Formulation of a Heuristic Rule for Misuse and Anomaly Detection
for U2R Attacks in Solaris™ Operating System Environment

Maheshkumar Sabhnani
EECS Dept, University of Toledo
Toledo, Ohio 43606 USA

Abstract

This paper proposes a heuristic rule for detection of
user-to-root (U2R) attacks against Solaris™ operating
system. Relevant features for developing heuristic rules
were manually mined using Solaris™ Basic Security
Module audit data. The proposed rule was tested on both
DARPA 1998 and 1999 intrusion detection datasets.
Results show that all user-to-root attacks exploiting the
suid program were detected with 100% probability and
with zero false alarms. The rule can detect both successful
and unsuccessful U2R attempts against the Solaris™
operating system. The proposed rule is general enough to
detect any U2R attack that leverages the buffer overflow
technique. Empirical results indicate that the rule also
detected novel user-to-root attacks in DARPA 1998
intrusion detection dataset. Hence the rule has the
potential and can be used for anomaly detection.

Keywords: Intrusion detection, User-to-root attack,
misuse, anamoly, rule-based system, heuristic

1. Introduction

The process in which a normal user gains root (super-
user) privileges through an illegal transition is defined as a
user-to-root (U2R) attack. To execute a U2R attack, the
intruder first somehow gains local access (as a normal
user) to the victim machine through one of the password
sniffing, dictionary attack, or social engineering, etc.
techniques. The intruder then exploits some vulnerability
or bug associated with the operating system environment
of the machine under attack to perform the transition from
user to root level. After acquiring root privileges, the
intruder has full control on the victim machine to install
backdoor entries for future exploitation, change system
files to collect information, and other potentially very
damaging actions. Only one process allows legal
transition from user to root level in Solaris™
environment, which is the ‘su’ utility. If a user gains root
shell without executing the ‘su’ command, this means an
intrusive U2R transition has taken place [1]. As the

Gursel Serpen
EECS Dept, University of Toledo
Toledo, Ohio 43606 USA

damage caused by U2R attacks can be potentially very
destructive, it is very important that 100% detection is
achieved for attacks in this category.

Common techniques used to execute an illegal U2R
transition within Solaris™ operating system environments
involve buffer overflow attacks [1]. The attacker
intentionally overflows some of the internal program
buffers so that they are written onto the system stack.
This results in writing over the further instructions that are
yet to be executed by the system. By -carefully
manipulating the data that is written onto the stack, the
attacker can execute arbitrary instructions on the system,
and gain root access. Although the buffer overflow
situation can be easily monitored within the program,
some common utility programs like eject, ffbconfig,
fdformat, and ps were susceptible to these attacks back in
1998. Current versions of these programs are not
vulnerable to buffer overflow attacks as the operating
systems have been patched since that date. There are
many other root-owned utility programs that can be
executed by normal users on a machine. It is possible that
attackers could exploit similar root-owned programs with
the same or a similar bug in future. Hence the immediate
need arises for intrusion detection systems with anomaly
detection capability to be developed to counter these
attacks as well. Such an effort is being made to address
this need in this paper: an improved heuristic rule with
anomaly detection capability, in a limited context, will be
developed for detection of U2R attacks in Solaris™
environment.

Section 2 will present the discussion on audit data file
or log utility generated by the Basic Security Module
(BSM). Next, 1998 and 1999 Defense Advanced
Research Projects Agency (DARPA) BSM datasets
(network, control files used for BSM, etc.) will also be
briefly discussed in Section 3. Literature survey on
detecting U2R attacks against the Solaris™ operating
system using the BSM will be presented on Section 4.
Section 5 discusses the formation of proposed heuristic
rule for U2R attacks. Section 6 presents the performance
and results obtained on DARPA 1998 and 1999 datasets.
The same section shall also discuss the comparative
performance of the proposed rule with others in literature.

2. Basic security module of Solaris™

operating system

Basic Security Module (BSM) is a software utility
available with the Solaris™ operating system to assist in
collecting security-related information about various
events executed on the machine [2]. There are more than
200 kernel and user events that the system executes
including execve, mmap, open, close, munmap, stat, etc.
Each event is associated with various parameters like who
executed, execution time, paths, arguments, return values,
errors generated, and which process and session was
responsible among others. This critical system
information is collected by the BSM in chronological
order. Further processing is left to the system
administrator who can extract relevant information as
needed. The data is stored in binary format in a disk file.
Two operating system utilities that can process this binary
information are ‘auditreduce’ and ‘praudit’. While
‘auditreduce’ extracts specific information like records
during specific time periods, or records of a specific
event, ‘praudit’ converts binary file into a human readable
format.

For each event executed on the system, BSM generates
one record that contains all the information related to that
event. Hence the BSM file on a host is a set of records
that indicate all events generated. Audit control files assist
in how much information needs to be stored, which users
are to be logged, and where the files need to be stored.
BSM filenames are automatically generated that help
identify the host and the time the file was created and
terminated. For example, a typical audit record structure
consists of header token (marks the beginning of record,
event id, event name, and execution date and time), arg
token (various arguments passed to the event system call),
data token (other relevant information like path
information, attributes of the file accessed), subject token
(who executed the event, session id, process id, and
machine id), return token (value returned by the event),
and ftrailer token (marks the end of record). A sample
EXECVE event BSM record is shown in Figure 1.
Further details about the various tokens and fields can be
obtained from the relevant Solaris™ system manual [2].

3. DARPA 1998 and 1999 intrusion detection
evaluation program

In 1998, Defense Advanced Research Projects Agency
(DARPA) funded an intrusion detection evaluation
program at Lincoln Laboratories of the Massachusetts

Institute of Technology [3]. In this program, various
attack scenarios were conducted on a simulated network
that consisted of Linux, Sun, and Solaris™ operating
system victims. Attacks belonging to various categories
such as Probing, DoS, U2R, and R2L were simulated, and
network and host data was collected. The data sets also
consisted of normal network traffic. The training dataset
consisted of seven weeks of data while the testing dataset
consisted of two weeks of data. Three kinds of data was
collected: one by sniffers connected at both inside and
outside the network, second was the BSM data on
Solaris™ victims, and third was file system dumps
compiled at the end of each day.

A total of four U2R attacks were executed against the
Solaris™ machines during DARPA 1998 intrusion
evaluation program: eject, fdformat, ffbconfig, and ps
attacks. The ‘ps’ attack was present only in testing data
set to help build anomaly detection systems. All these
attacks belong to subcategory buffer overflow attacks
exploiting root-owned programs accessible to normal
users on the system. New attacks were added in both
training and testing phases of the DARPA 1999 intrusion
detection evaluation program. Also a new victim
operating system, Windows NT [4], was introduced. Each
day’s BSM audit file consisted of hundreds of sessions
and thousands of processes executed and the typical file
size was on average 100 MB. These two datasets are
publicly accessible and can be downloaded [5], [6].

4. Literature survey: Detecting U2R attacks
against Solaris" using BSM

Ghosh and Michael [7] implemented three machine
learning algorithms, which included the Elman recurrent
neural network [8], string transducer [9], and state tester
[10], to model the normal behavior of programs on a
Solaris™ platform. The goal was to implement anomaly
detection and hence occurrence of an intrusive activity.
Each algorithm used sequences of BSM events generated
by a program during its execution. Example system
programs that were studied included admintool, ping,
allocate, auditd, eject, ffbconfig, and su. Dataset used
was from the DARPA 1999 program. All three
algorithms were tested on two attack categories U2R and
R2L. The Elman net performed the best with 100%
detection with three false alarms per day while string
transducer performed next best with 100% detection at
five false alarms per day. State tester detected all user-to-
root attacks at around nine false alarms per day.

path, /usr/lib/sendmail

attribute, 104551, root,bin, 8388614,96918,0
exec_args, 3,

/usr/lib/sendmail, —oi,charlaeRalpha.apple.edu

return, success, 0
trailer, 167

header,167,2,execve(2),,Thu Jul 02 08:02:01 1998,

subject, 2066, root, rjm,2066,rjm,317,309,24 0 172.16.114.168

+ 232158572 msec

Figure 1. Sample BSM record for EXECVE event

Eskin [11] used a statistical classification technique to
estimate a probability distribution over the data and
applied a statistical test to detect the anomalies. No
training was required over the normal data. This anomaly
detection technique was used to detect intrusions based on
the analysis of process system calls. Two datasets
containing system calls data were analyzed. First data was
obtained from the BSM portion of DARPA 1999
evaluation. Second dataset was obtained from Stephanie
Forrest’s group at the University of New Mexico [12].
This method was compared with two popular baseline
methods zslide and slide [12]. The results showed that
probability modeling technique performed much better
than the baseline techniques for programs that had less
than 5% of intrusive data present (like ps, xlock, named,
and fipd). A 100% detection rate was achieved with a
false alarm rate of less than 0.02% over the total number
of sessions. This technique is also discussed in [13].

Emran and Ye [14] developed a multivariate statistical-
based anomaly detection algorithm, namely Canberra
technique. Datasets used for testing this technique were
obtained from DARPA 1998 evaluation program and the
Information Systems and Assurance Laboratory of
Arizona State University. However only five minutes of
BSM data rather than the entire BSM data was employed.
Data was in the form of BSM events representing system
calls. Performance of the Canberra technique was
assessed on number of attacks including password
guessing, suspicious program usage, and port scanning.
Results showed that the Canberra technique performed
very well for both anomaly and misuse detection only
when normal records are widely separated in the feature
space. In situations where attacks are intermixed with
normal sessions, an unacceptably high level of false
alarms, in the neighborhood of 30%, was generated.

Lindqvist and Porras [15] developed a signature-
analysis engine for computer and network misuse
detection using a forward-chaining rule-based expert
system, which was implemented using the Production-
Based Expert System Toolset (P-BEST). Rules were
generated for many attacks, specifically SYN flooding and
buffer overflow attacks. BSM data was used to create
rules for buffer overflow attacks and TCP data was used
for SYN flooding attacks. A single rule was specified

using the P-BEST language. A 100% detection rate was
achieved for misuse detection of buffer overflow attacks
with no false alarms. Authors report that the rule used for
buffer overflow attacks is fast enough to be used for real-
time detection of these attacks. The processing time is
only a few minutes for a typical day’s BSM data for
Solaris™. The rule failed to show any anomaly detection
capability when tested on DARPA 1998 testing dataset: it
failed to detect the attack against the ps program.

Lee and Stolfo [16] also used BSM data collected
during the 1998 DARPA evaluation program to build a
misuse detection model. They applied data mining
techniques to extract session and event features from the
BSM data in the form of records. These records were
then labeled as normal or intrusive according the data
information provided by the 1998 DARPA evaluation
program. Finally, the RIPPER utility was applied to
generate rules [17]. Performance of their algorithm on
U2R attacks was slightly more than 80% detection at 0%
false alarm rate.

The literature survey shows that mainly rule based
systems that leveraged BSM information demonstrated
desirable performance characteristics for detecting U2R
attacks against the Solaris"™ operating system. All these
systems were built for misuse detection, and a 100%
detection rate was achieved with very low false alarm
rates for known attacks. However no mention of anomaly
detection capability is made for these systems. Also
malicious unsuccessful attempts to execute U2R attacks
must also be treated as attacks. This discussion points at
possible improvements for a U2R attack detection system
that utilizes BSM information in Solaris™ platforms.
Therefore it is desirable that a heuristic rule based system
should demonstrate a performance with 100% detection
and 0% false alarm rates against U2R attacks, while also
incorporating some anomaly detection capability. The
rule should not only detect all successful attacks, but also
detect unsuccessful U2R attack attempts positioned to
exploit system security loopholes. The proposed rule
should also be conceived to be general enough to detect
any U2R attack that leverages the buffer overflow
technique: this requirement has the potential to induce
anomaly detection capability although it is likely to be
somewhat limited in scope. Furthermore the rule should

not be computationally complex and require minimal
processing time, and hence offer the potential to be used
for real-time detection of U2R attacks since U2R attacks
are potentially very dangerous.

This paper proposes a heuristic rule to detect illegal
transitions from user level to root (super-user) level
through leveraging programs having suid bit set within
Solaris™ operating system environments. The aim is to
develop a rule such that a 100% detection rate, 0% false
alarm rate, and anomaly detection are achieved. The
proposed heuristic rule will be targeted for use by a host-
based intrusion detection system against user-to-root
(U2R) attacks. Domain knowledge pertaining to U2R
attacks and Basic Security Module (BSM) information
will be wused in formulating the heuristic rule.
Specifically, an audit log of all system events occurring on
a host, which is generated by the BSM utility, shall be
used towards developing the rule. The proposed heuristic
rule will be conceived in a generic format to facilitate a
possible port to other operating systems with tools similar
to the BSM. This rule will be tested on the DARPA 1998
and 1999 intrusion detection datasets.

5. Heuristic rule formulation for U2R attacks

The literature suggests that expert systems using
heuristic rules perform best on U2R attacks using the
BSM audit data. This section explains rule formulation
process for U2R attacks using the buffer overflow
technique. First BSM audit data was manually mined to
extract features that can be analyzed to detect U2R
attacks. Then using the DARPA 1998 and 1999 datasets,
thresholds were set using statistical analysis of datasets so
that U2R attacks can be detected.

Generally, exploiting an internal buffer of a system
program is the main source for a U2R attack. Such a
program that is amenable to exploitation through its
internal buffer is executed at the shell prompt by the
attacker. There are around 229 BSM events available for
audit within the Solaris™ operating system. Only a few
are responsible directly for user level commands issued to
the kernel from the shell prompt. It is important to find
those event(s) that correspond to the user commands. It
was observed that all the commands executed by the user
were audited contained EXECVE BSM event as the
starting event during logging. This event is responsible
for storing command name and various parameters passed
during execution of a process. The event then maps the
command to a system call, which executes the requested
process. Hence any command executed by a user can be
directly identified by analyzing the various EXECVE
events occurring in the BSM audit file.

All U2R attacks, executed on Solaris™ machines
during DARPA 1998 evaluation program, belonged to

buffer overflow category. These attacks were eject,
fdformat, ffbconfig, and ps. Every program has a ‘set-
user-ID’ (suid) bit associated with it. The owner of a
program, who is the root (R), can set this bit so that when
other users execute the program, they obtain privileges of
R for the complete duration of the execution. Some root-
owned system processes have this bit set because these
programs can execute/call other child processes that
cannot execute unless the parent process has root
privileges. The potential problem is with having the suid
bit set. Assume that user N executes an attack through a
process owned by a user R having suid bit set. Now if N
is able to stop the process before it finishes execution, N
shall have privileges of R since suid bit was set. All
buffer overflow attacks use this mechanism. Attacker
executes a root-owned program with suid bit set and
passes a large argument to it such that one or more
internal buffers overflow. Whenever an internal buffer
overflows by default, the system stack present in memory
containing next instructions is overwritten by the
overflowing data. Hence by carefully overwriting the
system stack, an attacker can execute arbitrary instructions
as a root since during the execution of program the
attacker has root privileges. One of the common
instructions is to generate a shell with root privileges.
This dynamics is common for all buffer overflow attacks.

Once the common mechanism for leveraging a buffer
overflow attack is defined, the next step is to identify
those tokens in the BSM data that can help extract
relevant information. The header token will indicate the
total size (length) of event and hence suggest whether a
large argument was passed to the program. It will also tell
the time and date of execution (time), and EXECVE
event. The ‘path’ token specifies which program was
executed (path). The ‘attribute’ token points to whether
suid bit (suid) is set and also indicates the owner of the
process. The ‘exec_args’ token will designate how many
(arg_num) and which arguments (content) are passed to
the program. Subject token will indicate the effective user
id (euid), the real user id (ruid), and the session number
(session) for the current EXECVE event. Hence the rule
to detect buffer overflow attack using these BSM features
can be proposed as follows:

“A user can execute a U2ZR attack by passing a
large argument to a root-owned program whose
suid bit is set to 1.”

The rule can be restated in BSM terminology as follows:

“An attempt for a U2R attack occurs when an
EXECVE event with large ‘length’ and small
number of arguments, as represented by
‘arg_num’, executes a root-owned program
whose suid is set to 1.”

Consequently, in a formal notation with BSM
terminology, the rule can be restated as:

(event = EXECVE) A
(euid !=ruid) A
(owner = “root”) A
(suid=1) A

(length > 400) A

(arg_num > 6) = Buffer overflow attack

The threshold for length was set to 400 by comparing
normal EXECVE event sizes from the DARPA 1998
dataset. Only few non-attack records had length greater
than 400 but those records required much larger value for
parameter args_num. An example program is sendmail
which requires a large list of email addresses. The
observation made on the DARPA 1998 dataset for any
normal EXECVE event was that if the args_num is less
than 6, the length cannot be greater than 400.

The proposed rule detects a user attempt to pass a large
argument to a root-owned program. It is independent of
the program name, size of the arguments passed, and
contents of the suspicious argument. Hence any user
attempt to pass a large argument to a root-owned program
will be detected by this rule. This shows the anomaly
detection capability of the proposed rule. Other U2R
attacks that are not present in the DARPA 1998 training
dataset might have different argument contents and may
target some other root-owned program but the signature
will be the same and hence the rule should be able to
detect the attack. This is an important contribution of the
proposed rule. In future, if the rule generates false alarms,
then only two parameters need to be adjusted: length and
arg_num. These are tunable parameters and can be
changed according to the organizational needs to reduce
false alarms. Currently these parameters were set by using
statistical analysis of DARPA 1998 datasets.

It is further relevant to note that the proposed rule
detects whenever the user passes a large argument to a
root-owned program. In patched versions of the Solaris
operating system environment, requests to execute most
root-owned programs, which were previously vulnerable
to buffer overflow attacks prior to those patches, with a
large argument are simply ignored and lead to generation
of an error message by the operating system. Hence if the
root-owned program is not vulnerable to the buffer
overflow attack then it will result in an unsuccessful
attempt for an U2R attack. The proposed rule will still
detect this attempt as the rule just observes passing a large
argument. Hence the rule shall detect both successful and
unsuccessful buffer overflow attempts against Solaris™
programs. Since the rule detects the attack before the

attacker gains root privileges, the rule cannot differentiate
between successful and unsuccessful U2R attempts.
Additional rules may be needed to detect whether the U2R
attack was successful or not by monitoring the change in
privilege levels.

6. Performance of proposed heuristic rule

The proposed heuristic rule has been tested on DARPA
1998 and 1999 datasets. The goal was to find out whether
a buffer overflow attack has been attempted during a
session as captured in the BSM audit file. Generally
around 200 sessions were present in a typical day’s audit
file. The script to check the proposed rule took less than
five minutes to process each day’s BSM audit file using a
computing platform with a 500 MHz Intel processor, 512
MB RAM, and running the Solaris™ operating system.

The proposed rule detected all buffer overflow attacks
both in DARPA 1998 and DARPA 1999 datasets. Noting
that the proposed rule was created by analyzing DARPA
1998 training dataset only, all attacks were successfully
detected in DARPA 1999 datasets as well. There were no
false alarms or missed alarms generated: 100% detection
and 0% false alarm rates were achieved. Also no
unsuccessful U2R attempts are reported in DARPA 1998
datasets. Hence the proposed rule detected all successful
U2R attacks against the Solaris™ operating system.
Furthermore, the rule did detect a new attack present in
DARPA 1998 test data set against the ‘ps’ program, which
was not present in DARPA 1998 training data set. Hence
the proposed rule has anomaly detection capabilities even
though it might be in a limited context.

During the DARPA 1998 program, four participants
(UCSB, IOWA, COLUMBIA and EMERALD) took part
in the intrusion detection system evaluation. The results
of this evaluation program are discussed in [18]. Only
one of the four participants was able to detect all buffer
overflow attacks in the test data but with around 100 false
alarms per day, which is an unacceptably high number for
all practical purposes. Endler [19] proposed a rule to
detect buffer overflow attacks by checking whether a user
is executing a program having suid bit reset with root
privileges. Endler’s rule demonstrated a 100% detection
rate for U2R attacks but generated many false alarms:
there were more than 50 false alarms on the first day of
DARPA 1998 training data set. Therefore, Endler’s rule
fails to compare favorably with the proposed rule in this
paper, which detected all buffer overflow attacks with no
false alarms both in DARPA 1998 training and testing
datasets.

Lindquist [15] used a rule to detect U2R attacks, which
was very similar to the proposed rule. They proposed the
following:

(event = EXECVE) A
(euid !=ruid) A
(content = “M\”) A

(length > 400) = Buffer overflow attack

Lindquist’s rule checked whether the exec_args
contained the string “*\\’, which was present in all U2R
attacks against Solaris™ machines. We have written a
nawk script, which implemented this rule, to evaluate its
performance on the same data sets the proposed rule was
assessed. Lindquist’s rule detected all attacks in DARPA
1998 training data set. However the same rule failed to
detect “new” attacks, which are present in testing but not
in training data set (against ps program). Hence the rule
failed to demonstrate anomaly detection capability. The
reason for that was buffer overflow attack through the ps
program does not contain “*\\” in the exec_args. The rule
proposed in our paper is capable of anomaly detection
since it detected new attacks present in DARPA 1998
testing dataset only. Also Lindquist’s rule does not check
whether the root owns the program being executed. If not,
then there is no U2R attack executed by the attacker: it
possibly points at a transition from one user to another
user, which is not that dangerous as compared to a U2R
transition. Furthermore, Lindquist’s rule detected around
80% of attacks in DARPA 1998 testing dataset with no
false alarms.

Ghosh [7] used three techniques, Elman neural
networks, string transducer, and state tester to detect U2R
attacks. All three techniques employed machine learning
algorithms, where the normal process behavior was
learned and then anomalous behavior was detected to
conclude that attack has taken place. All three techniques
could detect U2R attacks with 100% detection rate but at
the expense of 3 to 5 false alarms per day, which is
relatively high for practical purposes.

Lee and Stolfo [16] used data mining techniques on
DARPA 1998 training data set to extract features from the
BSM data. They employed rule discovery algorithm
RIPPER on extracted features to generate rules. The rule
generated by RIPPER to detect buffer overflow attack is
as follows:

“If a shell is executed in the suid set state, then
this is a buffer overflow attack.”

This rule could detect only 80% attacks in the DARPA
1998 testing data set and failed to show anomaly
detection.

In summary, the proposed rule can respond to all
successful and unsuccessful buffer overflow attacks
against Solaris™ operating system present in the DARPA
1998 and 1999 datasets with a 100% detection rate with

no false alarms. No other detection model reported in
literature could achieve this performance. Results show
that the proposed rule could detect novel unknown attacks
and hence has the capability for some level of anomaly
detection. A potential limitation, which can be easily
addressed with a second enhancing heuristic rule, is that
the rule cannot differentiate between successful and
unsuccessful buffer overflow attempts. Furthermore, it
might be necessary to change the thresholds for length and
arg_num parameters based on the organizational
requirements to reduce false alarms generated if any.

7. Conclusions

A heuristic rule was proposed to detect buffer overflow
attacks against Solaris'™ machines. The proposed rule
performed very well on both DARPA 1998 and DARPA
1999 datasets with 100% detection and 0% false alarm
rates while also demonstrating potential (although limited)
anomaly detection capability. The proposed rule is
sufficiently generic to detect all U2R attacks that leverage
the buffer overflow mechanism against Solaris™
machines. The proposed rule is not complex
computationally, and the features required can be easily
observed through the BSM audit file. The proposed rule
can be used to detect U2R attacks in real-time due to its
minimal computational cost. The rule detects both
successful and unsuccessful buffer overflow attempts
against Solaris™ though the rule cannot differentiate
between the two. A second follow-up rule would be
needed to detect whether the attacker gained root
privileges or not.

Currently, the proposed rule was tested for off-line
detection of U2R attacks although real-time execution of
the rule does not present any noteworthy computational
challenges. However, issues like reading BSM records at
real-time, managing BSM files, generating automated
responses to attack detection etc. are reserved for future
studies and are not addressed in this paper.

8. References

[1] K. Kendall, “A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems”, Master's
Thesis, Massachusetts Institute of Technology, Boston,
MA, 1998.

[2] SunSHIELD BSM Guide, http://docs.sun.com/db/-
doc/806-1789, 1995, cited April 2003.

[3] R. P. Lippmann, I. Graf, D. Wyschogrod, S. E.
Webster, D. J. Weber, and S. Gorton, “The 1998
DARPA/AFRL Off-Line Intrusion Detection Evaluation”,
First International Workshop on Recent Advances in

Intrusion Detection (RAID), Louvain-la-Neuve, Belgium,
1998.

[4] R. P. Lippmann, J. W. Haines, D. J. Fried, J. Korba,
and K. Das, “The 1999 DARPA Off-Line Intrusion
Detection Evaluation”, Computer Networks, 2000,
Vol. 34 (4), pp. 579-595.

[5] DARPA data set, 1998. http://www.ll.mit.edu/IST/-
ideval/data/1998/1998_data_index.html, cited April 2003.

[6] DARPA data set, 1999. http://www.ll.mit.edu/IST/-
ideval/data/1999/1999_data_index.html, cited April 2003.

[7] A. K. Ghosh, C. Michael, and M. Schatz, “A Real-
Time Intrusion Detection System Based on Learning
Program Behavior”, In Proceedings of Recent Advances
in Intrusion Detection, 2000, pp. 93-109.

[8] J. L. Elman, “Finding Structure in Time”, Journal of
Cognitive Science, 1990, Vol. 14, pp. 179-211.

[9] M. Mohri, “Finite-State Transducers in Language and
Speech Processing”, Journal of Computational
Linguistics, 1997, Vol. 23 (2), pp. 269-311.

[10] A. P. Kosoresow, and S. A. Hofmeyr, “Intrusion
Detection via System Call Traces”, Journal of IEEE
Software, September/October, 1997, Vol. 14 (5),
pp- 35-42.

[11] E. Eskin, “Anomaly Detection over Noisy Data using
Learned Probability Distributions”, In Proceedings of 17"
International Conference on Machine Learning, San

Francisco, CA, 2000, pp. 255-262.

[12] C. Warrender, S. Forrest, and B. Pearlmutter,
“Detecting Intrusions Using System Calls: Alternative
Data Models”, Proceedings of the 1999 IEEE Symposium
on Security and Privacy, Oakland, CA, 1999,
pp- 133-145.

[13] E. Eskin, M. Miller, Z. Zhong, G. Yi, W. Lee, S.
Stolfo, “Adaptive Model Generation for Intrusion
Detection Systems”, In Proceedings of the first ACMCCS
Workshop on Intrusion Detection and Prevention, Athens,

Greece, 2000.

[14] S. M. Emran, and N. Ye, “Robustness of Canberra
Metric in Computer Intrusion Detection”, Proceedings of
the IEEE Workshop on Information Assurance and
Security US Military Academy, West Point, NY, 5-6 June,
2001, pp. 80-84.

[15] U. Lindqvist, and P. Porras, “Detecting Computer
and Network Misuse through the Production-based Expert
System Toolset (P-{BEST})”, IEEE Symposium on
Security and Privacy, 1999, pp. 146-161.

[16] W. Lee, and S. Stolfo, “A Framework for
Constructing Features and Models for Intrusion Detection
Systems”, ACM Transactions on Information and System
Security, November 2000, Vol. 3 4),
pp- 227-261.

[17] W. W. Cohen, “Fast effective rule induction”,
Proceedings of the 12" International Conference on
Machine Learning (ML-95), Lake Tahoe, CA: Morgan
Kaufmann, 1995, pp. 115-123.

[18] R. P. Lippmann, R. K. Cunningham, D. J. Fried, I.
Graf, K. Kendall, S. E. Webster, and M. A. Zissman,
"Results of the DARPA 1998 Offline Intrusion Detection
Evaluation", RAID 1999 Conference, West Lafayette,
Indiana, Sept. 7-9, 1999.

[19] D. Endler, “Intrusion Detection Applying Machine
Learning to Solaris Audit Data”, Proceedings of the 1998
Annual Computer Security Applications Conference, Los
Alamitos, CA, Dec. 1998, pp. 268-279.

