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Abstract

We report research toward a never-ending language
learning system, focusing on a first implementation
which learns to classify occurrences of noun phrases
according to lexical categories such as “city” and “uni-
versity.” Our experiments suggest that the accuracy of
classifiers produced by semi-supervised learning can be
improved by coupling the learning of multiple classes
based on background knowledge about relationships be-
tween the classes (e.g., ”university” is mutually exclu-
sive of ”company”, and is a subset of ”organization”).

Introduction
We describe here first steps toward our longer term goal of
producing a never-ending language learner. By a “never-
ending language learner” we mean a computer system that
runs 24 hours per day, 7 days per week, forever, performing
two tasks each day:

1. Reading task: extracting information from web text to
further populate a growing knowledge base of structured
facts and knowledge, and

2. Learning task: learning to read better than the day before,
as evidenced by its ability to go back to yesterday’s text
sources and extract more information, more accurately.

The thesis underlying this research goal is that the vast re-
dundancy of information on the web (e.g., many facts are
stated multiple times with different words) will enable a sys-
tem with the right learning mechanisms and capabilities for
self-reflection to learn with only minimal supervision. We
suggest that research toward never-ending language learn-
ing holds the potential to yield major steps forward in the
state of the art of natural language understanding.

This abstract describes preliminary experiments with a
prototype system called NELL (Never-Ending Language
Learner). At present, NELL acquires two types of natu-
ral language processing capability: identifying noun phrases
that are members of specific semantic classes, such as cities,
companies, and universities, and identifying pairs of noun
phrases that are members of specific semantic relations,
such as “<org> is headquartered in <loc>”. The focus
of this abstract, however, is on semantic classes.

With this system, we focus on an important aspect of our
broad research goals: the problem of self-supervised learn-
ing from primarily unlabeled data. In particular, we demon-
strate a learning method that uses knowledge about subset

and mutual exclusion relations between classes to couple the
semi-supervised learning of these classes in order to improve
accuracy of learning.

Related Work
Our work is closely related to the KnowItAll system (Et-
zioni and others 2005). However, our project has a different
focus. Our aim is to build a system that can learn continu-
ously, and discovering members of semantic categories is an
application. In particular, NELL is designed to learn many
classifiers at once from primarily unlabeled data, coupling
the learning of these classifiers in order to improve accuracy.

We build on the work of Riloff and Jones (1999), which
iteratively learned patterns and instances of semantic cate-
gories. Here again, the coupling of multiple learning tasks
is our main extension to this previous work.

System Description
The input to NELL is an initial ontology O, with four types
of pre-specified information for each class: (1) some noun
phrases that are trusted instances of that class, (2) a few
trusted contextual patterns that are known to yield high-
precision in extraction (e.g. “cities such as ”)1, (3) a list
of other classes in the ontology with which that class is mu-
tually exclusive and (4) a list of other classes of which that
class is a subset. NELL’s main goal is to grow its list of
trusted instances for each class as much as possible with
high precision. In pursuance of this goal, NELL also incre-
mentally expands each class’s set of trusted patterns.

Algorithm 1 gives a summary of NELL’s approach. To
start, the seed instances/patterns are shared among classes
according to pre-defined relationships. For example, if
class A is mutually exclusive with class B, A’s trusted in-
stances/patterns become negative instances/patterns for B,
and vice versa. However, if A is a subset of B, A’s trusted
instances/patterns become trusted items for B. Then, for an
indefinite number of iterations, we expand the sets of trusted
instances/patterns for each class.

First, NELL generates new candidate instances by us-
ing each trusted pattern as a query and extracting the noun
phrases that co-occur with the query pattern in a web corpus
of 8 million web pages. For scalability reasons, we limit ex-
traction to 500 candidates. NELL then filters out candidate

1we refer to these pre-specified instances/patterns as seeds



Algorithm 1: The main loop of NELL.
Input: An ontology O
Output: Trusted instances/patterns for each class

SHARE initial instances/patterns among classes;
for i = 1, 2, . . . ,∞ do

foreach class c ∈ O do
EXTRACT new candidate instances/patterns;
FILTER candidates;
TRAIN instance/pattern classifiers;
ASSESS candidates using trained classifiers;
PROMOTE highest-confidence candidates;

end
SHARE promoted items as PMI features;1
SHARE promoted items as examples for2
classification;

end

instances that do not co-occur with at least two trusted pat-
terns or that co-occur with any negative pattern in the same
web corpus. We also extract and filter new candidate pat-
terns using the trusted positive and negative instances in a
completely analogous manner2.

Next, for each class in the ontology NELL trains a dis-
cretized Naı̈ve Bayes classifier3 to classify the candidate in-
stances. Its features include pointwise mutual information
(PMI) scores (Turney 2001) of the candidate instance with
each of the trusted patterns associated with the class. It
also uses as a feature the log probability from a multinomial
Naı̈ve Bayes bag-of-words (BOW) classifier based on the
contextual word distribution of the instance under consider-
ation in our large web corpus. The current sets of trusted and
negative instances are used to train the classifier. NELL also
trains a completely analogous classifier for patterns, except
with two additional features: the estimated precision and es-
timated recall of the pattern under consideration.

NELL uses these classifiers to assess the sets of candidate
instances/patterns, then ranks the positively classified candi-
dates according to their classification scores and promotes p
of them to trusted status, where p = min(top r%, 10)4.

At the end of each iteration, NELL couples the clas-
sification of instances/patterns for the classes in our on-
tology in two ways: (1) it uses all of the trusted in-
stances/patterns from all of the classes as PMI features for
training its classifiers and (2) it shares the recently promoted
instances/patterns among classes using the pre-defined mu-
tual exclusion and subset relations, just as it did initially us-
ing the seeds.

Experimental Results
We performed experiments designed to test whether our
methods for exploiting the coupled nature of our learning
problems do in fact improve the performance of the system.

Table shows the results of experiments comparing two
versions of NELL. The version labeled C (for Coupled)

2Patterns are extracted only for pre-specified syntactic forms
based on the OpenNLP part-of-speech tagger.

3from the Weka package (Witten and Frank 2005)
4For these experiments, r was set to 50

refers to the system as described in Algorithm 1; U (for Un-
coupled) refers to the version not performing sharing of fea-
tures and promoted examples between classes, hence omit-
ting the lines labeled 1 and 2 in Algorithm 1. We popu-
lated categories “city,” “country,” “company,” and “univer-
sity”, all of which were declared mutually exclusive with
each other, and we initialized the system with 15 seed in-
stances and 3 seed patterns per class5.

country city company university mean
U 93.6 99.1 100.0 79.1 93.0
C 89.1 98.2 100.0 97.3 96.2

Table 1: Precision for each class on promoted instances from
the uncoupled (U) and coupled (C) systems after 11 itera-
tions. Each class had 110 promoted instances.

These initial results suggest there may be advantages to
our coupling mechanisms. The greatest difference between
the coupled and uncoupled versions of the system is in the
“university” class, where the uncoupled version started pro-
moting incorrect examples such as “the bottom” and “the
same time” while the coupled version was still promot-
ing reasonable examples. We see this as evidence that the
coupling of classes prevents divergence in bootstrapping.
The second greatest difference is observed for the “coun-
try” class, where the uncoupled version is more accurate.
However, many of the errors for the coupled system come
from promoting larger geographical regions, such as “Cen-
tral America” and “Central Asia.” If the systems were also
learning a “continent” class, we would not expect to see as
many of these errors.
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