A Practical No-Linear-Regret Algorithm for
Convex Games

Sue Ann Hong
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
sahong@cs.cmu.edu

Abstract

For convex games, connections between playing by no-regret algorithms
and playing equilibrium strategies have previously been made for ®-
regret, a generalization of external regret [S]. In particular, Gordon et
al. present a no-®-regret algorithm for several different classes of trans-
formations ® [4]. In this paper, we instantiate the algorithm for the class
of linear transformations using a variety of optimization techniques and
give experimental results on several games including Indian poker, a sim-
ple but substantially large-scale variant of poker. Our results show that
both no-external-regret and no-linear-regret algorithms can achieve bet-
ter regret performances than what the current theory guarantees. To the
best of our knowledge, this is the first work empirically demonstrating
the benefits of a no-®-regret algorithm for general convex games where
® is stronger than external.

1 Introduction

A multiplayer general-sum game is a way to represent decision problems in a multiagent
setting. Here we consider repeated convex games, a superset of matrix games and extensive-
form games. In the repeated setting, the goal of each player in a game is to minimize his
loss over a sequence of instantiations of of the game. In a convex game, a player’s loss
can be written as a convex function of his action as well as other players’ actions. In our
setting, we assume that after each round a player observes his loss function [; defined by
other players’ actions in the past round, but he does not know other players’ feasible action
regions, only his own feasible space A. Hence the player must learn a course of actions
based on their past actions and loss functions. Note that games often involve the bandit
setting where a player does not observe the loss function but the actual loss is observed; we
do not address the bandit setting in this paper but the no-regret algorithms presented here
can be extended without significant changes to the no-regret guarantees.

One way to minimize loss is to play according to a no-®-regret learning algorithm that uses
information from past rounds of play to determine the action. We define ®-regret as the
difference in loss incurred by the player’s past actions a, at each round ¢, compared to loss
that would have occurred if the player used an alternate sequence of actions a; = ¢(a)
where ¢ : A — A, a mapping from an action to an action, is any element of the set ®. For

example, we will focus on the set of linear mappings as ¢ in the following sections, which
induces no linear regret. Following Gordon et al. [4], we write ®-regret as

P = supz li(ar) — li(#(a)))

PEP 1

A player achieves no ®-regret if
T
th ar) SZ (ae) +g(T. A, L, OVg € bt > 1

where g(T, A, L, ®) is sublinear o(T') for any fixed A, L, and ®.

An additional desirable property of such no-regret algorithm is that they yield equilibrium
strategies, as shown in [5]. Intuitively, no-®-regret implies that the player has no incen-
tives to have played different action that he has played in the past, at least with respect
to possible deviations defined within ®. One may consider a player with access to only
enough computational power to play by a no-®-regret algorithm as having bounded ratio-
nality. For example, in the case of swap regret, which is defined for the broadest class ®
- all possible mappings from A to itself - players using no-swap-regret algorithm end up
in a correlated equilibrium. However, a no-swap-regret algorithm may need to consider all
possible mappings from A to A which may be infeasible. For example, Stoltz and Lugosi
[2] showed the existence of a no-swap-regret algorithm, but their proof emits an algorithm
exponential in both time and space with the number of rounds. Hence a player may resort
to a weaker no-regret algorithm such as a no-linear-regret algorithm where @ is the set of
linear transformations.

A well-known notion of regret is external regret, which is regret compared to a single fixed
action for all rounds. Here @ is the set of functions that map every action to a single action.
Hence we can write external regret as:

Tfsuletat *lt)

aeA

Many efficient no-external-regret algorithms are available, such as Follow the Perturbed
leader [6], GIGA [7], and Lagrangian Hedging [3]. However, no external regret does not
guarantee an equilibrium state for the player in general-sum games. Hence we would like
to achieve a stronger notion of ®-regret that guarantees an equilibrium state for the player
with bounded rationality. Such no-®-regret algorithms exist but until recently they have
been impractical, with time complexity exponential in the number of corners of ®. Gordon
et al. [4] introduce a no-®-regret algorithm for & as broad as the set of finite-element
transformations. The algorithm incurs running time polynomial in the dimension of the
action set A and the size of the finite-element mesh that covers ®. However, for simpler
transformation spaces such as linear transforms, the dependency on the size of the mesh
disappears.

Our goal in this work to show 1. such a no-®-regret algorithm is practical and scalable and
2. empirical performance matches the expectations given by the theoretical guarantees.
We also compare the performance from using a no-external-regret algorithm to that from
using a no-linear-regret algorithm. Our results suggest that many optimization tricks are
required to make the algorithm scalable and that empirical performance can exceed the
known theoretical guarantees. However, the more computationally expensive no-linear-
regret algorithm does not always yield lower regret values for some games; to study why
would be an interesting direction for future work.

Given: Action space A, transformation set .
1. Pick ¢1 € ® arbitrarily.
2. Fort=1,..,T:

(a) Find an approximate fixed point a; of ¢ s.t. ||p:(a:) — a¢||a < e = 1/\/1?
(b) Play a: and receive loss function l¢; incur loss I+ (az).
(c) Define "fictitious” loss for m; : ® — R by m+(¢) = l:(¢(as)) for ¢ € P.

(d) Use a no-external-regret algorithm on m,; and receive a new transformation ¢;11 €
D,

Figure 1: A general no-®-regret algorithm

2 Algorithm

In this section we describe the general no-®-regret algorithm from Gordon et al. [4], as
well as a linear version of the algorithm used in our experiments.

2.1 A No-®-Regret Algorithm

Figure 2.1 shows the general case no-®-regret algorithm from Gordon et al. [4]. Note
that the algorithm requires two subroutines: a no-external-regret algorithm to be used in
the transformation space, and a (approximate) fixed point calculation method for any trans-
formation in ®. Different types of regret will require different subroutines based on the
representation and the size of ®.

Gordon et al. [4] show that this algorithm achieves no ®-regret under bounded norm condi-
tions for actions a € A and the gradient of the loss function /(a). They also briefly discuss
specific cases of the algorithm for linear, finite-element, and extensive-form regrets, but do
not provide experimental evidence that the algorithms are practical for real-sized games or
that the stronger regret guarantee in fact yields more favorable losses.

2.2 A No-Linear-Regret Algorithm

In the linear-regret instantiation of the general algorithm, we employ greedy projection
(shown in Figure 2.2) as our no-external-regret algorithm in the transformation space. The
most expensive step is the projection of the transformation matrix onto the feasible space
®; it may take a very large set of constraints to define the space of mappings from the action
space A to itself, as many as the number of corners or the number of faces in A. Hence we
perform constraint generation on top of the quadratic program in the projection step. Cur-
rently we use the dual formulation while still hoping that the number of constraints does
not grow too large. Even this formulation yields very large quadratic programs for slightly
bigger games. We do not have an implementation that works for Indian Poker, which has
a 96-dimensional action space and on the order of 10° — 10! corners. A few tricks may
be used to overcome this computational issue. First, for better constraint generation, we
can generate constraints with margins and relax those margins as the program becomes
infeasible. Also, we can limit the number of Newton-step iterations in the quadratic pro-
gram solver. Also, an approximate version of the no-linear-regret algorithm is possible; if
we do not obtain exactly the transformation from the no-external-regret algorithm but an
approximate one, we can project its fixed point onto the feasible action set. This process
will still yield an approximate fixed point of the no-external-regret transformation, though
with a looser bound. Also, we have not analyzed whether we can construct such a bound in
terms of violation of constraints in the projection step for the transformation. Empirically
it does not seem that constraint generation would stop very quickly after generating just a

Given: Action space A, loss function [, current transformation matrix M, round number ¢.
Returns: A feasible matrix M’ closest to M with respect to the Frobenius norm.

1. Compute gradient Ol of the loss function .

2. Step in the direction of the negative gradient by n = c¢/t: M’ = M — n x 9l. cis some
constant.

3. Until no constraints are violated
(a) Find inequality constraints by finding x € A that violate E * M} * x > d where M
isarow of M’ and E * x > d define inequality constraints for the action set A.
(b) Project M’ onto the feasible region defined by equality constraints derived from the

null-space and a feasible point of A as well as the inequality constraints found in the
previous step, by minimizing || M" — M||%. Set M’ = M".

Figure 2: Greedy projection with constraint generation

handful of constraints.

3 Experimental Results

In this section we describe the games used for the experiments and compare the perfor-
mance of our no-linear-regret algorithm to that of a no-external-regret in terms of swap,
linear, and external regret on each game. We used greedy projection as the no-external-
regret algorithm, and show results with the best gradient step size found. For the no-linear-
regret algorithm we used gradient step sizes .00001/(the round number) and found the
performance to be insensitive to the step size!. In all cases except for Indian Poker, the re-
gret values were averaged over each player starting the first round with a different strategy
from the set of corner strategies. Every player uses the exact same algorithm; we did not
consider for example no-external-regret players playing against no-linear-regret players.

3.1 Job Market Game

student

(2,3) (0,2) (2,3)(0,1) (3,0) (0,1) (3,0) (0,1)

Figure 3: The job market game game tree

We studied the version of the job market game introduced by Forges and Von Stengel [1],
whose the game tree is shown in Figure 3. It is a sequential 2-player general-sum extensive-
form game where players’ strategies can be represented by sequence weights. The student
player first decides whether to study or not, then answers yes or no to an interview ques-
tion. Then the professor decides based on the student’s answer to hire the student or not.
The Nash equilibrium of the game is for the student to never study and randomly guess
the answer to the interview question. However, a correlated equilibrium can be defined if a

"We looked at values from .000001 to 100 and did not see much difference in regret values.

moderator tells the student the correct answer to the interview question with high probabil-
ity if the student studies.

We use sequence weights represent actions as it can lead be exponentially more compact
than the game-tree representation when the game involves incomplete information, since
the any nodes of the game tree that the player cannot identify as distinct are collapsed
into one node in the sequence tree. The space of actions is immediately defined from
the sequence weights; each weight must be positive, and the sum of sequence weights
associated with a node must add up to the closest ancestor edge of the node. Note that the
sequence weight representation also emits a loss function linear with respect to the player’s
actions.

Figure 4 shows various regret values at each round of the game. The no-external-regret
algorithm performs very well for this game and even linear and swap regret decrease almost
as fast as external regret, even though there is no known theoretical guarantee for this
behavior. It is not surprising given this observation that the no-linear-regret algorithm does
not help. However, we do not yet understand why the no-linear-regret algorithm results
in worse regret values in this case. The no-linear-regret algorithm was not sensitive to the
choice of gradient step size whereas Greedy projection, the no-external-regret algorithm
was and we used gradient step sizes 50/(the round number). The average running time for
200 rounds of the no-external-regret algorithm was 1.57 seconds and that for the no-linear
algorithm was 37.00 seconds.

Eegret over time from Greedy Projection (no—external-regret): Aver?ge Regret over time from Gradient Projection (no-linear-regret,
35T ;

i — — — External Regret for Player 1 — — —External Regret for Player 1
1l — — — External Regret for Player 2 — — — External Regret for Player 2
03 \‘ — = Linear Regret for Player 1 120 " 'Linear Regret for Player 1 ||
| — — Linear Regret for Player 2 i — "~ Linear Regret for Player 2

I

Swap Regret for Player 1 —— Swap Regret for Player 1
i —— Swap Regret for Player 2 1 —— Swap Regret for Player 2

Regret

i L L L L L L L L L A
200 0 20 40 60 80 100 120 140 160 180 200

L L L L L — 1 =
0 20 40 60 80 100 120 140 160 180
Iteration Iteration

Figure 4: Job Market Game (Left) Regret over rounds for no-external-regret players (Right)
Regret over rounds for no-linear-regret players

3.2 The Shapley Game

The Shapley game is a simple variant of Rock-Paper-Scissors where the two players, in-
stead of receiving payoffs of 1/2 each when they tie, receive 0. This modification makes it
a general-sum game instead of a constant-sum game, hence a no-external-regret algorithm
may not yield an equilibrium strategy. Depending on the starting strategies for each player,
the no-external-regret algorithm led the players to the Nash equilibrium of playing each
move 1/3 of the time or oscillating between different strategies, not necessarily converging
to one. The no-linear-regret algorithm always resulted in both players converging to the
(1/3, 1/3, 1/3) strategy. Figure 5 shows the comparison between no-external and no-linear
regret algorithms for the Shapley Game. The no-external-regret algorithm does not achieve
swap regret in the 200 iterations shown though it does achieve no linear regret. The no-
linear-regret algorithm on the other hand achieves much lower swap regret very fast, even
though no linear regret does not guarantee no swap regret. For no-external-regret we used

Average Regret over time from Greedy Projection (no-external-regrel
0.35

— — — External Regret for Player 1
— — — External Regret for Player 2 |
03 - Linear Regret for Player 1 sl

Linear Regret for Player 2 1

— Swap Regret for Player 1 \

— — —External Regret for Player 1
— — —External Regret for Player 2
— = Linear Regret for Player 1 ||
~—Linear Regret for Player 2

| — Swap Regret for Player 1
Swap Regret for Player 2

Swap Regret for Player 2 [N

Regret
Regret

01ry

0 50 100 150 200 0 50

100 150 200
Iteration

Iteration

Figure 5: The Shapley Game (Left) Regret over rounds for no-external-regret players
(Right) Regret over rounds for no-linear-regret players

gradient step sizes 10/(the round number), and the performance did vary quite a bit de-
pending on the step size, sometimes resulting in high external regret and linear regret. The
average running time for 200 rounds of the no-external-regret algorithm was 1.17 seconds
and that for the no-linear algorithm was 10.35 seconds.

3.3 A Bayes-Shapley Game

/pl, K\ Player 1 is told
\S‘ / \S‘ jr N‘? Player 2 is told
S

Player 1

Player 2

(0,0) (0,2) (1,0)
Figure 6: The Bayes-Shapley game game tree

We also considered a sequential Bayes version of the Shapley game where each player
is first secretly told a unique move > to make and then decides on the move; the player
receives double the normal payoff if she follows the move she was told in the beginning.

The game tree partially is shown in Figure 6. There are 54 leaves in the game tree and 9
sequence weights for each player.

Figure 7 shows results from simulating no-external and no-linear regret players. Here,
the no-linear-regret player ends up with huge linear regret, which theoretically should not

happen; the average regret is growing (seemingly) linearly, where the theory dictates the
cumulative regret should grow sublinearly.

For no-external-regret we used gradient step sizes 10/(the round number), though we have
not tested each algorithm’s sensitivity to the step size for this game. The average running
time for 200 rounds of the no-external-regret algorithm was 2.06 seconds and that for the
no-linear algorithm was 38.34 seconds.

2Each player is told a different move from the other.

Average Regret over time from Gradient Projection (no-linear-regret
0.35

Average Regret over time from Greedy Projection (no—external-regret
0.35

03

— — — External Regret for Player 1
— — — External Regret for Player 2
— = Linear Regret for Player 1
~— Linear Regret for Player 2
— Swap Regret for Player 1
—— Swap Regret for Player 2

Average Regret over time from Gradient Projection (no-linear-regret
x 10

I

— — - Extemnal Regret for Player 1
~ — - External Regret for Player 2
— = Linear Regret for Player 1

Linear Regret for Player 2

Swap Regret for Player 1

— Swap Regret for Player 2 i

4

Regret
Regret

he

!

i y
L
Ll |

ppde T
I TR (R
it

o
i
vy

100 200

Iteration

150 80 100

Iteration

120 140 160 180 200

Figure 7: The Bayes-Shapley Game (Left) Regret over rounds for no-external-regret play-
ers (Right) Regret over rounds for no-linear-regret players

3.4 Indian Poker

In 3-player 4-card Indian poker, each person is dealt a card which he does not observe;
instead he sticks it on his forehead. Hence each player observes other players’ cards, and
the remaining undealt card is hidden. We consider one round of betting with $1 ante and a
cap of $1 (no raise), which leads to the maximum betting sequence of five decisions over
three players. The game tree is omitted for spatial reasons.

Again we use the sequence-weights representation of the action space, which is especially
useful for a larger game like Indian Poker. In indian poker, sequence weights (hence the
actions) are 96-dimensional vectors. Unfortunately the number of corners of the action
space A is on the order of 10? to 10! depending on the player, which makes representations
of ® that depend on the corners of A inconvenient.

Regret over time from FPL
T T T

— = — External Regret for Player 1
~ — — External Regret for Player 2
External Regret for Player 3

Swap Regret for Player 1
~— Swap Regret for Player 2
‘Swap Regret for Player 3

008

Regret

100
lteration

Figure 8: Indian Poker. Regret over rounds for no-external-regret players

Since we do not have an implementation that works for a game of this size, we present
the results from greedy projection, our no-external-regret algorithm. For these simulated
rounds, each player starts the first round with a corner action and every player in the game
uses the exact same algorithm. Figure 8 shows swap and external regret over the rounds of
game for all three players using greedy projection. We set ¢ = 50 for the gradient step size
as in the no-linear-algorithm of Figure 2.2. For the first 200 rounds swap regret does not
seem to be decreasing too fast, but neither does external regret, so it is difficult to say what

will happen with a no-linear-regret algorithm.

Note that computing linear regret requires finding the best linear transformation given all
cost functions in the past. For extensive-form games where strategies are represented by
sequence weights, the cost function is linear with respect to actions, hence we can formulate
the problem as a linear program. However, the space of ® requires a huge number of
constraints (recall the number of corners in Indian poker is on the order of 10%), so we
again use constraint generation in conjunction with the linear program. While we only
need a linear program, not a quadratic program as in the case of projection, this step suffers
from the same constraint generation problems as our projection procedure.

4 Conclusion

In this paper we presented the first empirical results of using a no-linear-regret algorithm
in repeated convex games. We examined four different general-sum games: a 2-player ma-
trix game, two 2-player extensive-form games, and a larger 3-player extensive-form game.
Overall, we found greedy projection (no-external-regret) to be much more sensitive to gra-
dient step size than gradient projection (no-internal-regret) which seemed almost invariant
to the step size. Linear regret was easily achieved by the no-external-regret algorithm in
our experiments, which theoretically makes the no-linear-regret algorithm less interesting
since it only guarantees no linear regret. However, we found that it is possible to achieve
no swap regret using our no-linear-regret algorithm at least in one case - the Shapley game.

There are several directions for future work. First, it would be interesting to examine the
loss or regret of players using different algorithms (e.g. one player uses no-linear and others
use no-external). We would also like to extend the no-linear-regret algorithm to a larger set
of transformations such as those defined by two linear transformations each over a subset of
the action space (a very small subset of finite-element transformations). Another direction
would be to formalize the conditions under which no-linear-regret or no-finite-element-
regret algorithms can help improve regret performances compared to a no-external-regret
algorithm.

References

[1] Francoise Forges and Bernhard von Stengel. Computationally efficient coordination in
game trees. In Technical Report LSE-CDAM-2002-02, London School of Economics
and Political Science, Centre for Discrete and Applicable Mathematics, 2002.

[2] Stolz G. and Lugosi G. Learning correlated equilibria in games with compact sets of
strategies. In Games and Economic Behavior, 59, 2007.

[3] Geoff Gordon. No-regret algorithms for online convex programs. In Proceedings of
the Neural Information Processing Systems, 2006.

[4] Geoff Gordon, Amy Greenwald, Casey Marks, and Martin Zinkevich. No-regret learn-
ing in convex games. In Proceedings of the 25th International Conference on Machine
Learning, 2008.

[5] Amy Greenwald and Amir Jafari. A general class of no-regret learning algorithms and
game-theoretic equilibria. In The Proceedings of the 2003 Computational Learning
Theory Conference, 2003.

[6] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems.
In Proceedings of the 16th Annual Conference on Learning Theory, 2003.

[7] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the 20th International Conference on Machine Learning,
2003.

