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Abstract

The computational cost of Gaussian process regression grows cubically
with respect to the number of variables due to the inversion of the covari-
ance matrix, which is impractical for data sets with more than a few thou-
sand nodes. Furthermore, Gaussian processes lack the ability to represent
conditional independence assertions between variables. We describe it-
erative proportional scaling for directly estimating the precision matrix
without inverting the covariance matrix, given an undirected graph and a
covariance function or data. We introduce a variant of the Shafer-Shenoy
algorithm combined with IPS that runs in O(nC3)-time, where C is the
largest clique size in the induced junction tree. We present results on
synthetic data and temperature prediction in a real sensor network.

1 Introduction

Gaussian processes are used in regression and classification tasks in a wide variety of appli-
cations including sensor networks, computer vision, localization, relational learning, and
control systems. They provide a unified probabilistic framework for modeling the distribu-
tion over unobserved values given observed values in a continuous domain. Unfortunately,
the use of Gaussian processes in many settings is limited by the cubic time1 complexity of
inference. Furthermore, there is no natural mechanism for Gaussian processes to encode
conditional independence between variables. In this paper we will treat marginals of a
Gaussian process as a sparse Gaussian graphical model and apply a variant of iterative pro-
portional scaling to obtain a linear time2 implementation of Gaussian process regression.

1.1 Gaussian Processes

The Gaussian process is a nonparametric generalization of the joint normal distribution
defining the distribution over an infinite set of variables. The joint normal distribution over
n variables is defined by Y ∼ N (µ ∈ Rn, Σ ∈ Rn×n) where µi is a vector of means in-
dexed by integers i ∈ [1, n] andΣij is a covariancematrix indexed by integers i, j ∈ [1, n].

1Cubic in the number of observations.
2Linear in the number of observations assuming ubiquitous conditional independence.



If we instead allow i, j ∈ Rd then we can define an analogous mean function µ(i) and co-
variance function Σ(i, j). For example, i, j ∈ R2 could correspond to locations in a room
and Yi = Y (i) and Yj = Y (j) could correspond to the temperature random variables at
each location. Then the distribution over the infinite random vector Y becomes a distribu-
tion over a random function defined by the Gaussian process Y (·) ∼ GP(µ(·), Σ(·, ·)).
Learning a Gaussian process prior consists of learning the µ(·) and Σ(·) functions from
the data. The mean function is typically chosen to be the constant zero vector and the
covariance function is typically parametric and optimized for the training data. For a set
of observations3 {(xi, yi)}n

i=1 and a set4 of test points {x∗
i }m

i=1 we define a random vector
Yz = (Yx1

, . . . , Yxn
, Yx∗

1
, . . . , Yx∗

m

) and an index vector z = (x1, . . . , xn, x∗
1, . . . , x

∗
m).

If we define the distribution over the function Y (·) by Y ∼ GP(µ(·), Σ(·, ·)), then the
marginal distribution over Yz , the observations and test points is given by Equation (1) and
the posterior conditional distribution over the the test points given the observations is given
by Equation (2).

Yz ∼ N
([

µ(x)
µ(x∗)

]

,

[

Σ(x, x) Σ(x, x∗)
Σ(x∗, x) Σ(x∗, x∗)

])

(1)

Yx∗ |Yx = yx ∼ N [µ(x∗)Σ(x∗, x)Σ(x, x)−1(yx − µ(x)),

Σ(x∗, x∗) − Σ(x∗, x)Σ(x, x)−1Σ(x, x∗)] (2)
Note that in Equation (2) we must invert the matrix Σ(x, x). For most kernels this matrix
will be dense and the computational complexity of inverting an n × n matrix is approxi-
mately5 O(n3). In cases where there are many observations and n is large, matrix inversion
may be intractable. In fact, in some settings even writing down the Σ matrix may be too
costly. In the next section we introduce the Gaussian graphical model and show how it can
compactly represent a marginal of a Gaussian process. Using this compact representation
we will be able to efficiently compute the posterior distribution given in Equation (2).

1.2 Gaussian Graphical Models

A Gaussian graphical model is a compact representation of a joint normal distribution.
Given an undirected graph G = (V, E), the joint probability distribution of a Gaussian
graphical model can be written in the form of Equation (3). The factors of the model
correspond to the edges and vertices in G.

P (Y |Ψ) =
1

Z

∏

(i,j)∈E

exp[−ψij(Yi, Yj)]
∏

i∈V

exp[−ψi(Yi, )] (3)

The explicit form of the clique potentials ψij and ψi are given in Equation (4). The η term,
typically used in the natural parameterization of the joint normal, is defined as η = Λµ.

ψij(Yi, Yj) =
1

2
YiYjΛij , ψi(Yi) =

1

2
Y 2

i Λii − Yiηi (4)

By replacing the clique potentials in equation (3) with equation (4) and taking the sum of
the exponents we obtain equation (5).

P (Y |Ψ) =
1

Z
exp



−1

2





∑

(i,j)∈E

YiYjΛij +
∑

i∈V

Y 2
i Λii −

∑

i∈V

Yiηi









=
1

Z
exp

[

−1

2

(

Y T ΛY − Y T η
)

]

(5)

3An observation is a location-measurement pair.
4Several simultaneous dependent predictions can be made using a Gaussian process.
5Current best asymptotic complexity isO(d2.376)



From Equation (5) it is clear that a Gaussian graphical model represents a joint normal
distribution. More formally, for a particular graphG the corresponding Gaussian graphical
model represents the set of normal distributions given in Equation (6) where Λ = Σ−1 is a
positive definite matrix.

N(G) = {N(µ, Σ) | (Σ−1)ij = Λij = 0 ⇐⇒ (i, j) /∈ E} (6)

For typical kernel functions, the corresponding Gaussian graphical model would be fully
connected as in Figure 1(a). However, in certain domains we may believe that a sparse
graph such as Figure 1(b) would more accurately capture the independence structure.
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Figure 1: Both graphs represent a Gaussian graphical model over 6 variables. The graph in
(a) is a fully connected Gaussian graphical model which corresponds to the marginal ob-
tained from a Gaussian process using most kernels. The graph in (b) is a partially connected
Gaussian graphical model which would have a sparse precision matrix.

Next we will show how, given a relatively sparse graph for the set of variables in the
marginal distribution and a kernel function, we can efficiently and provably learn the opti-
mal set of parameters for the corresponding Gaussian graphical model.

2 Algorithm

2.1 Generalized Iterative Scaling for Gaussian Graphical Models

Generalized iterative scaling (GIS) is an iterative algorithm commonly used when no closed
form for the maximum likelihood estimate (MLE) of parameters exists. As such, it is the
standard method for finding parameters in undirected graphical models. Here we illustrate
a generalized iterative scaling algorithm for estimating Λ in Gaussian graphical models.
The derivation is similar to [3] and [4].

Let us first consider the case where we have an iid sample D = Y 1, . . . , Y m; Y i ∈ Rn.
Assume the mean vector µ = 0 (we can generalize to non-zero mean cases easily by
working in the zero-mean space and translating results to the sample mean). Then the
explicit form of the joint normal pdf forD can be written as

p(D|Λ) =
|Λ|nm/2

√
2π

nm exp

[

−1

2

m
∑

l=1

(Y l)T Λ(Y l)

]

=
|Λ|nm/2

√
2π

nm exp

[

−1

2
tr{ΛW}

]

(7)

where W =
∑m

l=1 Y l(Y l)T . Note that W has a Wishart distribution Wd(n, Σ), and for
m ≥ n, W is positive definite for positive definite Σ. However the maximum likelihood



estimator of Σ is given by Equation (8). Thus we can use the kernel function wherever we
would use the Wishart matrix.

Σ(·, ·) = Σ̂ =
1

m

m
∑

l=1

(Y l − µ)(Y l − µ)T =
1

m

m
∑

l=1

(Y l)(Y l)T =
W

m
(8)

The iterative update equation for GIS is designed to update submatrices of Λ to satisfy
Equation (8) and is given for each factor f by

Λ(t+1)
ff = Σ(f, f)−1 + Λ(t)

fa(Λ(t)
aa)−1Λ(t)

af (9)

where a = V \f . We can see that a fixed point Λ = Λ̂ satisfies Equation (8) as

Σ̂ff = (Λ̂−1)ff = (Λ̂ff − Λ̂fa(Λ̂aa)−1Λ̂af )−1 = (Σ(f, f)−1)−1 = Σ(f, f)

Starting with Λ(0) = Id, the IPS algorithm iteratively applies equation (9) to every factor f
until convergence, where each time step entails sequentially updating all submatrices of Λ
corresponding to the factors.

2.2 Properties of the IPS Update Equation

The update equation satisfies two desirable properties. First, if Λ(t) is positive definite,
then Λ(t+1) is also positive definite [4], since Σ(f, f)−1 is positive definite. Second, the
precision remains zero where there are no edges. Also, each update is monotonic increasing
in the likelihood of the data. Because the update operator is continuous and the likelihood
function is compact and concave in the parameter space, IPS is guaranteed to eventually
converge to the MLE [1]. Although in general the number of iterations is not bounded, in
practice IPS tends to converge after a small number of iterations.

For chordal graphs, a closed-form solution for MLE of Λ exists that requires a single cal-
ibration of the junction tree. The time complexity of solving the closed-form solution is
thus O(nC3) where C is the size of the largest clique in the junction tree. As we will see,
one iteration of our IPS algorithm as described in Section 2.4 has the same time complex-
ity and will converge for chordal graphs. However, there is no closed-form solution for
non-chordal graphs. Since transforming a non-chordal graph to a chordal graph introduces
unwanted edges and thus dependencies between variables, learning the parameters via IPS
for the exact graph structure may be beneficial.

2.3 Junction Tree

As shown in Equation (9), the IPS update requires the calculation of Λ(t)
fa(Λ(t)

aa)−1Λ(t)
af . As

our factors are of size 1 or 2, (Λ(t)
aa)−1 means inverting a (n − 1)-by-(n− 1) or a (n − 2)-

by-(n − 2) matrix, which is again O(n3) in time (we will use factors and precision Λff

interchangeably since each factor is fully characterized by the corresponding submatrix of
Λ). Applying the definition of the marginalΛff , we can rewrite the update equation as

Λ(t+1)
ff = Σ(f, f)−1 + Λ(t)

fa(Λ(t)
aa)−1Λ(t)

af = Σ(f, f)−1 + Λ(t)
ff − Λm(t)

ff (10)

where Λm(t)
ff represents the precision for the marginal distribution of f according to Λ(t),

since marginalization of normal distributions give us Λm(t)
ff = Λ(t)

ff − Λ(t)
fa(Λ(t)

aa)−1Λ(t)
af .

To compute the marginalsΛm(t)
ff we use junction tree calibration, a technique used in graph-

ical models for exact inference. In Gaussian graphical models we can calibrate the junction
tree in O(nC3)-time, where C is the size of the largest clique. To apply the junction



tree algorithm we first triangulate the graph and then define the vertices to be maximal
cliques in the resulting chordal graph. Finally we construct a junction tree from the chordal
graph, on which we can apply Shafer-Shenoy to get a calibrated tree. However, performing
calibration after every factor IPS update is expensive. We describe a faster algorithm in
Section 2.4 that allows us to perform only one instance of calibration while updating every
factor at least once.

We expect our algorithm to run much faster than matrix inversion for large n. However,
creating a junction tree incurs additional costs. Running the min-fill heuristic efficiently
requires maintaining a sorted list which can be done in O(nd log n) time, where d is the
maximum degree of the graph. Alternatively we could use an arbitrary heuristic which
runs in linear time. Creating a junction tree from the induced chordal graph is known to
be possible in O(n + m)-time, where m is the number of edges in the chordal graph [2].
However, we are considering only sparse graphs, in which cases finding a junction tree is
achievable in linear time. In Section 3.3 we present experimental results demonstrating that
our algorithm runs in near linear time.

2.4 Computing the Update Equation: Fast Exact Inference via Junction Tree

Naively applying junction tree, we must re-calibrate the junction tree after every factor
update, which leads to O(n2C3)-time complexity per IPS update, defined as updating all
factors (at least) once. However, by by cleverly updating factors we are able to run the
entire junction tree calibration only once per IPS update.

Two insights lead to our O(nC3)-time IPS update algorithm. First, we can update factors
associated with a clique without affecting the beliefs of other cliques. Recall that at cali-
bration the marginal probability of clique i is characterized by the initial belief πo

i and the
inbound messages δ to i; here the marginal precision is Λi = πo

i +
∑

j∈Neighbor(i) δji. By
updating πo

i to reflect the new value of Λ we maintain a calibrated clique. This leads to
Algorithm 1 for updating all factors in a clique sequentially.

Algorithm 1: UpdateFactors(T ,i)
input : Clique tree T = (Π = {πo

i for each clique i}, ∆ = { messages δij}, Children),
Current node i

output: Updated clique tree T ′ with updated πo
i representing the updated Λ

begin
for factor f represented in clique i do

Compute the marginal precision for the factor f :
Λm(t)

ff = marginalize out(πo
c +

∑

j∈Neighbor(c) δjc, c\f)

Get the new factor value for Λ : Λff−tmp = (Σff )−1 + Λff − Λm(t)
ff

Update the initial belief : (πo
i )ff = Λff−tmp + (πo

i )ff − Λff

end

Second, if we update any clique i using Algorithm 1, then the child j of i will be calibrated
upon receiving a new message from i. Because no other initial belief changes, messages
from other cliques into j will remain the same. Thus upon receiving the message for i,
the clique j is calibrated. Applying this intuition, algorithm 2 describes an algorithm that
traverses the junction tree in depth first search order, updating each clique and sending
messages from the current clique to the next. The algorithm can be viewed as a Gaussian,
DFS version of the efficient IPF update scheduling discussed in [5] for general graphical
models.



Algorithm 2: DFS-jtIPS(T ,i)
input : Clique tree T = (Π = {πo

i for each clique i}, ∆ = { messages δij}, Children),
Current node i

output: Updated Clique Tree T ′ with updated factors (Λ) for the subtree rooted at i and
calibrated message from i to its parent

begin
T ′ = UpdateFactors(T ,i) ;
for child c in Children(i) do

Send message from i to child c :
δic = marginalize out(πo

i +
∑

j∈Neighbor(i)\c δji, Separator(i, c)) ;
Update the subtree rooted at the child c : T ′ = DFS-jtIPS(T ′,c) ;

if i has a parent j then
Send message from i to parent j :
δij = marginalize out(πo

i +
∑

k∈Neighbor(i)\j δki, Separator(i, j));

end

3 Experimental Results

3.1 Synthetic Data

Synthetic data was used to precisely compare the distributions obtained from the estimated
precision matrix to the true distributions. First we constructed a random connected graph
and used the kernel functionΣij = exp(− 1

2 (i− j)2) to create an initial covariance matrix.
After inverting Σ to get Λ, we zeroed out entries in Λ corresponding to no edges. To in-
crease the chances of obtaining a positive semidefinite matrix we reinforced the diagonal of
Λ with an identity matrix since we only used the resulting Λ if it was positive semidefinite.
We used the true inverse of Λ as the sample covariance to test that our algorithm converges
to the true value of Λ.

3.2 KL Divergence

We used KL-divergence of the estimated Λ̃ to the true value of Λ as the error metric. The
expression for the KL divergence over the normal distribution is given by Equation (11).

KL(Λ||Λ̃) =
1

2
log

(

|Λ|
|Λ̃|

)

+
1

2
Tr

(

Λ̃Λ−1
)

− d

2
(11)

It is important to note that KL divergence is not symmetric. We will always compute the
KL divergence in the direction KL(Λ||Λ̃).

3.3 Algorithm Performance

Figure 2(a) shows the performance of our algorithm for different numbers of variables,
measured by KL-divergence over iterations. The algorithm converges quickly, taking only
a few iterations in most cases. In Figure 2(b) we compare the running time of the algorithm
with respect to the number of variables n, averaged over 20 trials for each number of
variables. We observe that the running time increases linearly as a function of n.

3.4 Berkeley Sensor Network

We tested our algorithm on Berkeley sensor networks data. We believe that the building
floor-plan imposes conditional independence constraints on the sensors. For example, sen-
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Figure 2: In (a) the KL divergence is plotted as a function of the number of iterations. Each
line in (a) corresponds to a different number of variables n. In (b) the running time of IPS
per iteration and per convergence are shown.

sors at opposite ends of the hallway should be conditionally independent given the sensors
between them.

The Berkeley sensor networks data set6 contains the coordinates of 54 sensors, as well as
time series data for the temperature, light, humidity, and voltage level of the batteries for
each sensor. Here we considered only the temperature data. Given the layout of the sensors
and spatial characteristics of the room such as walls and doors, we manually constructed
the graph shown in Figure 3(a) with about 100 edges. The data required preprocessing due
to missing entries and malfunctioning sensors. We removed 2 sensors and several samples
from the time series which were completely empty. The last two days (weekend) of data
were removed due to inconsistent behavior. Linear interpolation was used to fill in missing
entries. The mean was subtracted from all data points to produce a zero-mean data set. The
final data set consisted of 52 sensors each with 5000 recordings.
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Figure 3: (a) Layout of the Berkeley lab with manually drawn edges in blue. Notice that
sensor 5 and 15 were removed due to low reporting. (b) Covariance vs distance and the fit
exponential kernel.

The data were randomly divided into a training set of 4000 time steps and a test set of 1000.
We fit a simple exponential kernel of the form in Equation (12) to the sample covariance of

6http://www.cs.cmu.edu/ guestrin/Research/Data/



the training set as seen in Figure 3(b).

K(x1, x2) = 10.3957 exp(−0.012377||x1 − x2||2) (12)

Using the learned kernel, sample covariance from the training set, and the IPS algorithm,
posterior predictions were made for each time step in the test set by removing a random
sensor and then predicting its value. The resulting root mean squared errors are shown in
Table 1. Additionally the KL divergence between the sample covariance, the kernel only,
and the kernel with graphical model are also shown in Table 1. The KL divergence between
the kernel-only GP and GP with graphical modelKL(Σ(·, ·)||Σgraph) was 4.1262.

Σ̂ Σ(·, ·) Σgraph Identity Matrix
RMSE 0.1676 0.6934 0.7343 3.2469
KL(Σ̂||·) 0 60.1332 64.1575 318.7162

Table 1: Comparison of the root mean squared error in the prediction of the test data (ran-
dom missing sensor at each time step) using different covariance matrices. Σ̂ is the sample
covariance,Σ(·, ·) is the covariance from the estimated kernel, andΣgraph is the covariance
learned from the kernel and the graph via IPS. The identity matrix is used as a baseline.
KL-divergence to the sample covariance is also shown.

We had expected combining the graphical representation with the kernel to yield a lower
root mean squared error than using the kernel by itself. However, from Table 1 we can
see that adding the graphical interpretation gave slightly worse predictions than using just
the kernel function. One explanation may be that the graph does not accurately reflect the
conditional independence structure of the room. For example, all sensors near windows
were linked by the outside temperature and therefore not conditionally independent even
though the floor plan does not suggest strong spatial linkage between them.

4 Conclusions

We presented an algorithm that enables Gaussian processes regression in O(nC3)-time
given a graph. Although our algorithm was able to retrieve the true precision matrices for
synthetic data, it did not outperform GP regression without a graph on the experiment for
real sensor network. However, we believe that with more principled methods for kernel
hyperparameter training and constructing the graph, our algorithm can be beneficial to a
large array of domains.
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