Division of Labor in Ant Colonies

Alex Cornejo, Anna Dornhaus, Nancy Lynch and Radhika Nagpal

October 13, 2014

What is division of labor? (cont.)

Much of the existing work focuses on exploring the correlation between temporal and morphological variations and worker behavior.

What is division of labor? (cont.)

Much of the existing work focuses on exploring the correlation between temporal and morphological variations and worker behavior.

What is division of labor? (cont.)

Much of the existing work focuses on exploring the correlation between temporal and morphological variations and worker behavior.

Contributions

► A very general mathematical formulation for the phenomenon of division of labor in ant colonies.

Contributions

- ▶ A very general mathematical formulation for the phenomenon of division of labor in ant colonies.
- A distributed algorithm that quickly reaches a near optimal task allocation and imposing only minimal assumptions on the capabilities of individual ants.

ightharpoonup A set A of ants.

- ▶ A set *A* of ants.
- ▶ A set *T* of tasks.

- ▶ A set A of ants.
- ▶ A set T of tasks.
- ▶ For task $\tau \in T$, ant $a \in A$ and time $t \in \mathbb{R}_{\geq 0}$:

- A set A of ants.
- ▶ A set T of tasks.
- ▶ For task $\tau \in T$, ant $a \in A$ and time $t \in \mathbb{R}_{\geq 0}$:
 - $d(\tau,t)$ is the total energy demand for task τ at time t.

- A set A of ants.
- ▶ A set T of tasks.
- ▶ For task $\tau \in T$, ant $a \in A$ and time $t \in \mathbb{R}_{\geq 0}$:
 - $d(\tau,t)$ is the total energy demand for task τ at time t.
 - $e(\tau, a, t)$ is the energy that can be supplied by ant a if engaged at task τ at time t.

▶ A task assignment is a function $y: A \times \mathbb{R}_{>0} \to T \cup \{\bot\}.$

- ▶ A task assignment is a function $y: A \times \mathbb{R}_{\geq 0} \to T \cup \{\bot\}.$
- ▶ Given y we define $Y(\tau,t)$ as the set of ants assigned to task τ at time t, and I(t) as the set of ants assigned to no task at time t.

$$Y(\tau, t) = \{a \in A : y(a, t) = \tau\}$$

 $I(t) = \{a \in A : y(a, t) = \bot\}$

- ▶ A task assignment is a function $y: A \times \mathbb{R}_{\geq 0} \to T \cup \{\bot\}.$
- ▶ Given y we define $Y(\tau,t)$ as the set of ants assigned to task τ at time t, and I(t) as the set of ants assigned to no task at time t.

$$Y(\tau, t) = \{ a \in A : y(a, t) = \tau \}$$
$$I(t) = \{ a \in A : y(a, t) = \bot \}$$

▶ Observe that by definition $A = Y(\tau, t) \cup I(t)$.

• $w(\tau,t) = \sum_{a \in Y(\tau,t)} e(\tau,a,t)$ is the energy supplied to task τ at time t.

- $w(\tau,t) = \sum_{a \in Y(\tau,t)} e(\tau,a,t)$ is the energy supplied to task τ at time t.
- ▶ $q(\tau,t) = d(\tau,t) w(\tau,t)$, if negative represents a surplus of energy at task τ , if positive represents a deficit of energy at task τ , and if zero then the task τ is in equilibrium.

- $w(\tau,t) = \sum_{a \in Y(\tau,t)} e(\tau,a,t)$ is the energy supplied to task τ at time t.
- ▶ $q(\tau,t) = d(\tau,t) w(\tau,t)$, if negative represents a surplus of energy at task τ , if positive represents a deficit of energy at task τ , and if zero then the task τ is in equilibrium.
- An *optimal* task assignment is one that minimizes $\sum_{\tau \in T} q(\tau, t)^2$

Restricted System Model

Restricted System Model

• We assume $e(\tau, a, t) = c$ for all $\tau \in T$, every ant $a \in A$, and every time $t \in \mathbb{R}_{\geq 0}$.

Restricted System Model

• We assume $e(\tau, a, t) = c$ for all $\tau \in T$, every ant $a \in A$, and every time $t \in \mathbb{R}_{\geq 0}$.

We consider synchronous model where time proceeds in lock-step rounds $1, 2, \ldots$, and for the duration of each round $i \in \mathbb{N}$ each ant $a \in A$ works at task y(a, i).

Capabilities of Individuals

Capabilities of Individuals

▶ Recall that $q(\tau,i) = d(\tau,i) - w(\tau,i)$ is the difference between the energy demand for task τ at round i and the energy supplied for task τ at round i.

Capabilities of Individuals

- ▶ Recall that $q(\tau,i) = d(\tau,i) w(\tau,i)$ is the difference between the energy demand for task τ at round i and the energy supplied for task τ at round i.
- For each task $\tau \in T$ ants can sense only a binary feedback function $f(\tau, i)$ where:

$$f(\tau, i) = \begin{cases} +1 & q(\tau, i) \ge 0, \\ -1 & q(\tau, i) < 0. \end{cases}$$

► Intuition: Given sufficient memory, ants could use a randomized binary-search-like strategy, guided by the function f, to reach the optimal division of labor.

- ► Intuition: Given sufficient memory, ants could use a randomized binary-search-like strategy, guided by the function f, to reach the optimal division of labor.
- Idea 1: Offload the burden of memory from the individuals to the colony.

10/19

- ► Intuition: Given sufficient memory, ants could use a randomized binary-search-like strategy, guided by the function f, to reach the optimal division of labor.
- Idea 1: Offload the burden of memory from the individuals to the colony.
- Idea 2: Let ants use a response-threshold strategy to pick tasks, and allow them to specialize.

10/19

Algorithm Details

▶ Each ant stores a task $currentTask \in T \cup \{\bot\}$ and a potential table $\varrho[\tau]$.

Algorithm Details

- ▶ Each ant stores a task $currentTask \in T \cup \{\bot\}$ and a potential table $\varrho[\tau]$.
- ▶ Initially ants start in the RESTING state with $currentTask = \bot$ and a potential of zero for every task $\forall \tau \in T, \varrho[\tau] = 0$.

Algorithm Details

- ▶ Each ant stores a task $currentTask \in T \cup \{\bot\}$ and a potential table $\varrho[\tau]$.
- ▶ Initially ants start in the Resting state with $currentTask = \bot$ and a potential of zero for every task $\forall \tau \in T, \varrho[\tau] = 0$.
- ► Ants can be in one of the five states RESTING, FIRSTRESERVE, SECONDRESERVE, TEMPWORKER and COREWORKER.

Simplified State Machine

$$\forall \tau \in T, \varrho[\tau] \leftarrow \begin{cases} 0 & \text{if } f(\tau, i) < 0\\ \min(\varrho[\tau] + 1, 3) & \text{if } f(\tau, i) > 0 \end{cases}$$

$$\forall \tau \in T, \varrho[\tau] \leftarrow \begin{cases} 0 & \text{if } f(\tau, i) < 0 \\ \min(\varrho[\tau] + 1, 3) & \text{if } f(\tau, i) > 0 \end{cases}$$
 candidate $\leftarrow \{\tau \in T \mid \varrho[\tau] = 3\}$

$$\forall \tau \in T, \varrho[\tau] \leftarrow \begin{cases} 0 & \text{if } f(\tau,i) < 0 \\ \min(\varrho[\tau] + 1, 3) & \text{if } f(\tau,i) > 0 \end{cases}$$
 candidate $\leftarrow \{\tau \in T \mid \varrho[\tau] = 3\}$ if candidate $\neq \varnothing$ then

```
\forall \tau \in T, \varrho[\tau] \leftarrow \begin{cases} 0 & \text{if } f(\tau, i) < 0\\ \min(\varrho[\tau] + 1, 3) & \text{if } f(\tau, i) > 0 \end{cases}
candidate \leftarrow \{ \tau \in T \mid \varrho[\tau] = 3 \}
if candidate \neq \emptyset then
      with probability \frac{1}{2} do
             \forall \tau \in T, \rho[\tau] \leftarrow 0
             currentTask \leftarrow random candidate task
             state \leftarrow TempWorker
       end with
end if
```

case state = TempWorker

```
case state = TempWorker if f(currentTask, i) < 0 then state \leftarrow FirstReserve
```

```
 \begin{aligned} \mathbf{case} \ & \mathbf{state} = \mathbf{TEMPWORKER} \\ & \mathbf{if} \ f(currentTask,i) < 0 \ \mathbf{then} \\ & \mathbf{state} \leftarrow \mathbf{FIRSTRESERVE} \\ & \mathbf{else} \\ & \mathbf{state} \leftarrow \mathbf{COREWORKER} \\ & \mathbf{end} \ \mathbf{if} \end{aligned}
```

```
case state = TempWorker if f(currentTask, i) < 0 then state \leftarrow FirstReserve else state \leftarrow CoreWorker end if case state = CoreWorker
```

```
case state = TEMPWORKER
   if f(currentTask, i) < 0 then
      state \leftarrow FIRSTRESERVE
   else
      state \leftarrow COREWORKER
   end if
case state = COREWORKER
   if f(currentTask, i) < 0 then
      state ← TEMPWORKER
   end if
end case
```

case state = FIRSTRESERVE

```
case state = FIRSTRESERVE if f(currentTask, i) < 0 then state \leftarrow RESTING else
```

```
case state = FIRSTRESERVE
   if f(currentTask, i) < 0 then
       state \leftarrow Resting
   else
       with probability \frac{1}{2} do
          state \leftarrow TempWorker
       otherwise
          state ← SECONDRESERVE
       end with
   end if
```

```
case state = FIRSTRESERVE
   if f(currentTask, i) < 0 then
      state ← RESTING
   else
      with probability \frac{1}{2} do
         state ← TEMPWORKER
      otherwise
         state ← SECONDRESERVE
      end with
   end if
case state = SECONDRESERVE
```

```
case state = FIRSTRESERVE
   if f(currentTask, i) < 0 then
      state ← RESTING
   else
      with probability \frac{1}{2} do
         state ← TempWorker
      otherwise
         state ← SECONDRESERVE
      end with
   end if
case state = SECONDRESERVE
   if f(currentTask, i) < 0 then
      state ← RESTING
```

```
case state = FIRSTRESERVE
   if f(currentTask, i) < 0 then
      state ← RESTING
   else
      with probability \frac{1}{2} do
         state ← TEMPWORKER
      otherwise
         state ← SecondReserve
      end with
   end if
case state = SECONDRESERVE
   if f(currentTask, i) < 0 then
      state ← Resting
   else
      state ← TEMPWORKER
   end if
```

end case

▶ **Theorem:** After $O(\log n)$ rounds, with high probability, ants reach an optimal task allocation.

Questions?