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What is division of labor?

I Division of labor is the process by which
individual ants in a colony decide which task to
perform to ensure the survival of the colony.
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What is division of labor? (cont.)

I Much of the existing work focuses on exploring
the correlation between temporal and
morphological variations and worker behavior.
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Contributions

I A very general mathematical formulation for the
phenomenon of division of labor in ant colonies.

I A distributed algorithm that quickly reaches a
near optimal task allocation and imposing only
minimal assumptions on the capabilities of
individual ants.
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A model for division of labor

I A set A of ants.

I A set T of tasks.
I For task τ ∈ T , ant a ∈ A and time t ∈ R≥0:

I d(τ, t) is the total energy demand for task τ
at time t.

I e(τ, a, t) is the energy that can be supplied
by ant a if engaged at task τ at time t.
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Task Assignment

I A task assignment is a function
y : A× R≥0 → T ∪ {⊥}.

I Given y we define Y (τ, t) as the set of ants
assigned to task τ at time t, and I(t) as the set
of ants assigned to no task at time t.

Y (τ, t) = {a ∈ A : y(a, t) = τ}
I(t) = {a ∈ A : y(a, t) =⊥}

I Observe that by definition A = Y (τ, t) ∪ I(t).
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What is a good task allocation?

I w(τ, t) =
∑

a∈Y (τ,t) e(τ, a, t) is the energy
supplied to task τ at time t.

I q(τ, t) = d(τ, t)− w(τ, t), if negative represents
a surplus of energy at task τ , if positive
represents a deficit of energy at task τ , and if
zero then the task τ is in equilibrium.

I An optimal task assignment is one that
minimizes

∑
τ∈T q(τ, t)

2
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Restricted System Model

I We assume e(τ, a, t) = c for all τ ∈ T , every
ant a ∈ A, and every time t ∈ R≥0.

I We consider synchronous model where time
proceeds in lock-step rounds 1, 2, . . ., and for
the duration of each round i ∈ N each ant
a ∈ A works at task y(a, i).
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Capabilities of Individuals

I Recall that q(τ, i) = d(τ, i)− w(τ, i) is the
difference between the energy demand for task
τ at round i and the energy supplied for task τ
at round i.

I For each task τ ∈ T ants can sense only a
binary feedback function f(τ, i) where:

f(τ, i) =

{
+1 q(τ, i) ≥ 0,

−1 q(τ, i) < 0.
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Algorithm Idea

I Intuition: Given sufficient memory, ants could
use a randomized binary-search-like strategy,
guided by the function f , to reach the optimal
division of labor.

I Idea 1: Offload the burden of memory from the
individuals to the colony.

I Idea 2: Let ants use a response-threshold
strategy to pick tasks, and allow them to
specialize.
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Algorithm Details

I Each ant stores a task currentTask ∈ T ∪ {⊥}
and a potential table %[τ ].

I Initially ants start in the Resting state with
currentTask =⊥ and a potential of zero for
every task ∀τ ∈ T, %[τ ] = 0.

I Ants can be in one of the five states Resting,
FirstReserve, SecondReserve,
TempWorker and CoreWorker.
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Simplified State Machine

FirstReserve SecondReserve TempWorker CoreWorkerResting

threshold

+1 prob 1
2

+1 prob 1
2

+1 +1

−1

−1

−1

−1
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Resting State

∀τ ∈ T, %[τ ]←

{
0 if f(τ, i) < 0

min(%[τ ] + 1, 3) if f(τ, i) > 0

candidate ← {τ ∈ T | %[τ ] = 3}
if candidate 6= ∅ then

with probability 1
2
do

∀τ ∈ T, %[τ ]← 0
currentTask ← random candidate task
state ← TempWorker

end with
end if
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Working States

case state = TempWorker

if f(currentTask, i) < 0 then
state ← FirstReserve

else
state ← CoreWorker

end if
case state = CoreWorker

if f(currentTask, i) < 0 then
state ← TempWorker

end if
end case
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Reserve States
case state = FirstReserve

if f(currentTask, i) < 0 then
state ← Resting

else
with probability 1

2
do

state ← TempWorker
otherwise

state ← SecondReserve
end with

end if
case state = SecondReserve

if f(currentTask, i) < 0 then
state ← Resting

else
state ← TempWorker

end if
end case
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Analysis Outline

I Lemma 1: If during an interval tasks are not
too oversatisfied, the probability there is a task
with a deficit is exponentially small in the
interval length.
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Analysis Outline

I Lemma 2: Once a task transitions from having
a deficit to a surplus, it will keep oscillating
every two or three rounds; moreover, with
constant probability the number of ants involved
in the oscillations is reduced by a constant
fraction.
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Analysis Outline

I Theorem: After O(log n) rounds, with high
probability, ants reach an optimal task
allocation.
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Questions?
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