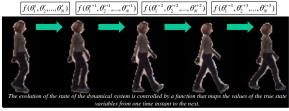
Chaotic Invariants for Human Action Recognition

Acknowledgement: This research was funded by the US government's VACE program.

Our Contributions ...

- 1) Investigation of the appropriateness of theory of chaotic systems for human action modeling and recognition,
- 1) A new set of features to characterize nonlinear dynamics of human
- 2) Experimental validation of the feasibility and potential merits of carrying out action recognition using methods from theory of chaotic systems.

Proposed Idea ...

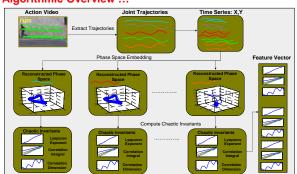


Function that maps current state to the next state.

True State Space Variables

- · We have the access to the data (trajectories of body joints) generated by the dynamical system controlling the action!
- From this data construct the phase space corresponding to the dynamical system responsible for generating the data
- · Let the data speak about the mechanisms generating the observed behavior.

Algorithmic Overview ...

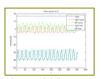


Saad Ali, Arslan Basharat, Mubarak Shah

Computer Vision Lab, University of Central Florida

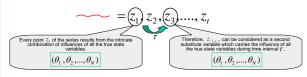
Phase Space Embedding ...





Six Body Joints: Two Hands, Two Feet, Head, Belly. Normalized with respect to the belly point.

Underlying Idea: All variables of the system influence each.



Using this reasoning, introduce a series of substitute variables and obtain the whole m-dimensional space.

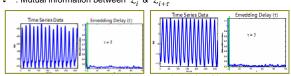
Thus, for optimal m and au , delay vectors

$$Z_i, Z_{i+\tau}, Z_{i+2\tau}, \dots, Z_{i+(m-1)\tau}$$

generates a phase space that has exactly the same properties as the original/true variables of the system.

Embedding Delay & Embedding Dimension ...

 \mathcal{T} : Mutual information between $z_i \& z_{i+\tau}$

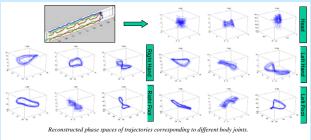


$$I(\tau) = -\sum_{h=1}^{j} \sum_{k=1}^{j} P_{j,k}(\tau) \ln \frac{P_{h,k}(\tau)}{P_h P_k}$$
 P_h Probability that variable assumes a value inside kth bin $I(\tau) = -\sum_{h=1}^{j} \sum_{k=1}^{j} P_{j,k}(\tau) \ln \frac{P_{h,k}(\tau)}{P_h P_k}$ Probability that variable assumes a value inside kth bin $I(\tau) = \sum_{h=1}^{j} \sum_{k=1}^{j} P_{h,k}(\tau) \ln \frac{P_{h,k}(\tau)}{P_h P_k}$ Probability that $I(\tau) = \sum_{h=1}^{j} \sum_{h=1}^{j} P_{h,k}(\tau) \ln \frac{P_{h,k}(\tau)}{P_h P_k}$

m: False Nearest Neighbour Algorithm: Unfold the observed orbits from self overlap arising due to projection of system's attractor to a lower dimensional space.

$$R_i = \frac{\left|x_{i+m\tau} - x_{j+m\tau}\right|}{\left\|p(i) - p(j)\right\|}$$
Calculate normalized distance R_i between (m+1)th coordinates of p(i) and p(j).

Repeat for various values of m until fraction of points for which R_i > threshold is negligible.



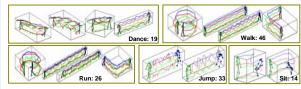
Chaotic Invariants ...

Lyapunov Exponent: Dynamical invariant which measures the divergence of nearby trajectories in the phase space.

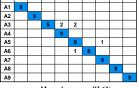
Correlation Integral: Metric invariant which measures the percentage of points within a specific neighbourhood averaged over entire phase space.

Correlation Dimension: Metric invariant which change in the density of phase space with respect to neighborhood radius.

Results ...



	Dance	Jump	Run	Sit	Walk
Dance	28				2
Jump		13			1
Run	2	1	22	1	4
Sit				33	
Walk	3		2		43



Leave one out cross validation using Kmeans classifier.

Mean Accuracy: 92.6% A1: Bend, A2: Jumping Jack, A3: Jump in Place, A4: Run, A5: Side Gallop, A6: Walk, A7: Wave I, A8: Wave 2

Experiments with Missing Trajectories

Without Head Trajectory: 81.2% (confusion observed in bending and jumping actions)

Without Left Hand Trajectory: 86.1%

