
Formulation of a Heuristic Rule for Misuse and Anomaly Detection

for U2R Attacks in Solaris
TM

 Operating System Environment

Maheshkumar Sabhnani

EECS Dept, University of Toledo

Toledo, Ohio 43606 USA

Gursel Serpen

EECS Dept, University of Toledo

Toledo, Ohio 43606 USA

Abstract

This paper proposes a heuristic rule for detection of

user-to-root (U2R) attacks against Solaris
TM

 operating

system. Relevant features for developing heuristic rules

were manually mined using Solaris
TM

 Basic Security

Module audit data. The proposed rule was tested on both

DARPA 1998 and 1999 intrusion detection datasets.

Results show that all user-to-root attacks exploiting the

suid program were detected with 100% probability and

with zero false alarms. The rule can detect both successful

and unsuccessful U2R attempts against the Solaris
TM

operating system. The proposed rule is general enough to

detect any U2R attack that leverages the buffer overflow

technique. Empirical results indicate that the rule also

detected novel user-to-root attacks in DARPA 1998

intrusion detection dataset. Hence the rule has the

potential and can be used for anomaly detection.

Keywords: Intrusion detection, User-to-root attack,

misuse, anamoly, rule-based system, heuristic

1. Introduction

The process in which a normal user gains root (super-

user) privileges through an illegal transition is defined as a

user-to-root (U2R) attack. To execute a U2R attack, the

intruder first somehow gains local access (as a normal

user) to the victim machine through one of the password

sniffing, dictionary attack, or social engineering, etc.

techniques. The intruder then exploits some vulnerability

or bug associated with the operating system environment

of the machine under attack to perform the transition from

user to root level. After acquiring root privileges, the

intruder has full control on the victim machine to install

backdoor entries for future exploitation, change system

files to collect information, and other potentially very

damaging actions. Only one process allows legal

transition from user to root level in Solaris
TM

environment, which is the ‘su’ utility. If a user gains root

shell without executing the ‘su’ command, this means an

intrusive U2R transition has taken place [1]. As the

damage caused by U2R attacks can be potentially very

destructive, it is very important that 100% detection is

achieved for attacks in this category.

Common techniques used to execute an illegal U2R

transition within Solaris
TM

 operating system environments

involve buffer overflow attacks [1]. The attacker

intentionally overflows some of the internal program

buffers so that they are written onto the system stack.

This results in writing over the further instructions that are

yet to be executed by the system. By carefully

manipulating the data that is written onto the stack, the

attacker can execute arbitrary instructions on the system,

and gain root access. Although the buffer overflow

situation can be easily monitored within the program,

some common utility programs like eject, ffbconfig,

fdformat, and ps were susceptible to these attacks back in

1998. Current versions of these programs are not

vulnerable to buffer overflow attacks as the operating

systems have been patched since that date. There are

many other root-owned utility programs that can be

executed by normal users on a machine. It is possible that

attackers could exploit similar root-owned programs with

the same or a similar bug in future. Hence the immediate

need arises for intrusion detection systems with anomaly

detection capability to be developed to counter these

attacks as well. Such an effort is being made to address

this need in this paper: an improved heuristic rule with

anomaly detection capability, in a limited context, will be

developed for detection of U2R attacks in Solaris
TM

environment.

Section 2 will present the discussion on audit data file

or log utility generated by the Basic Security Module

(BSM). Next, 1998 and 1999 Defense Advanced

Research Projects Agency (DARPA) BSM datasets

(network, control files used for BSM, etc.) will also be

briefly discussed in Section 3. Literature survey on

detecting U2R attacks against the Solaris
TM

 operating

system using the BSM will be presented on Section 4.

Section 5 discusses the formation of proposed heuristic

rule for U2R attacks. Section 6 presents the performance

and results obtained on DARPA 1998 and 1999 datasets.

The same section shall also discuss the comparative

performance of the proposed rule with others in literature.

2. Basic security module of Solaris
TM

operating system

Basic Security Module (BSM) is a software utility

available with the Solaris
TM

 operating system to assist in

collecting security-related information about various

events executed on the machine [2]. There are more than

200 kernel and user events that the system executes

including execve, mmap, open, close, munmap, stat, etc.

Each event is associated with various parameters like who

executed, execution time, paths, arguments, return values,

errors generated, and which process and session was

responsible among others. This critical system

information is collected by the BSM in chronological

order. Further processing is left to the system

administrator who can extract relevant information as

needed. The data is stored in binary format in a disk file.

Two operating system utilities that can process this binary

information are ‘auditreduce’ and ‘praudit’. While

‘auditreduce’ extracts specific information like records

during specific time periods, or records of a specific

event, ‘praudit’ converts binary file into a human readable

format.

For each event executed on the system, BSM generates

one record that contains all the information related to that

event. Hence the BSM file on a host is a set of records

that indicate all events generated. Audit control files assist

in how much information needs to be stored, which users

are to be logged, and where the files need to be stored.

BSM filenames are automatically generated that help

identify the host and the time the file was created and

terminated. For example, a typical audit record structure

consists of header token (marks the beginning of record,

event id, event name, and execution date and time), arg

token (various arguments passed to the event system call),

data token (other relevant information like path

information, attributes of the file accessed), subject token

(who executed the event, session id, process id, and

machine id), return token (value returned by the event),

and trailer token (marks the end of record). A sample

EXECVE event BSM record is shown in Figure 1.

Further details about the various tokens and fields can be

obtained from the relevant Solaris
TM

 system manual [2].

3. DARPA 1998 and 1999 intrusion detection

evaluation program

In 1998, Defense Advanced Research Projects Agency

(DARPA) funded an intrusion detection evaluation

program at Lincoln Laboratories of the Massachusetts

Institute of Technology [3]. In this program, various

attack scenarios were conducted on a simulated network

that consisted of Linux, Sun, and Solaris
TM

 operating

system victims. Attacks belonging to various categories

such as Probing, DoS, U2R, and R2L were simulated, and

network and host data was collected. The data sets also

consisted of normal network traffic. The training dataset

consisted of seven weeks of data while the testing dataset

consisted of two weeks of data. Three kinds of data was

collected: one by sniffers connected at both inside and

outside the network, second was the BSM data on

Solaris
TM

 victims, and third was file system dumps

compiled at the end of each day.

A total of four U2R attacks were executed against the

Solaris
TM

 machines during DARPA 1998 intrusion

evaluation program: eject, fdformat, ffbconfig, and ps

attacks. The ‘ps’ attack was present only in testing data

set to help build anomaly detection systems. All these

attacks belong to subcategory buffer overflow attacks

exploiting root-owned programs accessible to normal

users on the system. New attacks were added in both

training and testing phases of the DARPA 1999 intrusion

detection evaluation program. Also a new victim

operating system, Windows NT [4], was introduced. Each

day’s BSM audit file consisted of hundreds of sessions

and thousands of processes executed and the typical file

size was on average 100 MB. These two datasets are

publicly accessible and can be downloaded [5], [6].

4. Literature survey: Detecting U2R attacks

against Solaris
TM

 using BSM

Ghosh and Michael [7] implemented three machine

learning algorithms, which included the Elman recurrent

neural network [8], string transducer [9], and state tester

[10], to model the normal behavior of programs on a

Solaris
TM

 platform. The goal was to implement anomaly

detection and hence occurrence of an intrusive activity.

Each algorithm used sequences of BSM events generated

by a program during its execution. Example system

programs that were studied included admintool, ping,

allocate, auditd, eject, ffbconfig, and su. Dataset used

was from the DARPA 1999 program. All three

algorithms were tested on two attack categories U2R and

R2L. The Elman net performed the best with 100%

detection with three false alarms per day while string

transducer performed next best with 100% detection at

five false alarms per day. State tester detected all user-to-

root attacks at around nine false alarms per day.

Figure 1. Sample BSM record for EXECVE event

Eskin [11] used a statistical classification technique to

estimate a probability distribution over the data and

applied a statistical test to detect the anomalies. No

training was required over the normal data. This anomaly

detection technique was used to detect intrusions based on

the analysis of process system calls. Two datasets

containing system calls data were analyzed. First data was

obtained from the BSM portion of DARPA 1999

evaluation. Second dataset was obtained from Stephanie

Forrest’s group at the University of New Mexico [12].

This method was compared with two popular baseline

methods tslide and slide [12]. The results showed that

probability modeling technique performed much better

than the baseline techniques for programs that had less

than 5% of intrusive data present (like ps, xlock, named,

and ftpd). A 100% detection rate was achieved with a

false alarm rate of less than 0.02% over the total number

of sessions. This technique is also discussed in [13].

Emran and Ye [14] developed a multivariate statistical-

based anomaly detection algorithm, namely Canberra

technique. Datasets used for testing this technique were

obtained from DARPA 1998 evaluation program and the

Information Systems and Assurance Laboratory of

Arizona State University. However only five minutes of

BSM data rather than the entire BSM data was employed.

Data was in the form of BSM events representing system

calls. Performance of the Canberra technique was

assessed on number of attacks including password

guessing, suspicious program usage, and port scanning.

Results showed that the Canberra technique performed

very well for both anomaly and misuse detection only

when normal records are widely separated in the feature

space. In situations where attacks are intermixed with

normal sessions, an unacceptably high level of false

alarms, in the neighborhood of 30%, was generated.

Lindqvist and Porras [15] developed a signature-

analysis engine for computer and network misuse

detection using a forward-chaining rule-based expert

system, which was implemented using the Production-

Based Expert System Toolset (P-BEST). Rules were

generated for many attacks, specifically SYN flooding and

buffer overflow attacks. BSM data was used to create

rules for buffer overflow attacks and TCP data was used

for SYN flooding attacks. A single rule was specified

using the P-BEST language. A 100% detection rate was

achieved for misuse detection of buffer overflow attacks

with no false alarms. Authors report that the rule used for

buffer overflow attacks is fast enough to be used for real-

time detection of these attacks. The processing time is

only a few minutes for a typical day’s BSM data for

Solaris
TM

. The rule failed to show any anomaly detection

capability when tested on DARPA 1998 testing dataset: it

failed to detect the attack against the ps program.

Lee and Stolfo [16] also used BSM data collected

during the 1998 DARPA evaluation program to build a

misuse detection model. They applied data mining

techniques to extract session and event features from the

BSM data in the form of records. These records were

then labeled as normal or intrusive according the data

information provided by the 1998 DARPA evaluation

program. Finally, the RIPPER utility was applied to

generate rules [17]. Performance of their algorithm on

U2R attacks was slightly more than 80% detection at 0%

false alarm rate.

The literature survey shows that mainly rule based

systems that leveraged BSM information demonstrated

desirable performance characteristics for detecting U2R

attacks against the Solaris
TM

 operating system. All these

systems were built for misuse detection, and a 100%

detection rate was achieved with very low false alarm

rates for known attacks. However no mention of anomaly

detection capability is made for these systems. Also

malicious unsuccessful attempts to execute U2R attacks

must also be treated as attacks. This discussion points at

possible improvements for a U2R attack detection system

that utilizes BSM information in Solaris
TM

 platforms.

Therefore it is desirable that a heuristic rule based system

should demonstrate a performance with 100% detection

and 0% false alarm rates against U2R attacks, while also

incorporating some anomaly detection capability. The

rule should not only detect all successful attacks, but also

detect unsuccessful U2R attack attempts positioned to

exploit system security loopholes. The proposed rule

should also be conceived to be general enough to detect

any U2R attack that leverages the buffer overflow

technique: this requirement has the potential to induce

anomaly detection capability although it is likely to be

somewhat limited in scope. Furthermore the rule should

header,167,2,execve(2),,Thu Jul 02 08:02:01 1998, + 232158572 msec
path,/usr/lib/sendmail
attribute,104551,root,bin,8388614,96918,0
exec_args,3,
/usr/lib/sendmail,-oi,charlae@alpha.apple.edu
subject,2066,root,rjm,2066,rjm,317,309,24 0 172.16.114.168
return,success,0
trailer,167

not be computationally complex and require minimal

processing time, and hence offer the potential to be used

for real-time detection of U2R attacks since U2R attacks

are potentially very dangerous.

This paper proposes a heuristic rule to detect illegal

transitions from user level to root (super-user) level

through leveraging programs having suid bit set within

Solaris
TM

 operating system environments. The aim is to

develop a rule such that a 100% detection rate, 0% false

alarm rate, and anomaly detection are achieved. The

proposed heuristic rule will be targeted for use by a host-

based intrusion detection system against user-to-root

(U2R) attacks. Domain knowledge pertaining to U2R

attacks and Basic Security Module (BSM) information

will be used in formulating the heuristic rule.

Specifically, an audit log of all system events occurring on

a host, which is generated by the BSM utility, shall be

used towards developing the rule. The proposed heuristic

rule will be conceived in a generic format to facilitate a

possible port to other operating systems with tools similar

to the BSM. This rule will be tested on the DARPA 1998

and 1999 intrusion detection datasets.

5. Heuristic rule formulation for U2R attacks

The literature suggests that expert systems using

heuristic rules perform best on U2R attacks using the

BSM audit data. This section explains rule formulation

process for U2R attacks using the buffer overflow

technique. First BSM audit data was manually mined to

extract features that can be analyzed to detect U2R

attacks. Then using the DARPA 1998 and 1999 datasets,

thresholds were set using statistical analysis of datasets so

that U2R attacks can be detected.

Generally, exploiting an internal buffer of a system

program is the main source for a U2R attack. Such a

program that is amenable to exploitation through its

internal buffer is executed at the shell prompt by the

attacker. There are around 229 BSM events available for

audit within the Solaris
TM

 operating system. Only a few

are responsible directly for user level commands issued to

the kernel from the shell prompt. It is important to find

those event(s) that correspond to the user commands. It

was observed that all the commands executed by the user

were audited contained EXECVE BSM event as the

starting event during logging. This event is responsible

for storing command name and various parameters passed

during execution of a process. The event then maps the

command to a system call, which executes the requested

process. Hence any command executed by a user can be

directly identified by analyzing the various EXECVE

events occurring in the BSM audit file.

All U2R attacks, executed on Solaris
TM

 machines

during DARPA 1998 evaluation program, belonged to

buffer overflow category. These attacks were eject,

fdformat, ffbconfig, and ps. Every program has a ‘set-

user-ID’ (suid) bit associated with it. The owner of a

program, who is the root (R), can set this bit so that when

other users execute the program, they obtain privileges of

R for the complete duration of the execution. Some root-

owned system processes have this bit set because these

programs can execute/call other child processes that

cannot execute unless the parent process has root

privileges. The potential problem is with having the suid

bit set. Assume that user N executes an attack through a

process owned by a user R having suid bit set. Now if N

is able to stop the process before it finishes execution, N

shall have privileges of R since suid bit was set. All

buffer overflow attacks use this mechanism. Attacker

executes a root-owned program with suid bit set and

passes a large argument to it such that one or more

internal buffers overflow. Whenever an internal buffer

overflows by default, the system stack present in memory

containing next instructions is overwritten by the

overflowing data. Hence by carefully overwriting the

system stack, an attacker can execute arbitrary instructions

as a root since during the execution of program the

attacker has root privileges. One of the common

instructions is to generate a shell with root privileges.

This dynamics is common for all buffer overflow attacks.

Once the common mechanism for leveraging a buffer

overflow attack is defined, the next step is to identify

those tokens in the BSM data that can help extract

relevant information. The header token will indicate the

total size (length) of event and hence suggest whether a

large argument was passed to the program. It will also tell

the time and date of execution (time), and EXECVE

event. The ‘path’ token specifies which program was

executed (path). The ‘attribute’ token points to whether

suid bit (suid) is set and also indicates the owner of the

process. The ‘exec_args’ token will designate how many

(arg_num) and which arguments (content) are passed to

the program. Subject token will indicate the effective user

id (euid), the real user id (ruid), and the session number

(session) for the current EXECVE event. Hence the rule

to detect buffer overflow attack using these BSM features

can be proposed as follows:

“A user can execute a U2R attack by passing a

large argument to a root-owned program whose

suid bit is set to 1.”

The rule can be restated in BSM terminology as follows:

“An attempt for a U2R attack occurs when an

EXECVE event with large ‘length’ and small

number of arguments, as represented by

‘arg_num’, executes a root-owned program

whose suid is set to 1.”

Consequently, in a formal notation with BSM

terminology, the rule can be restated as:

The threshold for length was set to 400 by comparing

normal EXECVE event sizes from the DARPA 1998

dataset. Only few non-attack records had length greater

than 400 but those records required much larger value for

parameter args_num. An example program is sendmail

which requires a large list of email addresses. The

observation made on the DARPA 1998 dataset for any

normal EXECVE event was that if the args_num is less

than 6, the length cannot be greater than 400.

The proposed rule detects a user attempt to pass a large

argument to a root-owned program. It is independent of

the program name, size of the arguments passed, and

contents of the suspicious argument. Hence any user

attempt to pass a large argument to a root-owned program

will be detected by this rule. This shows the anomaly

detection capability of the proposed rule. Other U2R

attacks that are not present in the DARPA 1998 training

dataset might have different argument contents and may

target some other root-owned program but the signature

will be the same and hence the rule should be able to

detect the attack. This is an important contribution of the

proposed rule. In future, if the rule generates false alarms,

then only two parameters need to be adjusted: length and

arg_num. These are tunable parameters and can be

changed according to the organizational needs to reduce

false alarms. Currently these parameters were set by using

statistical analysis of DARPA 1998 datasets.

It is further relevant to note that the proposed rule

detects whenever the user passes a large argument to a

root-owned program. In patched versions of the Solaris

operating system environment, requests to execute most

root-owned programs, which were previously vulnerable

to buffer overflow attacks prior to those patches, with a

large argument are simply ignored and lead to generation

of an error message by the operating system. Hence if the

root-owned program is not vulnerable to the buffer

overflow attack then it will result in an unsuccessful

attempt for an U2R attack. The proposed rule will still

detect this attempt as the rule just observes passing a large

argument. Hence the rule shall detect both successful and

unsuccessful buffer overflow attempts against Solaris
TM

programs. Since the rule detects the attack before the

attacker gains root privileges, the rule cannot differentiate

between successful and unsuccessful U2R attempts.

Additional rules may be needed to detect whether the U2R

attack was successful or not by monitoring the change in

privilege levels.

6. Performance of proposed heuristic rule

The proposed heuristic rule has been tested on DARPA

1998 and 1999 datasets. The goal was to find out whether

a buffer overflow attack has been attempted during a

session as captured in the BSM audit file. Generally

around 200 sessions were present in a typical day’s audit

file. The script to check the proposed rule took less than

five minutes to process each day’s BSM audit file using a

computing platform with a 500 MHz Intel processor, 512

MB RAM, and running the Solaris
TM

 operating system.

The proposed rule detected all buffer overflow attacks

both in DARPA 1998 and DARPA 1999 datasets. Noting

that the proposed rule was created by analyzing DARPA

1998 training dataset only, all attacks were successfully

detected in DARPA 1999 datasets as well. There were no

false alarms or missed alarms generated: 100% detection

and 0% false alarm rates were achieved. Also no

unsuccessful U2R attempts are reported in DARPA 1998

datasets. Hence the proposed rule detected all successful

U2R attacks against the Solaris
TM

 operating system.

Furthermore, the rule did detect a new attack present in

DARPA 1998 test data set against the ‘ps’ program, which

was not present in DARPA 1998 training data set. Hence

the proposed rule has anomaly detection capabilities even

though it might be in a limited context.

During the DARPA 1998 program, four participants

(UCSB, IOWA, COLUMBIA and EMERALD) took part

in the intrusion detection system evaluation. The results

of this evaluation program are discussed in [18]. Only

one of the four participants was able to detect all buffer

overflow attacks in the test data but with around 100 false

alarms per day, which is an unacceptably high number for

all practical purposes. Endler [19] proposed a rule to

detect buffer overflow attacks by checking whether a user

is executing a program having suid bit reset with root

privileges. Endler’s rule demonstrated a 100% detection

rate for U2R attacks but generated many false alarms:

there were more than 50 false alarms on the first day of

DARPA 1998 training data set. Therefore, Endler’s rule

fails to compare favorably with the proposed rule in this

paper, which detected all buffer overflow attacks with no

false alarms both in DARPA 1998 training and testing

datasets.

Lindquist [15] used a rule to detect U2R attacks, which

was very similar to the proposed rule. They proposed the

following:

(event = EXECVE) ∧

(euid != ruid) ∧

(owner = “root”) ∧

(suid = 1) ∧

(length > 400) ∧

(arg_num > 6) � Buffer overflow attack

Lindquist’s rule checked whether the exec_args

contained the string “^\\”, which was present in all U2R

attacks against Solaris
TM

 machines. We have written a

nawk script, which implemented this rule, to evaluate its

performance on the same data sets the proposed rule was

assessed. Lindquist’s rule detected all attacks in DARPA

1998 training data set. However the same rule failed to

detect “new” attacks, which are present in testing but not

in training data set (against ps program). Hence the rule

failed to demonstrate anomaly detection capability. The

reason for that was buffer overflow attack through the ps

program does not contain “^\\” in the exec_args. The rule

proposed in our paper is capable of anomaly detection

since it detected new attacks present in DARPA 1998

testing dataset only. Also Lindquist’s rule does not check

whether the root owns the program being executed. If not,

then there is no U2R attack executed by the attacker: it

possibly points at a transition from one user to another

user, which is not that dangerous as compared to a U2R

transition. Furthermore, Lindquist’s rule detected around

80% of attacks in DARPA 1998 testing dataset with no

false alarms.

Ghosh [7] used three techniques, Elman neural

networks, string transducer, and state tester to detect U2R

attacks. All three techniques employed machine learning

algorithms, where the normal process behavior was

learned and then anomalous behavior was detected to

conclude that attack has taken place. All three techniques

could detect U2R attacks with 100% detection rate but at

the expense of 3 to 5 false alarms per day, which is

relatively high for practical purposes.

Lee and Stolfo [16] used data mining techniques on

DARPA 1998 training data set to extract features from the

BSM data. They employed rule discovery algorithm

RIPPER on extracted features to generate rules. The rule

generated by RIPPER to detect buffer overflow attack is

as follows:

“If a shell is executed in the suid set state, then

this is a buffer overflow attack.”

This rule could detect only 80% attacks in the DARPA

1998 testing data set and failed to show anomaly

detection.

In summary, the proposed rule can respond to all

successful and unsuccessful buffer overflow attacks

against Solaris
TM

 operating system present in the DARPA

1998 and 1999 datasets with a 100% detection rate with

no false alarms. No other detection model reported in

literature could achieve this performance. Results show

that the proposed rule could detect novel unknown attacks

and hence has the capability for some level of anomaly

detection. A potential limitation, which can be easily

addressed with a second enhancing heuristic rule, is that

the rule cannot differentiate between successful and

unsuccessful buffer overflow attempts. Furthermore, it

might be necessary to change the thresholds for length and

arg_num parameters based on the organizational

requirements to reduce false alarms generated if any.

7. Conclusions

A heuristic rule was proposed to detect buffer overflow

attacks against Solaris
TM

 machines. The proposed rule

performed very well on both DARPA 1998 and DARPA

1999 datasets with 100% detection and 0% false alarm

rates while also demonstrating potential (although limited)

anomaly detection capability. The proposed rule is

sufficiently generic to detect all U2R attacks that leverage

the buffer overflow mechanism against Solaris
TM

machines. The proposed rule is not complex

computationally, and the features required can be easily

observed through the BSM audit file. The proposed rule

can be used to detect U2R attacks in real-time due to its

minimal computational cost. The rule detects both

successful and unsuccessful buffer overflow attempts

against Solaris
TM

 though the rule cannot differentiate

between the two. A second follow-up rule would be

needed to detect whether the attacker gained root

privileges or not.

Currently, the proposed rule was tested for off-line

detection of U2R attacks although real-time execution of

the rule does not present any noteworthy computational

challenges. However, issues like reading BSM records at

real-time, managing BSM files, generating automated

responses to attack detection etc. are reserved for future

studies and are not addressed in this paper.

8. References

[1] K. Kendall, “A Database of Computer Attacks for the

Evaluation of Intrusion Detection Systems”, Master's

Thesis, Massachusetts Institute of Technology, Boston,

MA, 1998.

[2] SunSHIELD BSM Guide, http://docs.sun.com/db/-

doc/806-1789, 1995, cited April 2003.

[3] R. P. Lippmann, I. Graf, D. Wyschogrod, S. E.

Webster, D. J. Weber, and S. Gorton, “The 1998

DARPA/AFRL Off-Line Intrusion Detection Evaluation”,

First International Workshop on Recent Advances in

(event = EXECVE) ∧

(euid != ruid) ∧

(content = “^\\”) ∧

(length > 400) � Buffer overflow attack

Intrusion Detection (RAID), Louvain-la-Neuve, Belgium,

1998.

[4] R. P. Lippmann, J. W. Haines, D. J. Fried, J. Korba,

and K. Das, “The 1999 DARPA Off-Line Intrusion

Detection Evaluation”, Computer Networks, 2000,

Vol. 34 (4), pp. 579-595.

[5] DARPA data set, 1998. http://www.ll.mit.edu/IST/-

ideval/data/1998/1998_data_index.html, cited April 2003.

[6] DARPA data set, 1999. http://www.ll.mit.edu/IST/-

ideval/data/1999/1999_data_index.html, cited April 2003.

[7] A. K. Ghosh, C. Michael, and M. Schatz, “A Real-

Time Intrusion Detection System Based on Learning

Program Behavior”, In Proceedings of Recent Advances

in Intrusion Detection, 2000, pp. 93-109.

[8] J. L. Elman, “Finding Structure in Time”, Journal of

Cognitive Science, 1990, Vol. 14, pp. 179-211.

[9] M. Mohri, “Finite-State Transducers in Language and

Speech Processing”, Journal of Computational

Linguistics, 1997, Vol. 23 (2), pp. 269-311.

[10] A. P. Kosoresow, and S. A. Hofmeyr, “Intrusion

Detection via System Call Traces”, Journal of IEEE

Software, September/October, 1997, Vol. 14 (5),

pp. 35-42.

[11] E. Eskin, “Anomaly Detection over Noisy Data using

Learned Probability Distributions”, In Proceedings of 17
th

International Conference on Machine Learning, San

Francisco, CA, 2000, pp. 255-262.

[12] C. Warrender, S. Forrest, and B. Pearlmutter,

“Detecting Intrusions Using System Calls: Alternative

Data Models”, Proceedings of the 1999 IEEE Symposium

on Security and Privacy, Oakland, CA, 1999,

pp. 133-145.

[13] E. Eskin, M. Miller, Z. Zhong, G. Yi, W. Lee, S.

Stolfo, “Adaptive Model Generation for Intrusion

Detection Systems”, In Proceedings of the first ACMCCS

Workshop on Intrusion Detection and Prevention, Athens,

Greece, 2000.

[14] S. M. Emran, and N. Ye, “Robustness of Canberra

Metric in Computer Intrusion Detection”, Proceedings of

the IEEE Workshop on Information Assurance and

Security US Military Academy, West Point, NY, 5-6 June,

2001, pp. 80-84.

[15] U. Lindqvist, and P. Porras, “Detecting Computer

and Network Misuse through the Production-based Expert

System Toolset (P-{BEST})”, IEEE Symposium on

Security and Privacy, 1999, pp. 146-161.

[16] W. Lee, and S. Stolfo, “A Framework for

Constructing Features and Models for Intrusion Detection

Systems”, ACM Transactions on Information and System

Security, November 2000, Vol. 3 (4),

pp. 227-261.

[17] W. W. Cohen, “Fast effective rule induction”,

Proceedings of the 12
th

 International Conference on

Machine Learning (ML-95), Lake Tahoe, CA: Morgan

Kaufmann, 1995, pp. 115-123.

[18] R. P. Lippmann, R. K. Cunningham, D. J. Fried, I.

Graf, K. Kendall, S. E. Webster, and M. A. Zissman,

"Results of the DARPA 1998 Offline Intrusion Detection

Evaluation", RAID 1999 Conference, West Lafayette,

Indiana, Sept. 7-9, 1999.

[19] D. Endler, “Intrusion Detection Applying Machine

Learning to Solaris Audit Data”, Proceedings of the 1998

Annual Computer Security Applications Conference, Los

Alamitos, CA, Dec. 1998, pp. 268-279.

