for the competitor site to
a state of non-commitment, using the ‘stop-signal’ to disrupt waggle-
dancing bees [16, 23].

A collective decision is reached when one of the scout popula-
tions reaches a (variable) quorum threshold !. We assume that all of
the rates depend on the value vi of the relevant potential nest site. As
in previous work we set �i = ⇢i = vi and ↵i = 1/vi [23]. Mov-
ing beyond the model of [23], we further assume that these crucial
decision rates �i, ↵i and ⇢i are subject to some stochastic variability,
due to the inherently noisy evaluations of nest site quality vi under-
taken by individual scout bees. We assume independent white-noise
(Wiener) processes added to these rates, but with identical variances
k

2. Since white noise is additive, these independent processes can be
combined into a single process with variance equal to the sum of the
variances of its component processes. This is captured in the dWA

and dWB terms in Eq. 1 in which dWi is a normally-distributed in-
crement of the Wiener process i, with mean 0 and variance 1. Thus
the parameter k controls the noisiness, or difficulty, of the decision
problem, where higher k means noisier evaluations. For our dynam-
ical systems analyses, we will set k = 0 in Eq. 1, recovering the
noise-free dynamics of [23], while for our stochastic decision dy-
namics analyses, we will set k > 0.

Results
General Decision Dynamics — Separation of Timescales. A well-
established technique for studying models of binary decision-making
similar to that described in Eq. 1 is to reduce the system of equa-
tions to a one-dimensional description of the decision dynamics
(e.g. [3, 13]). Denote the mean value of alternatives v̄ := (vA +
vB)/2 and the difference in value of alternatives �v := vA � vB .
For large v̄ and small �v/v̄, it can be shown that there is a sep-
aration of timescales: a singular perturbation analysis of the zero-
noise (k = 0) dynamics (SI Text, Fig. S1) reveals fast convergence,
dominated by the dynamics of the uncommitted population yU , to
a stable one-dimensional decision manifold, followed by slow time-
evolution, dominated by the relative dynamics of the committed pop-
ulations yA and yB , along this manifold as illustrated in Fig. 1. We
note that the slow manifold, defined implicitly by (SI Text)

yAyB =
2v̄

�

yU (1 + yA)(1 + yB)
3� yU

, [2]

depends on v̄ and � but not on �v, whereas the dynamics along the
slow manifold depend explicitly on v̄, �, and �v (SI Text). The slow
manifold is superimposed on the simulated decision-making dynam-
ics in Fig. 1 and in Fig. S2, where it can be seen that the slow mani-

fold approximates the slow dynamics well over a range of parameter
values, deteriorating only when �v is on the order of v̄.

Thus, analysing the stochastic decision dynamics along the sta-
ble one-dimensional manifold will give a good understanding of the
decision-making properties of the system as a whole. This is par-
ticularly relevant because the reduced dynamics resemble classical
models of binary decision-making. For example, the general one-
dimensional stochastic differential equation

dx := (a + bx)dt + cdW, [3]
where dW is the Wiener increment as in Eq. 1, includes O-U pro-
cesses (a 6= 0, b 6= 0) and the drift-diffusion model (DDM —
a 6= 0, b = 0) as special cases. In these models as applied to
decision-making, a represents the signal in the stimulus presented to
the decision-maker, and c the noise in that stimulus. The decision-
variable x models the tendency to choose one of two alternatives
where a decision is made in favor of one alternative when x crosses
a positive threshold and the other alternative when x crosses a nega-
tive threshold. In the statistically-optimal DDM parameterisation, x

represents the log likelihood ratio of the alternatives so that x = 0
corresponds to equal evidence for each alternative.
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Fig. 1. Decision-making dynamics on the unit simplex with vertex U correspond-
ing to a fully uncommitted swarm (yU = 1), vertex A to a swam fully committed
to site A (yA = 1), and vertex B to a swarm fully committed to site B (yB = 1).
When the proportion of scouts committed to site A or B (yA or yB ) surpasses
a quorum threshold, illustrated with a dashed line, the corresponding alternative
is selected by the swarm. Flow lines indicate sample noise-free trajectories over
time, demonstrating fast convergence to a slow, invariant manifold. A singular
perturbation analysis (SI Text) proves this separation of timescales, and gives
the expression Eq. 2 for the slow manifold (magenta line), which is independent
of �v (thus, the slow manifold is the same in the right and left plots). The dy-
namics on the slow manifold depend on parameters of the decision problem v̄
and �v and of the decision-making swarm �: stable attractors (filled circles) can
co-exist with unstable saddle-nodes (hollow circles) on the slow manifold. Thus,
decision-making in the swarm can be reduced to decision-making with a single
decision-variable; this is the form of several classic models of decision-making,
including those implementing provably optimal statistical tests.

Bogacz et al. previously recovered O-U processes and the DDM
from two-dimensional connectionist models of choice in the visual
cortex, while we recovered the DDM from two-dimensional models
of nest-site selection by social insect colonies [13]. The DDM [21] is
of particular interest to researchers interested in studying decision-
making because it corresponds to the statistically-optimal test for
compromising between speed and accuracy of decision-making, as
well as giving the best fits to reaction-time and error-rate distribu-
tions of subjects undertaking psychophysical decision tasks [3]. The
analyses of [3] and [13] were facilitated by studying equations that
converged to a linear stable manifold, whereas the stable manifold
for Eq. 1 is clearly non-linear (Fig. 1; SI Text). Nevertheless ap-
proximations to this manifold, as well as stochastic simulations, will
enable us to analyse decision-making along it.

Minimum Value of Acceptable Equal Alternatives.Our previous
analysis showed that the decision-making model of Eq. 1 with k = 0,
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DEADLOCK BREAKING

PAIS ET AL., 2013

the differences in the qualities of the the alternatives sufficiently to
precipitate a decision for the better option, on average.

Fig. 5(Middle) also shows that too high a rate of stop-signal �

can be detrimental. If the stop-signalling rate is increased then a sta-
ble attractor for the inferior alternative suddenly appears in a saddle-
node bifurcation, with an unstable saddle point between it and the
original stable attractor. This can be helpful to ensure a decision if
a quorum is not reached pre-bifurcation; however, in the case that
a quorum is reached pre-bifurcation for the superior alternative, the
bifurcation might not be helpful because post-bifurcation the supe-

rior alternative is no longer a unique solution. Further increase in
the stop-signal rate � moves the inferior attractor further toward or
beyond the quorum threshold for the inferior alternative, and moves
the saddle point closer towards equal numbers of scouts committed
to each alternative (0.5 on the y-axis of Fig. 5(Middle)). Thus in-
creasing stop-signalling too much changes the dynamics such that
there may be an increasing risk of the swarm converging on choos-
ing the inferior of the two alternatives. However, as we show below
higher levels of stop-signalling can have benefits for speed-accuracy
trade-offs.
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Fig. 5. Full bifurcation behaviour of the stop-signal model of Eq. 1. According to parameterisation of the decision problem and decision-maker, the dynamics include
(i) pitchfork bifurcation as a function of stop-signal rate � in the equal alternatives case, (ii) saddle-node bifurcation as a function of stop-signal � in the unequal
alternatives case, and (iii) hysteresis as a function of difference in qualities of alternatives �v. Fixed points are projected onto the [0, 1] line as described in the SI
Text and Fig. S4. Blue dots indicate stable attractors, and red indicate unstable saddle points. Quorum thresholds at yA = yB = 0.7 are indicated by dashed lines.

In Fig. 5(Right), there is a hysteretic effect as difference in the
quality of alternatives �v is smoothly increased and then decreased
over time; this is illustrated in an animation of stochastic simula-
tions in the SI. While �v is increasing, from an initially low level,
over the interval of �v in which three fixed points co-exist (approx-
imately -0.5 to +0.5 in the figure) the system will be in the vicinity
of the lower of the two stable attractors. At a sufficiently high value
of �v (approximately 0.5), the system will jump to the other, upper
stable attractor. If �v is then reduced over the same interval, the
system will remain in the vicinity of the upper, stable attractor until
�v is less than approximately -0.5. While for a bee swarm, values
of alternatives are unlikely to change smoothly over time in this way,
this may be the case for other decision-makers, where exploitation
of an alternative degrades its value, as in the example of intracellular
decisions on activation of metabolic pathways considered in the Dis-
cussion. For neural decision-circuits, as also mentioned in the Dis-
cussion, laboratory experiments may be able to vary stimuli over time
in this way. In both these cases the hysteretic effect of Fig. 5(Right)
could act as a diagnostic that the decision-circuit used is similar in
form to that described in Eq. 1.

Speed-Accuracy Trade-offs. As noted above, several classical mod-
els of decision-making, including the DDM and the (un)stable O-
U process, are described using equations of stochastic motion on a
line. The separation of timescales result presented above demon-
strates that the decision dynamics converge rapidly to a line, along
which they slowly diffuse. Of particular interest in decision-making
models are speed-accuracy trade-offs, and the optimal compromise
between these two quantities. We therefore undertook preliminary

numerical investigations (described in the SI Text) into the stochastic
behaviour of the decision system under different parameterisations,
once the system has converged to the stable decision-manifold, and
until it crosses a decision-threshold.
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Fig. 6. Speed-accuracy trade-off when differences between alternatives are
sufficiently large that a single attractor for the best alternative exists; the ob-
served speed-accuracy trade-off is qualitatively similar to that realised by the
statistically-optimal drift-diffusion model of decision-making (see SI Text). When
two attractors for alternatives of different values exist, however, the presence of
the unstable saddle-node can improve error rate without compromising reaction
time (see SI Text and Fig. S5).
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VALUE-SENSITIVE COLLECTIVE 
DECISION-MAKINGwhen alternative nest sites are of equal value (v := vA = vB), ex-

hibits a pitchfork bifurcation as a function of increasing stop-signal
rate � and value v [23]. In the pre-bifurcation case, a single attrac-
tor exists at which each scout population is of equal size, whereas
in the post-bifurcation case this attractor becomes an unstable saddle
point, and attractors corresponding to each alternative emerge. That
is, there is a critical level of stop-signalling �

⇤ below which the hon-
eybee swarm remains deadlocked between the two equal alternatives,
but above which it converges to choosing one alternative at random.
This threshold, plotted in Fig. 2, was previously [23] calculated as

�

⇤ =
4v3

(v2 � 1)2
. [4]
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Fig. 2. Value-dependent decision-making over equal alternatives. A critical stop-
signal level �⇤ can be calculated, below which stable decision-deadlock results
due to a single stable attractor on the yA = yB line. Increasing the strength of
stop-signalling above the critical threshold �⇤, this attractor becomes unstable
and two stable attractors, one for each alternative, emerge from it and rapidly
move apart [23]; in this situation one alternative will thus be chosen at random
by the system. As the equation and plot for �⇤ make clear, the level of stop-
signalling required to break deadlock decreases as a function of the value v of the
two alternatives. Thus decisions over equal but low value alternatives can result
in deadlock, while decisions over equal but high value alternatives can result in
a random choice. This can lead to sophisticated decision dynamics (Figs. 3 and
S3).

Fig. 2 demonstrates a further very useful decision-making prop-
erty, that of value sensitivity. To illustrate the general principle, con-
sider the particular case of a honeybee swarm that has discovered
two equally poor potential nest sites. If both of these alternatives are
of such low value to the swarm, through having insufficient volume
to allow for effective colony growth and reproduction in the future,
for example, then the swarm would be better off waiting to see if its
scouts can discover other, higher value, alternatives in the vicinity.
Fig. 2 shows that, if the value of the alternatives v is sufficiently
low given the swarm’s rate of stop-signalling � then this is precisely
what happens; the recruiter populations for the two alternatives A

and B become deadlocked at equal commitment, while leaving a pro-
portion of the swarm in the uncommitted state U and thus available
to discover alternatives through independent exploration of the en-
vironment (Fig. 2; bottom-left inset). Figure 3 presents stochastic
simulations of a scenario illustrating this behaviour (see SI Text), in
which two equal but poor quality nest sites are discovered, and sta-
ble deadlock persists between them until a third superior alternative
is discovered and subsequently chosen. This late selection of an al-

ternative differs qualitatively from earlier models [4], in which no
mechanism for adaptive deadlock was considered.
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Fig. 3. Stochastic simulation shows that for two sufficiently poor but equal al-
ternatives, deadlock between the two persists until a third, superior alternative is
discovered (at time t = 30), at which point it is selected by the swarm.

If, however, for the same rate of stop-signalling � the values of
the equal alternatives are sufficiently high, then the dynamics bifur-
cate so that the swarm’s scouts converge on choosing one of the two
alternatives at random (Fig. 2; top-right inset). This illustrates a very
sophisticated decision-making strategy: if information about only
two alternatives is available but neither is very valuable then waiting
to see if a better option is discovered could be sensible, whereas if
the two alternatives are both of sufficient quality then quickly choos-
ing one at random rather than wasting further time waiting for al-
ternatives would be appropriate. Evolution could tune the level of
stop-signalling � in the swarm to set the acceptance threshold for
the value v of alternatives to an appropriate level, given the needs of
an organism and the quality of alternatives typically available in an
environment, as Fig. 2 illustrates.

The preceding analysis assumes an evolutionarily hard-wired
level of stop-signalling, but further sophistication is possible if one
considers what might happen to our hypothetical swarm, considering
two equal but low value alternatives, if it waits too long. Like any
decision-maker, the swarm has finite time and resources available to
make decisions; in the case of a honeybee swarm members have fi-
nite energy reserves, since they load up with honey before swarming
and do not resume foraging until the swarm has found a suitable nest
site [22]. If after a long period of time the swarm still only has infor-
mation about the two low-value alternatives then it is reasonable to
assume that no better alternatives are available as they would likely
have been discovered and, in any case, the resources of the swarm
are being rapidly depleted. In this scenario it would be better for
the swarm to choose one of the low value nest sites than none at all.
This can be achieved by progressively increasing the stop-signalling
rate �; as Fig. 2 indicates, by doing so a point is reached at which
the value of the alternatives v, which previously resulted in stable
deadlock between them, is suddenly sufficient to precipitate a ran-
dom choice between the two. A stochastic simulation illustrates this
process in Fig. S3.

Minimum Relevant Differences Between Equal Alternatives. The
decision dynamics of the model are sensitive not only to the value of
the available alternatives but also to the absolute difference |�v| in
the values of the alternatives, as illustrated in Fig. 4. First, the results
of Fig. 2 generalize to nonzero |�v|: an increase in the rate of stop-
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Figure S3: Simulations of the stochastic dynamics. A deadlocked population is able to converge to a decision
by picking one of two equal alternatives by slowly ramping up the stop-signal; the critical value of stop-signal
for the pitchfork bifurcation is marked on the bottom plot.

reaching each threshold; ‘none’ indicates trajectories reaching neither threshold in the given time (plotted
in cyan). For �v = 0, trajectories reaching either threshold are plotted in blue. For �v 6= 0 trajectories
reaching the correct threshold (one with higher v

i

) are plotted in green, those reaching the incorrect
threshold are in red.

• hysteresis.mp4: Cloud of points moving according to the stochastic dynamics (S20) with noise parameter
k = 0.1 and other parameters shown on the plot. This simulation illustrates the hysteretic e↵ect
associated with continuously varying the di↵erence between alternatives �v for a given mean value v

and stop signal �.

S.4 Speed-Accuracy Tradeo↵s

Error Rate (ER) and Reaction Time (RT ) plots for the stochastic stop-signalling dynamics (S20) are shown
in Figure S4 for four sets of parameters. For each of these sets, ER and DT are plotted as a function of the
decision threshold !. We use 50 values of ! in the range ! 2 [0, 0.4] shown on the x-axis to construct each
plot. In each plot, for a given value of !, 500 simulations of the stochastic dynamics (S20) are run with initial
condition at the zero evidence point (y

A

= y

B

=: y0) on the corresponding slow manifold. The slow manifold
and initial condition (shown as a star at (y0, y0)) are plotted in the insets. Each simulation is stopped when a
trajectory reaches the threshold (either y

A

> y0 + ! or y

B

> y0 + !). RT is the mean time taken by the 500
trajectories to reach either threshold. ER is the fraction of trajectories reaching the incorrect threshold (one
with lower value v

i

). Each of the plots in Figure S4 requires 500⇥ 50 = 25000 runs of the stochastic dynamics
(S20).

S.5 Energetic Expenditure

Stop-signalling may also benefit the energy consumption of the swarm during decision-making. Energetic
considerations are often ignored in studies of decision-making, yet are of crucial importance for decision-
makers embodied in the real world. As mentioned in the main text, for example, house-hunting honeybee
swarms have fixed energetic resources since members do not forage until decision-making is completed. A
similar argument can be applied to decision-making in neural circuits, where activation of a neural population
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the differences in the qualities of the the alternatives sufficiently to
precipitate a decision for the better option, on average.

Fig. 5(Middle) also shows that too high a rate of stop-signal �

can be detrimental. If the stop-signalling rate is increased then a sta-
ble attractor for the inferior alternative suddenly appears in a saddle-
node bifurcation, with an unstable saddle point between it and the
original stable attractor. This can be helpful to ensure a decision if
a quorum is not reached pre-bifurcation; however, in the case that
a quorum is reached pre-bifurcation for the superior alternative, the
bifurcation might not be helpful because post-bifurcation the supe-

rior alternative is no longer a unique solution. Further increase in
the stop-signal rate � moves the inferior attractor further toward or
beyond the quorum threshold for the inferior alternative, and moves
the saddle point closer towards equal numbers of scouts committed
to each alternative (0.5 on the y-axis of Fig. 5(Middle)). Thus in-
creasing stop-signalling too much changes the dynamics such that
there may be an increasing risk of the swarm converging on choos-
ing the inferior of the two alternatives. However, as we show below
higher levels of stop-signalling can have benefits for speed-accuracy
trade-offs.
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Fig. 5. Full bifurcation behaviour of the stop-signal model of Eq. 1. According to parameterisation of the decision problem and decision-maker, the dynamics include
(i) pitchfork bifurcation as a function of stop-signal rate � in the equal alternatives case, (ii) saddle-node bifurcation as a function of stop-signal � in the unequal
alternatives case, and (iii) hysteresis as a function of difference in qualities of alternatives �v. Fixed points are projected onto the [0, 1] line as described in the SI
Text and Fig. S4. Blue dots indicate stable attractors, and red indicate unstable saddle points. Quorum thresholds at yA = yB = 0.7 are indicated by dashed lines.

In Fig. 5(Right), there is a hysteretic effect as difference in the
quality of alternatives �v is smoothly increased and then decreased
over time; this is illustrated in an animation of stochastic simula-
tions in the SI. While �v is increasing, from an initially low level,
over the interval of �v in which three fixed points co-exist (approx-
imately -0.5 to +0.5 in the figure) the system will be in the vicinity
of the lower of the two stable attractors. At a sufficiently high value
of �v (approximately 0.5), the system will jump to the other, upper
stable attractor. If �v is then reduced over the same interval, the
system will remain in the vicinity of the upper, stable attractor until
�v is less than approximately -0.5. While for a bee swarm, values
of alternatives are unlikely to change smoothly over time in this way,
this may be the case for other decision-makers, where exploitation
of an alternative degrades its value, as in the example of intracellular
decisions on activation of metabolic pathways considered in the Dis-
cussion. For neural decision-circuits, as also mentioned in the Dis-
cussion, laboratory experiments may be able to vary stimuli over time
in this way. In both these cases the hysteretic effect of Fig. 5(Right)
could act as a diagnostic that the decision-circuit used is similar in
form to that described in Eq. 1.

Speed-Accuracy Trade-offs. As noted above, several classical mod-
els of decision-making, including the DDM and the (un)stable O-
U process, are described using equations of stochastic motion on a
line. The separation of timescales result presented above demon-
strates that the decision dynamics converge rapidly to a line, along
which they slowly diffuse. Of particular interest in decision-making
models are speed-accuracy trade-offs, and the optimal compromise
between these two quantities. We therefore undertook preliminary

numerical investigations (described in the SI Text) into the stochastic
behaviour of the decision system under different parameterisations,
once the system has converged to the stable decision-manifold, and
until it crosses a decision-threshold.
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Fig. 6. Speed-accuracy trade-off when differences between alternatives are
sufficiently large that a single attractor for the best alternative exists; the ob-
served speed-accuracy trade-off is qualitatively similar to that realised by the
statistically-optimal drift-diffusion model of decision-making (see SI Text). When
two attractors for alternatives of different values exist, however, the presence of
the unstable saddle-node can improve error rate without compromising reaction
time (see SI Text and Fig. S5).
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SPEED-ACCURACY TRADE-OFFS

the differences in the qualities of the the alternatives sufficiently to
precipitate a decision for the better option, on average.

Fig. 5(Middle) also shows that too high a rate of stop-signal �

can be detrimental. If the stop-signalling rate is increased then a sta-
ble attractor for the inferior alternative suddenly appears in a saddle-
node bifurcation, with an unstable saddle point between it and the
original stable attractor. This can be helpful to ensure a decision if
a quorum is not reached pre-bifurcation; however, in the case that
a quorum is reached pre-bifurcation for the superior alternative, the
bifurcation might not be helpful because post-bifurcation the supe-

rior alternative is no longer a unique solution. Further increase in
the stop-signal rate � moves the inferior attractor further toward or
beyond the quorum threshold for the inferior alternative, and moves
the saddle point closer towards equal numbers of scouts committed
to each alternative (0.5 on the y-axis of Fig. 5(Middle)). Thus in-
creasing stop-signalling too much changes the dynamics such that
there may be an increasing risk of the swarm converging on choos-
ing the inferior of the two alternatives. However, as we show below
higher levels of stop-signalling can have benefits for speed-accuracy
trade-offs.
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Fig. 5. Full bifurcation behaviour of the stop-signal model of Eq. 1. According to parameterisation of the decision problem and decision-maker, the dynamics include
(i) pitchfork bifurcation as a function of stop-signal rate � in the equal alternatives case, (ii) saddle-node bifurcation as a function of stop-signal � in the unequal
alternatives case, and (iii) hysteresis as a function of difference in qualities of alternatives �v. Fixed points are projected onto the [0, 1] line as described in the SI
Text and Fig. S4. Blue dots indicate stable attractors, and red indicate unstable saddle points. Quorum thresholds at yA = yB = 0.7 are indicated by dashed lines.

In Fig. 5(Right), there is a hysteretic effect as difference in the
quality of alternatives �v is smoothly increased and then decreased
over time; this is illustrated in an animation of stochastic simula-
tions in the SI. While �v is increasing, from an initially low level,
over the interval of �v in which three fixed points co-exist (approx-
imately -0.5 to +0.5 in the figure) the system will be in the vicinity
of the lower of the two stable attractors. At a sufficiently high value
of �v (approximately 0.5), the system will jump to the other, upper
stable attractor. If �v is then reduced over the same interval, the
system will remain in the vicinity of the upper, stable attractor until
�v is less than approximately -0.5. While for a bee swarm, values
of alternatives are unlikely to change smoothly over time in this way,
this may be the case for other decision-makers, where exploitation
of an alternative degrades its value, as in the example of intracellular
decisions on activation of metabolic pathways considered in the Dis-
cussion. For neural decision-circuits, as also mentioned in the Dis-
cussion, laboratory experiments may be able to vary stimuli over time
in this way. In both these cases the hysteretic effect of Fig. 5(Right)
could act as a diagnostic that the decision-circuit used is similar in
form to that described in Eq. 1.

Speed-Accuracy Trade-offs. As noted above, several classical mod-
els of decision-making, including the DDM and the (un)stable O-
U process, are described using equations of stochastic motion on a
line. The separation of timescales result presented above demon-
strates that the decision dynamics converge rapidly to a line, along
which they slowly diffuse. Of particular interest in decision-making
models are speed-accuracy trade-offs, and the optimal compromise
between these two quantities. We therefore undertook preliminary

numerical investigations (described in the SI Text) into the stochastic
behaviour of the decision system under different parameterisations,
once the system has converged to the stable decision-manifold, and
until it crosses a decision-threshold.
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Fig. 6. Speed-accuracy trade-off when differences between alternatives are
sufficiently large that a single attractor for the best alternative exists; the ob-
served speed-accuracy trade-off is qualitatively similar to that realised by the
statistically-optimal drift-diffusion model of decision-making (see SI Text). When
two attractors for alternatives of different values exist, however, the presence of
the unstable saddle-node can improve error rate without compromising reaction
time (see SI Text and Fig. S5).
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signalling � leads to a bifurcation resulting in two stable attractors,
one for each alternative.

As Fig. 4(Left) shows, for small |�v| the stable deadlock point
(pre-bifurcation) is moved towards the better of the two alternatives
(plot (c) in 4(Left)), but may still represent a situation in which nei-
ther alternative reaches quorum and thereby is selected. However,
for small |�v|, as in the case of equal value alternatives, increas-
ing stop-signal ensures at least that a decision is reached: two stable
attractors, one for each alternative, are introduced at the bifurcation
with a saddle node between them.

For larger values of |�v|, the saddle node (post-bifurcation)
moves towards the inferior alternative, thereby increasing the chances
that the better alternative is selected (point (d) in 4(Left)). For |�v|
sufficiently large relative to the mean value v of the alternatives, the
(pre-bifurcation) single stable attractor corresponding to the best al-
ternative will be such that the swarm can reach the quorum threshold
required to select that alternative. Fig. 4(Middle) illustrates the min-
imum |�v| required to retain a (pre-bifurcation) single attractor for
the best option as a function of � for a given v.

In Fig. 4(Right) the minimum |�v| required to retain a single
attractor for the best alternative is plotted as a function of v. The

situation in which a single attractor exists is precisely the situation
in which the swarm could be thought of as unambiguously identify-
ing one superior alternative from the two available, since when two
attractors exists, one for each alternative, some decision trajectories
lead the system towards selecting the worst of the two alternatives.
Notably, the minimum |�v| converges on a linear relationship with
v, with slope determined by � (Fig. 4(Right)). This is analogous to
Weber’s law of just-noticeable difference, formulated in psychology,
which states that the minimum difference in stimulus intensity re-
quired to discriminate between two sources varies linearly with their
average intensity as

�v

v

= K, [5]

where K is an empirically-determined constant. From Fig. 4(Right)
it is evident that K in Eq. 5 is a function of stop-signalling rate �.
Thus stop-signalling controls the Weber coefficient with lower rates
� corresponding to lower Weber coefficients K, leading to a shal-
lower increase of decision difficulty with average value of options in
the decision.
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Fig. 4. Dependence of decision-making over alternatives on absolute difference in value of alternatives |�v|, stop-signalling �, and mean value of alternatives v.
(Left) Bifurcation set as a function of � and |�v|, for fixed v = 4. This generalises the result of Fig. 2, for which |�v| = 0. The grey region corresponds to
parameters where the decision dynamics have a single stable attractor (pre-bifurcation), whereas the white region correspond to those having two stable attractors
and one saddle node (post-bifurcation). Sample phase-portraits illustrate how the positions of these fixed points change according to � and |�v|. Plots (a) and (b)
illustrate the results of Fig. 2, in which |�v| = 0. Increasing |�v| moves the stable attractor towards the superior alternative in the pre-bifurcation case (see plot (c)),
although it may still correspond to a population state in which quorum is reached for neither alternative; whereas increasing |�v| in the post-bifurcation case moves
the saddle point towards the inferior alternative, thereby increasing the basin of attraction for the superior alternative (see plot (d)). Thus for a decision with given |�v|
that is too low to precipitate a quorum decision, increasing � precipitates a decision, in which the more valuable alternative is more likely to be selected. (Middle)
The relationship between � and the minimum |�v| required for a unique attractor for the best alternative depends on v. (Right) The relationship between v and the
minimum |�v| required for a single alternative to unambiguously be considered the best converges on a linear relationship, with slope determined by �. This is similar
to Weber’s law of just noticeable difference, observed in psychological studies, with � determining the Weber coefficient.

Full Dynamics Classification. Fig. 5 illustrates the full set of dy-
namical regimes that the stop-signal model of Eq. 1 can exhibit, as its
parameters are changed. Fig. 5(Left) shows the pitchfork bifurcation
with increasing stop-signal � in the |�v| = 0 case. The dynamics
in the |�v| 6= 0 case exhibit a saddle-node bifurcation as a function
of stop-signal rate � (Fig. 5(Middle)). The dynamics also exhibit a
hysteretic effect as a function of difference in value of the two alter-
natives �v (Fig. 5(Right)). For a given value of v, the bifurcations of
the dynamics of Eq. 1, in two parameters �v and �, are qualitatively

identical to the cusp catastrophe [1]. The plots in Fig. 5 represent
three slices through this cusp catastrophe bifurcation set. Each of
these regimes is illustrated with animated stochastic simulations in
the SI.

The saddle-node bifurcation of Fig. 5(Middle) clearly shows two
features of the stop-signal rate �. First, even for small differences in
the value of alternatives relative to their mean value, increasing stop-
signal � improves decision-making by moving the (pre-bifurcation)
single stable attractor further and further towards the state in which
there is a large majority of scouts committed to the superior alterna-
tive. If the quorum threshold, defined by dashed lines, is set to an
appropriate value, increasing the stop-signal would therefore amplify
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tions in the relevant recruitment and interaction rates. For the sim-
plest case of a decision over two alternatives, the time-evolution of
the general model is described entirely by a two-dimensional system
of coupled stochastic differential equations as

8
>><

>>:

dyA := (yU�A � yA(↵A � yU⇢A + yB�B)) dt
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[1]

where yA and yB are the proportion of scout bees recruiting to po-
tential nest sites A and B respectively, and yU = 1 � yA � yB is
the proportion of uncommitted scouts in the colony. Greek letters are
used to denote parameters of the colony’s decision-making system,
that could be tuned by evolution. Latin letters are used to denote pa-
rameters of the decision problem faced by the colony that are outside
of its control. Here, �i is the rate at which scouts independently dis-
cover and begin recruiting to potential nest site i, ↵i is the rate at
which scouts spontaneously abandon their commitment to site i, ⇢i

is the rate at which scouts committed to site i recruit uncommitted
scouts via the ‘waggle dance’ [26], and �i is the rate at which scouts
committed to site i convert scouts recruiting for the competitor site to
a state of non-commitment, using the ‘stop-signal’ to disrupt waggle-
dancing bees [16, 23].

A collective decision is reached when one of the scout popula-
tions reaches a (variable) quorum threshold !. We assume that all of
the rates depend on the value vi of the relevant potential nest site. As
in previous work we set �i = ⇢i = vi and ↵i = 1/vi [23]. Mov-
ing beyond the model of [23], we further assume that these crucial
decision rates �i, ↵i and ⇢i are subject to some stochastic variability,
due to the inherently noisy evaluations of nest site quality vi under-
taken by individual scout bees. We assume independent white-noise
(Wiener) processes added to these rates, but with identical variances
k

2. Since white noise is additive, these independent processes can be
combined into a single process with variance equal to the sum of the
variances of its component processes. This is captured in the dWA

and dWB terms in Eq. 1 in which dWi is a normally-distributed in-
crement of the Wiener process i, with mean 0 and variance 1. Thus
the parameter k controls the noisiness, or difficulty, of the decision
problem, where higher k means noisier evaluations. For our dynam-
ical systems analyses, we will set k = 0 in Eq. 1, recovering the
noise-free dynamics of [23], while for our stochastic decision dy-
namics analyses, we will set k > 0.

Results
General Decision Dynamics — Separation of Timescales. A well-
established technique for studying models of binary decision-making
similar to that described in Eq. 1 is to reduce the system of equa-
tions to a one-dimensional description of the decision dynamics
(e.g. [3, 13]). Denote the mean value of alternatives v̄ := (vA +
vB)/2 and the difference in value of alternatives �v := vA � vB .
For large v̄ and small �v/v̄, it can be shown that there is a sep-
aration of timescales: a singular perturbation analysis of the zero-
noise (k = 0) dynamics (SI Text, Fig. S1) reveals fast convergence,
dominated by the dynamics of the uncommitted population yU , to
a stable one-dimensional decision manifold, followed by slow time-
evolution, dominated by the relative dynamics of the committed pop-
ulations yA and yB , along this manifold as illustrated in Fig. 1. We
note that the slow manifold, defined implicitly by (SI Text)

yAyB =
2v̄

�

yU (1 + yA)(1 + yB)
3� yU

, [2]

depends on v̄ and � but not on �v, whereas the dynamics along the
slow manifold depend explicitly on v̄, �, and �v (SI Text). The slow
manifold is superimposed on the simulated decision-making dynam-
ics in Fig. 1 and in Fig. S2, where it can be seen that the slow mani-

fold approximates the slow dynamics well over a range of parameter
values, deteriorating only when �v is on the order of v̄.

Thus, analysing the stochastic decision dynamics along the sta-
ble one-dimensional manifold will give a good understanding of the
decision-making properties of the system as a whole. This is par-
ticularly relevant because the reduced dynamics resemble classical
models of binary decision-making. For example, the general one-
dimensional stochastic differential equation

dx := (a + bx)dt + cdW, [3]
where dW is the Wiener increment as in Eq. 1, includes O-U pro-
cesses (a 6= 0, b 6= 0) and the drift-diffusion model (DDM —
a 6= 0, b = 0) as special cases. In these models as applied to
decision-making, a represents the signal in the stimulus presented to
the decision-maker, and c the noise in that stimulus. The decision-
variable x models the tendency to choose one of two alternatives
where a decision is made in favor of one alternative when x crosses
a positive threshold and the other alternative when x crosses a nega-
tive threshold. In the statistically-optimal DDM parameterisation, x

represents the log likelihood ratio of the alternatives so that x = 0
corresponds to equal evidence for each alternative.

v = 10
� = 10
�v = 0

v = 10
� = 10
�v = 3

A

B

U A

B

U
Fig. 1. Decision-making dynamics on the unit simplex with vertex U correspond-
ing to a fully uncommitted swarm (yU = 1), vertex A to a swam fully committed
to site A (yA = 1), and vertex B to a swarm fully committed to site B (yB = 1).
When the proportion of scouts committed to site A or B (yA or yB ) surpasses
a quorum threshold, illustrated with a dashed line, the corresponding alternative
is selected by the swarm. Flow lines indicate sample noise-free trajectories over
time, demonstrating fast convergence to a slow, invariant manifold. A singular
perturbation analysis (SI Text) proves this separation of timescales, and gives
the expression Eq. 2 for the slow manifold (magenta line), which is independent
of �v (thus, the slow manifold is the same in the right and left plots). The dy-
namics on the slow manifold depend on parameters of the decision problem v̄
and �v and of the decision-making swarm �: stable attractors (filled circles) can
co-exist with unstable saddle-nodes (hollow circles) on the slow manifold. Thus,
decision-making in the swarm can be reduced to decision-making with a single
decision-variable; this is the form of several classic models of decision-making,
including those implementing provably optimal statistical tests.

Bogacz et al. previously recovered O-U processes and the DDM
from two-dimensional connectionist models of choice in the visual
cortex, while we recovered the DDM from two-dimensional models
of nest-site selection by social insect colonies [13]. The DDM [21] is
of particular interest to researchers interested in studying decision-
making because it corresponds to the statistically-optimal test for
compromising between speed and accuracy of decision-making, as
well as giving the best fits to reaction-time and error-rate distribu-
tions of subjects undertaking psychophysical decision tasks [3]. The
analyses of [3] and [13] were facilitated by studying equations that
converged to a linear stable manifold, whereas the stable manifold
for Eq. 1 is clearly non-linear (Fig. 1; SI Text). Nevertheless ap-
proximations to this manifold, as well as stochastic simulations, will
enable us to analyse decision-making along it.

Minimum Value of Acceptable Equal Alternatives.Our previous
analysis showed that the decision-making model of Eq. 1 with k = 0,
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A R T I C L E S

There is a growing consensus in behavioral neuroscience that the 

brain makes simple choices by first assigning a value to all of the 

options under consideration and then comparing them1–3. This has 

motivated an interest in the computational properties of value com-

parison processes, and in understanding the extent to which they can 

generate reward-maximizing choices.

Although many popular models of value-based choice implicitly 

assume that the comparison process involves a trivial instantaneous 

maximization problem4,5, casual observation suggests that the under-

lying processes are more sophisticated and that visual fixations are likely 

to be involved. Consider, for example, a typical buyer at the grocery 

store choosing between two snacks. Instead of approaching the shelf and 

immediately selecting his preferred option, the individual’s gaze shifts 

repeatedly between the items until one of them is eventually selected.

We propose a model of how simple value-based binary choices are 

made and of the role of visual fixations in the comparison of values. 

The model makes stark qualitative and quantitative predictions about 

the relationship between fixation patterns and choices, which we test 

using eye-tracking (Fig. 1a). Subjects are shown high-resolution pic-

tures of two food items and are free to look at them as much as they 

want before indicating their choice with a button press.

The theory developed here builds on the framework of drift-

 diffusion models (DDM) of binary response selection6–19, and 

 especially on applications of these models to the realm of perceptual 

decision making18,20–31, where they have provided accurate descrip-

tions of the psychometric data and important insights into the acti-

vity of the lateral intraparietal area (LIP). These models assume that 

stochastic evidence for one response (compared to the other) is accu-

mulated over time until the integrated evidence passes a decision-

threshold and a choice is made. The level of the threshold is set to 

balance the benefit of accumulating more information with the cost 

of taking more time to reach a decision.

There are two key differences between our work and the previous 

studies on perceptual discrimination. First, in both tasks subjects must 

determine the value of two potential responses, but in perceptual dis-

crimination tasks subjects typically see a single stochastic stimulus, 

whereas in our task subjects see two non-stochastic pictures of food 

items. Second, fixations are not involved in the standard perceptual dis-

crimination task because subjects maintain central fixation at all times, 

whereas here the fixations are crucial for the decisions. The key idea of 

our model is that fixations affect the DDM value comparison process 

by introducing a temporary drift bias toward the fixated item. This drift 

bias in turn leads to a choice bias for items that are fixated on more.

RESULTS

Computational model

Following the literature on DDMs, our model assumes that the brain 

computes a relative decision value (RDV) that evolves over time as a 

Markov Gaussian process until a choice is made (Fig. 1b). The RDV 

starts each trial at 0 and continually evolves over time at one of two 

possible rates (depending on which item is fixated), and a choice is 

made when it reaches a barrier at either +1 or −1. If the RDV reaches 

the +1 threshold the left item is chosen and if it reaches the −1 thresh-

old the right item is chosen.

The key difference between our model and the standard drift diffu-

sion model is that in our model the slope with which the RDV signal 

evolves at any particular instant depends on the fixation location. 

In particular, the slope is proportional to the weighted difference 

between the values of the fixated and unfixated items. The weight 

discounts the value of the unfixated item relative to the fixated one. 

When the subject is looking at the left item the RDV changes accord-

ing to Vt = Vt−1 + d(r left − θrright) + t, and when he looks at the 

right item, it changes according to Vt = Vt−1 + d(rright − θr left) + t,  

where Vt is the value of the RDV at time t, rleft and rright denote the 

values of the two options, d is a constant that controls the speed of 

integration (in units of ms−1),  between 0 and 1 is a parameter that 

reflects the bias toward the fixated option, and t is white Gaussian 

noise with variance 2 (randomly sampled once every millisecond).
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Visual fixations and the computation and comparison 

of value in simple choice

Ian Krajbich1, Carrie Armel2 & Antonio Rangel1,3

Most organisms facing a choice between multiple stimuli will look repeatedly at them, presumably implementing a comparison 

process between the items’ values. Little is known about the nature of the comparison process in value-based decision-making 

or about the role of visual fixations in this process. We created a computational model of value-based binary choice in which 

fixations guide the comparison process and tested it on humans using eye-tracking. We found that the model can quantitatively 

explain complex relationships between fixation patterns and choices, as well as several fixation-driven decision biases.

Salience driven value integration explains decisionbiases and preference reversalKonstantinos Tsetsosa,b,1, Nick Chaterc, and Marius Usherd,1aDepartment of Cognitive, Perceptual, and Brain Sciences, University College London, London WC1H 0AP, United Kingdom; bDepartment of Experimental

Psychology, Oxford University, Oxford OX1 3UD, United Kingdom; cBehavioural Science Group, Warwick Business School, University of Warwick, Coventry CV4

7AL, England; and dSchool of Psychology and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel

Edited by Barbara Anne Dosher, University of California, Irvine, CA, and approved April 25, 2012 (received for review November 28, 2011)

Human choice behavior exhibits many paradoxical and challenging
patterns. Traditional explanations focus on how values are rep-
resented, but little is known about how values are integrated.
Here we outline a psychophysical task for value integration that
can be used as a window on high-level, multiattribute decisions.
Participants choose between alternative rapidly presented streams
of numerical values. By controlling the temporal distribution of the
values, we demonstrate that this process underlies many puzzling
choice paradoxes, such as temporal, risk, and framing biases, as
well as preference reversals. These phenomena can be explained
by a simple mechanism based on the integration of values, weighted
by their salience. The salience of a sampled value depends on its
temporal order and momentary rank in the decision context,
whereas the direction of the weighting is determined by the task
framing. We show that many known choice anomalies may arise
from the microstructure of the value integration process.
decision making | decoy effects | value psychophysics | expandedjudgement

Recent research on the psychology and neuroscience of sim-
ple, evidence-based choices (e.g., integrating perceptual or

reward information) has made impressive progress, leading to
the conclusion that the brain is optimized to make the fastest
decision for a specified accuracy (1–5). Accordingly, the observer
is assumed to infer the most probable cause of a perceived ex-
perience by sequentially accumulating samples of noisy evidence
until a response criterion is reached. The idea that simple, evi-
dence-based decision making is optimal contrasts with findings in
more complex, motivation-based decisions, focused on multiple
goals with tradeoffs (e.g., choices among cars or flats). Here,
a number of paradoxical and puzzling choice behaviors (6–8)
have been revealed, posing a serious challenge to the develop-
ment of a unified theory of choice.Can a common theoretical framework between evidence-based
and motivation-based decisions be established? A natural starting
point is to propose that, in the latter, the cognitive system inte-
grates subjective values (rather than, say, pieces of perceptual
evidence), that depend on how each alternative matches the de-
cision maker’s goals (9). In particular, when alternatives are
characterized by different attributes (e.g., product price and
quality), preference is shaped through shifting attention across
these attributes (8, 10), assessing an item’s subjective value on
each attribute, integrating these values across time, and finally
making a choice when some threshold is reached (11–13). A de-
tailed understanding of these computations might explain the
systematic anomalies observed in motivation-based decisions.
This line of research has been difficult to pursue, however,

because classical laboratory preference tasks provide little con-
trol of the moment-by-moment processes of value sampling and
integration. This stands in contrast with psychophysical para-
digms for studying evidence-based perceptual choice where the
flow of sensory evidence can be fully controlled by the experi-
menter (14, 15). To obtain more precise control on the decision
input, we introduce an experimental paradigm, which we call

“value psychophysics,” at the interface of psychophysics and
motivation-based decisions, similar to the expanded judgment
task developed in a different context (16, 17). Participants si-
multaneously view two or three rapidly varying sequences of nu-
merical values, described as stock market values or slot machines’
past payouts. After each presentation, they choose the sequence
with either the highest overall value or the sequence they would
like to “play” to obtain a reward sample. Controlling the flow of
the input values (Fig. 1A) allows us directly to probe how people
attend to and integrate values.Using this task, we first demonstrated the remarkable ability of
the cognitive system to rapidly integrate streams of numerical
values and select the alternative with the highest mean value.
However, this integration process was subject to distortions;
more-salient samples are weighted more heavily. Salience was
determined by (i) the temporal order of the sample, with more
recent items more heavily weighted, and (ii) by the magnitude of
the sample, with larger values being further amplified. Hence, we
observed that the value-integration mechanism is sensitive to the
variance of the sequences, favoring riskier options in the domain
of gains, in direct contrast to the risk aversion predicted by
expected utility theory and prospect theory (18). This risk-seek-
ing bias was reversed in the logically equivalent task of rejecting
the worst alternative. Based on these findings, we proposed
a mechanism for value integration, which accounts for temporal,
variance, and task-framing sensitivity by prioritizing the pro-
cessing of the samples depending on their order and their mo-
mentary rank in the decision context. We showed that when this
simple mechanism is extended to more than two alternatives, it
provides a natural explanation of contextual preference reversal
effects in multiattribute choice (6, 8). Finally, we confirmed this
account by reproducing analogs of these effects in the value
psychophysics paradigm, establishing a strong link between this
simple task and the underlying mechanisms of complex goal-
directed decisions.
Results
We report four experiments using the value psychophysics para-
digm. Experiments 1 and 2 involved selecting between two nu-
merical sequences, testing the presence of differential weighting
of the values in time and in the value range, respectively.
Experiments 3 and 4 involved choice among three sequences. In
experiment 3, a two-stage decision process was used to test the
effect of task framing on the integration process; elimination of one
of the three options was followed by selection between the remaining
Author contributions: K.T., N.C., and M.U. designed research; K.T. performed research;
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When Natural Selection Should Optimise
Speed-Accuracy Trade-offs
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1 KEYWORDS:

decision-making, value, reward, error, Bayes risk, drift-diffusion, mechanism, evolution2 INTRODUCTIONIn psychology and neuroscience, and in other disciplines studying decision-making mechanisms, it is often assumed that optimal

decision-making means statistical optimality. This is attractive because statistically optimal decision procedures are known, can be

simply implemented in biologically-plausible models, and because such models have been shown to give good fits to behavioural as

well as neural data. Here we question when statistical optimality is the kind of optimality we should expect natural selection to aim

towards, by considering what kinds of loss function should be optimised under different behavioural scenarios. In laboratory settings

subjects are often rewarded only on making a correct choice, so optimisation of a zero-one loss function is appropriate, and this is

achieved by implementing a statistically-optimal decision procedure that gives the best compromise between speed and accuracy

of decision-making. Many naturalistic decisions may also be described by such a loss function; however others, such as selecting

food items of potentially different value, appear to be different since the animal is rewarded by the value of the item it chooses

regardless of whether it was the best available. We argue that most naturalistic decisions are value-based. Mechanisms that optimise

speed-accuracy trade-offs need to be parameterised, using information about the decision problem, in order to deal with value-based

decision-making. Mechanisms for value-sensitive decision-making have been described, however, which adaptively change between

decision-making strategies without the need for continual re-parameterisation.3 SPEED-ACCURACY TRADE-OFFS
It is usually assumed that decision-makers have to decide to be either fast or accurate. When speed is important mistakes are more

frequent, while when accuracy is needed decisions are slower. This obvious problem is defined as the speed-accuracy trade-off and

is a distinctive feature of many types of decision making (Wickelgren, 1977).

The speed-accuracy trade-off can be explained within the theoretical framework of sequential sampling models of decision making

that have been shown to fit behavioural and neural data from human and animal choice tasks (Ratcliff et al., 2004; Ratcliff and Rouder,

2000; Ratcliff and Smith, 2004; Ratcliff et al., 2003; Busemeyer et al., 2013). In particular, the Drift Diffusion Model (DDM; Ratcliff, 1978)

describes choice between two alternatives (see Bogacz et al., 2006; Smith and Ratcliff, 2004; Basten et al., 2010) and recently has been

shown also to be quantitatively accurate in describing trinary choices (Krajbich and Rangel, 2011) and value-based choices (Krajbich

et al., 2010; Krajbich and Rangel, 2011; Milosavljevic et al., 2010; Krajbich et al., 2012), suggesting that the DDM can be thought of as

1



BEHAVIOURAL PREDICTIONS

DECISION-MAKERS IMPLEMENTING (SOMETHING LIKE) 
THIS MECHANISM SHOULD EXHIBIT: 

WEBER’S LAW (STANDARD OBSERVATION) 

SPEED-ACCURACY TRADE-OFFS (STANDARD OBS.) 

REACTION-TIME SENSITIVITY TO ABSOLUTE VALUE 

DECISION-MEMORY BASED ON PREVIOUS STIMULI 
VALUES



VALUE-SENSITIVITY IN HUMANS

TWO REWARD INSTRUCTIONS: 

PERCEPTUAL: FIXED REWARD FOR CORRECT CHOICE, ZERO FOR INCORRECT 

VALUE: REWARD PROPORTIONAL TO NUMBER OF DOTS

VALUE PSYCHOPHYSICS: ANALYSYS OF TWO PILOT STUDIES

The perceptual experiment

This  experiment  involves  participants  judging  which  of  two  clusters  of  dots  is  more

numerous (typical stimuli, Figure 1) and responding by button press. The numbers of dots in

each choice pair is shown in Table 1. 

Figure 1 – typical stimuli

condition number of dots evidence value ratio of difference

1 28 vs 28 zero medium 0

2 34 vs 50 high high 1.5

3 44 vs 50 low high 1.1

4 5 vs 5 zero low 0

5 5 vs 6 low low 1.2

6 5 vs 8 high low 1.6

7 50 vs 50 zero high 0

Table 1 – stimuli values 



VALUE-SENSITIVITY IN HUMANS

Figure 2: main effect of difference

with medium-value alternatives (M = .66, SD= .03, p = .002). A graphical
representation of the effect of value is shown in Figure 3. As pairwise com-
parisons for the interaction value* difference revealed, in the no difference
condition subjects are slower when the value is low (M = .68, SD= .03) than
when the value is high (M = .66, SD= .02, p = .03) or medium (M = .66,
SD= .03, p =.004). In the high difference condition subjects are slower when
presented with low value alternatives (M= .67, SD=.03) than with medium
value (M = .65, SD =.03, p = .09) or high value (M = .63, SD = .02, p = .01).
Moreover, when the value is low, subjects are faster when the difference
is high (M = .67, SD = .03) than when the difference is zero (M = .68, SD
= .03, p=.04) and also when the value is high subjects are faster when the
difference is high (M = .63, SD= .02) than when the difference is zero (M =
.66, SD =.02, p= .01). The pattern is shown in Figure 4. It is interesting to
note that, although not statistically significant, in all comparisons subjects
are faster in the perceptual design rather than in the value task and that
the pattern affecting the perceptual task is similar to the one affecting the
value task for all interaction comparisons and in line with the main effects
of value and difference in evidence presented above.

4

Figure 3: main effect of value

Figure 4: interaction effect of value x difference

5



VALUE-SENSITIVITY IN HUMANS

INCONSISTENT WITH: 

SIMPLE DRIFT-DIFFUSION 
MODEL 

CONSISTENT WITH: 

STOP-SIGNAL MODEL 

ACCUMULATOR MODELS 

RACE/SEQUENTIAL CHOICE 
MODELS (E.G. KACELNIK ET 
AL.)Figure 3: main effect of value

Figure 4: interaction effect of value x difference
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LOOKING FOR IMPLEMENTATIONS OF 
VALUE-SENSITIVE DECISION-MAKING

The Brain Implements Optimal Decision Making 449

A

B

Figure 1: Comparison of connectivity of basal ganglia and a network imple-
menting the multihypothesis sequential probability ratio Test (MSPRT). (A)
Connectivity of basal ganglia nuclei and its cortical afferents in the rat (mod-
ified from Gurney et al., 2001a). Connections and nuclei denoted by dashed
lines are not essential for the implementation of MSPRT. (B) Architecture of the
network implementing MSPRT. The equations show expressions calculated by
each layer of neurons.
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BOGACZ & GURNEY, 2007

EXCITATION
INHIBITION



The Brain Implements Optimal Decision Making 449
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Figure 1: Comparison of connectivity of basal ganglia and a network imple-
menting the multihypothesis sequential probability ratio Test (MSPRT). (A)
Connectivity of basal ganglia nuclei and its cortical afferents in the rat (mod-
ified from Gurney et al., 2001a). Connections and nuclei denoted by dashed
lines are not essential for the implementation of MSPRT. (B) Architecture of the
network implementing MSPRT. The equations show expressions calculated by
each layer of neurons.
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Figure 1: Comparison of connectivity of basal ganglia and a network imple-
menting the multihypothesis sequential probability ratio Test (MSPRT). (A)
Connectivity of basal ganglia nuclei and its cortical afferents in the rat (mod-
ified from Gurney et al., 2001a). Connections and nuclei denoted by dashed
lines are not essential for the implementation of MSPRT. (B) Architecture of the
network implementing MSPRT. The equations show expressions calculated by
each layer of neurons.
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LOOKING FOR IMPLEMENTATIONS OF 
VALUE-SENSITIVE DECISION-MAKING

PAIS ET AL. (2013)

tions in the relevant recruitment and interaction rates. For the sim-
plest case of a decision over two alternatives, the time-evolution of
the general model is described entirely by a two-dimensional system
of coupled stochastic differential equations as

8
>><

>>:

dyA := (yU�A � yA(↵A � yU⇢A + yB�B)) dt

+k

p
y

2
U + y

2
A + y

2
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2
AdWA

dyB := (yU�B � yB(↵B � yU⇢B + yA�A)) dt

+k

p
y

2
U + y

2
B + y

2
Uy

2
BdWB

[1]

where yA and yB are the proportion of scout bees recruiting to po-
tential nest sites A and B respectively, and yU = 1 � yA � yB is
the proportion of uncommitted scouts in the colony. Greek letters are
used to denote parameters of the colony’s decision-making system,
that could be tuned by evolution. Latin letters are used to denote pa-
rameters of the decision problem faced by the colony that are outside
of its control. Here, �i is the rate at which scouts independently dis-
cover and begin recruiting to potential nest site i, ↵i is the rate at
which scouts spontaneously abandon their commitment to site i, ⇢i

is the rate at which scouts committed to site i recruit uncommitted
scouts via the ‘waggle dance’ [26], and �i is the rate at which scouts
committed to site i convert scouts recruiting for the competitor site to
a state of non-commitment, using the ‘stop-signal’ to disrupt waggle-
dancing bees [16, 23].

A collective decision is reached when one of the scout popula-
tions reaches a (variable) quorum threshold !. We assume that all of
the rates depend on the value vi of the relevant potential nest site. As
in previous work we set �i = ⇢i = vi and ↵i = 1/vi [23]. Mov-
ing beyond the model of [23], we further assume that these crucial
decision rates �i, ↵i and ⇢i are subject to some stochastic variability,
due to the inherently noisy evaluations of nest site quality vi under-
taken by individual scout bees. We assume independent white-noise
(Wiener) processes added to these rates, but with identical variances
k

2. Since white noise is additive, these independent processes can be
combined into a single process with variance equal to the sum of the
variances of its component processes. This is captured in the dWA

and dWB terms in Eq. 1 in which dWi is a normally-distributed in-
crement of the Wiener process i, with mean 0 and variance 1. Thus
the parameter k controls the noisiness, or difficulty, of the decision
problem, where higher k means noisier evaluations. For our dynam-
ical systems analyses, we will set k = 0 in Eq. 1, recovering the
noise-free dynamics of [23], while for our stochastic decision dy-
namics analyses, we will set k > 0.

Results
General Decision Dynamics — Separation of Timescales. A well-
established technique for studying models of binary decision-making
similar to that described in Eq. 1 is to reduce the system of equa-
tions to a one-dimensional description of the decision dynamics
(e.g. [3, 13]). Denote the mean value of alternatives v̄ := (vA +
vB)/2 and the difference in value of alternatives �v := vA � vB .
For large v̄ and small �v/v̄, it can be shown that there is a sep-
aration of timescales: a singular perturbation analysis of the zero-
noise (k = 0) dynamics (SI Text, Fig. S1) reveals fast convergence,
dominated by the dynamics of the uncommitted population yU , to
a stable one-dimensional decision manifold, followed by slow time-
evolution, dominated by the relative dynamics of the committed pop-
ulations yA and yB , along this manifold as illustrated in Fig. 1. We
note that the slow manifold, defined implicitly by (SI Text)

yAyB =
2v̄

�

yU (1 + yA)(1 + yB)
3� yU

, [2]

depends on v̄ and � but not on �v, whereas the dynamics along the
slow manifold depend explicitly on v̄, �, and �v (SI Text). The slow
manifold is superimposed on the simulated decision-making dynam-
ics in Fig. 1 and in Fig. S2, where it can be seen that the slow mani-

fold approximates the slow dynamics well over a range of parameter
values, deteriorating only when �v is on the order of v̄.

Thus, analysing the stochastic decision dynamics along the sta-
ble one-dimensional manifold will give a good understanding of the
decision-making properties of the system as a whole. This is par-
ticularly relevant because the reduced dynamics resemble classical
models of binary decision-making. For example, the general one-
dimensional stochastic differential equation

dx := (a + bx)dt + cdW, [3]
where dW is the Wiener increment as in Eq. 1, includes O-U pro-
cesses (a 6= 0, b 6= 0) and the drift-diffusion model (DDM —
a 6= 0, b = 0) as special cases. In these models as applied to
decision-making, a represents the signal in the stimulus presented to
the decision-maker, and c the noise in that stimulus. The decision-
variable x models the tendency to choose one of two alternatives
where a decision is made in favor of one alternative when x crosses
a positive threshold and the other alternative when x crosses a nega-
tive threshold. In the statistically-optimal DDM parameterisation, x

represents the log likelihood ratio of the alternatives so that x = 0
corresponds to equal evidence for each alternative.

v = 10
� = 10
�v = 0

v = 10
� = 10
�v = 3

A

B

U A

B

U
Fig. 1. Decision-making dynamics on the unit simplex with vertex U correspond-
ing to a fully uncommitted swarm (yU = 1), vertex A to a swam fully committed
to site A (yA = 1), and vertex B to a swarm fully committed to site B (yB = 1).
When the proportion of scouts committed to site A or B (yA or yB ) surpasses
a quorum threshold, illustrated with a dashed line, the corresponding alternative
is selected by the swarm. Flow lines indicate sample noise-free trajectories over
time, demonstrating fast convergence to a slow, invariant manifold. A singular
perturbation analysis (SI Text) proves this separation of timescales, and gives
the expression Eq. 2 for the slow manifold (magenta line), which is independent
of �v (thus, the slow manifold is the same in the right and left plots). The dy-
namics on the slow manifold depend on parameters of the decision problem v̄
and �v and of the decision-making swarm �: stable attractors (filled circles) can
co-exist with unstable saddle-nodes (hollow circles) on the slow manifold. Thus,
decision-making in the swarm can be reduced to decision-making with a single
decision-variable; this is the form of several classic models of decision-making,
including those implementing provably optimal statistical tests.

Bogacz et al. previously recovered O-U processes and the DDM
from two-dimensional connectionist models of choice in the visual
cortex, while we recovered the DDM from two-dimensional models
of nest-site selection by social insect colonies [13]. The DDM [21] is
of particular interest to researchers interested in studying decision-
making because it corresponds to the statistically-optimal test for
compromising between speed and accuracy of decision-making, as
well as giving the best fits to reaction-time and error-rate distribu-
tions of subjects undertaking psychophysical decision tasks [3]. The
analyses of [3] and [13] were facilitated by studying equations that
converged to a linear stable manifold, whereas the stable manifold
for Eq. 1 is clearly non-linear (Fig. 1; SI Text). Nevertheless ap-
proximations to this manifold, as well as stochastic simulations, will
enable us to analyse decision-making along it.

Minimum Value of Acceptable Equal Alternatives.Our previous
analysis showed that the decision-making model of Eq. 1 with k = 0,
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PAYBACK FOR ENGINEERING?

AS WELL AS DESIRABLE DECISION 
PROPERTIES, STOP-SIGNAL MODEL 
IMPLEMENTS ENERGY EFFICIENT 
DESIGION-MAKING 

SHOULD BE SUITABLE FOR 
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HYSTERESIS

the differences in the qualities of the the alternatives sufficiently to
precipitate a decision for the better option, on average.

Fig. 5(Middle) also shows that too high a rate of stop-signal �

can be detrimental. If the stop-signalling rate is increased then a sta-
ble attractor for the inferior alternative suddenly appears in a saddle-
node bifurcation, with an unstable saddle point between it and the
original stable attractor. This can be helpful to ensure a decision if
a quorum is not reached pre-bifurcation; however, in the case that
a quorum is reached pre-bifurcation for the superior alternative, the
bifurcation might not be helpful because post-bifurcation the supe-

rior alternative is no longer a unique solution. Further increase in
the stop-signal rate � moves the inferior attractor further toward or
beyond the quorum threshold for the inferior alternative, and moves
the saddle point closer towards equal numbers of scouts committed
to each alternative (0.5 on the y-axis of Fig. 5(Middle)). Thus in-
creasing stop-signalling too much changes the dynamics such that
there may be an increasing risk of the swarm converging on choos-
ing the inferior of the two alternatives. However, as we show below
higher levels of stop-signalling can have benefits for speed-accuracy
trade-offs.
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Fig. 5. Full bifurcation behaviour of the stop-signal model of Eq. 1. According to parameterisation of the decision problem and decision-maker, the dynamics include
(i) pitchfork bifurcation as a function of stop-signal rate � in the equal alternatives case, (ii) saddle-node bifurcation as a function of stop-signal � in the unequal
alternatives case, and (iii) hysteresis as a function of difference in qualities of alternatives �v. Fixed points are projected onto the [0, 1] line as described in the SI
Text and Fig. S4. Blue dots indicate stable attractors, and red indicate unstable saddle points. Quorum thresholds at yA = yB = 0.7 are indicated by dashed lines.

In Fig. 5(Right), there is a hysteretic effect as difference in the
quality of alternatives �v is smoothly increased and then decreased
over time; this is illustrated in an animation of stochastic simula-
tions in the SI. While �v is increasing, from an initially low level,
over the interval of �v in which three fixed points co-exist (approx-
imately -0.5 to +0.5 in the figure) the system will be in the vicinity
of the lower of the two stable attractors. At a sufficiently high value
of �v (approximately 0.5), the system will jump to the other, upper
stable attractor. If �v is then reduced over the same interval, the
system will remain in the vicinity of the upper, stable attractor until
�v is less than approximately -0.5. While for a bee swarm, values
of alternatives are unlikely to change smoothly over time in this way,
this may be the case for other decision-makers, where exploitation
of an alternative degrades its value, as in the example of intracellular
decisions on activation of metabolic pathways considered in the Dis-
cussion. For neural decision-circuits, as also mentioned in the Dis-
cussion, laboratory experiments may be able to vary stimuli over time
in this way. In both these cases the hysteretic effect of Fig. 5(Right)
could act as a diagnostic that the decision-circuit used is similar in
form to that described in Eq. 1.

Speed-Accuracy Trade-offs. As noted above, several classical mod-
els of decision-making, including the DDM and the (un)stable O-
U process, are described using equations of stochastic motion on a
line. The separation of timescales result presented above demon-
strates that the decision dynamics converge rapidly to a line, along
which they slowly diffuse. Of particular interest in decision-making
models are speed-accuracy trade-offs, and the optimal compromise
between these two quantities. We therefore undertook preliminary

numerical investigations (described in the SI Text) into the stochastic
behaviour of the decision system under different parameterisations,
once the system has converged to the stable decision-manifold, and
until it crosses a decision-threshold.
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Fig. 6. Speed-accuracy trade-off when differences between alternatives are
sufficiently large that a single attractor for the best alternative exists; the ob-
served speed-accuracy trade-off is qualitatively similar to that realised by the
statistically-optimal drift-diffusion model of decision-making (see SI Text). When
two attractors for alternatives of different values exist, however, the presence of
the unstable saddle-node can improve error rate without compromising reaction
time (see SI Text and Fig. S5).
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