Chaotic Invariants for Human Action Recoanition

Our Contributions

1) Investigation of the appropriateness of theory of chaotic systems for human action modeling and recognition,
2) A new set of features to characterize nonlinear dynamics of human actions,
3) Experimental validation of the feasibility and potential merits of carrying out action recognition using methods from theory of chaotic systems.

Proposed Idea ...

unknown f Function that maps current state to the next state.
$\left(\theta_{1}^{t}, \theta_{2}^{t}, \ldots, \theta_{N}^{t}\right.$ True State Space Variables

- We have the access to the data (trajectories of body joints) generated by the dynamical system controlling the action!
- From this data construct the phase space corresponding to the dynamical system responsible for generating the data.

Let the data speak about the mechanisms generating the observed behavior.

Algorithmic Overview

Saad Ali, Arslan Basharat, Mubarak Shah
Computer Vision Lab, University of Central Florida

Underlying Idea: All variables of the system influence each.

Using this reasoning, introduce a series of substitute variables and obtain the whole m -dimensional space.

Thus, for optimal m and τ, delay vectors

$$
Z_{i}, Z_{i+\tau}, Z_{i+2 \tau} \ldots, Z_{i+(m-1) \tau}
$$

generates a phase space that has exactly the same properties as the original/true variables of the system.

Embedding Delay \& Embedding Dimension ...
τ : Mutual information between $Z_{i} \& Z_{i+\tau}$

m : False Nearest Neighbour Algorithm: Unfold the observed orbits from self : False Nearest Neighbour Algorithm: Unfold the observed orbits from se
overlap arising due to projection of system's attractor to a lower dimensional space.

Chaotic Invariants ...
Lyapunov Exponent: Dynamical invariant which measures the divergence of nearby trajectories in the phase space
Correlation Integral: Metric invariant which measures the percentage of points within a specific neighbourhood averaged over entire phase space Correlation Dimension: Metric invariant which change in the density of phase space with respect to neighborhood radius.

Results ...

Leave one out cross validation using K means classifier.

Mean Accuracy: 92.6\%
A1: Bend, A2: Jumping Jack, A3: Jump in Place, A4: Run,
A5: Side Callop, AG: Wall, A7: Wavel, AB: Wave2
Experiments with Missing Trajectories
Without Head Trajectory. 81.2\% (contusion observed
benaing and jumping acioons)

