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Abstract.

We prove the first time-space tradeoffs for counting the number of solu-
tions to an NP problem modulo small integers, and also improve upon
known time-space tradeoffs for Sat. Let m > 0 be an integer, and de-
fine MODm-Sat to be the problem of determining if a given Boolean
formula has exactly km satisfying assignments, for some integer k. We
show for all primes p except for possibly one of them, and for all
c < 2 cos(π/7) ≈ 1.801, there is a d > 0 such that MODp-Sat is not
solvable in nc time and nd space by general algorithms. That is, there
is at most one prime p that does not satisfy the tradeoff.
We prove that the same limitation holds for Sat and MOD6-Sat, as
well as MODm-Sat for any composite m that is not a prime power. Our
main tool is a general method for rapidly simulating deterministic com-
putations with restricted space, by counting the number of solutions to
NP predicates modulo integers. The simulation converts an ordinary al-
gorithm into a “canonical” one that consumes roughly the same amount
of time and space, yet canonical algorithms have nice properties suitable
for counting.
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1. Introduction

The class MODmP is the collection of languages L for which there is a nondeter-
ministic polynomial time algorithm that, on input x, has (0 mod m) accepting
paths if and only if x ∈ L. The MOD classes naturally formalize the complex-
ity of counting solutions to problems, modulo fixed integers. Recent work by
Valiant and others [Val04, Val06, CC06, CL07a, CL07b] has brought the prob-
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lems of counting solutions modulo primes (which we call “MODp problems”)
back to the forefront of current research. Surprising algorithms have been found
for particular interesting MODp problems. A prominent example is the problem
of counting satisfying assignments to a planar read-twice monotone 3-CNF for-
mula. In spite of the numerous adjectives restricting the problem, this counting
problem is #P-complete [XZZ07]; however, counting the number of satisfying
assignments to such a formula modulo 7 turns out to be in P [Val06, CL07a].
Such results challenge our basic intuitions about the complexity of counting.

In this work we consider the diametric problem of proving concrete limi-
tations on how efficiently MODp problems can be solved. Substantial strides
have been made recently in discovering deterministic time-space lower bounds
for nondeterministic time and the polynomial hierarchy. This work goes back
to Kannan [Kan84], who showed (among other results) that NTIME[n] *
DTISP[n, o(n)]. (The result depends on the fact that the space bound in the
deterministic computation is small.) In the late 90’s, Fortnow [For00] ini-
tiated a research program that established time-space lower bounds for the
satisfiability problem, showing that Sat /∈ DTIME[n1+o(1)] ∩ NL. Fortnow-
Lipton-Viglas-Van Melkebeek [LV99, FvM00, FLVV05] improved the tools and
arguments, demonstrating that Sat /∈ DTISP[nφ−ε, no(1)] for all ε > 0, where φ
is the golden ratio. Prior work by the author [Wil06] improved their time lower

bound to greater than n
√

3, and Diehl and Van Melkebeek [DvM06] gained
an improvement to n1.759 by refining the argument. Time-space lower bounds
for quantified Boolean formulas with a finite number of quantifier blocks have
also been discovered, with larger exponents [FLVV05, Wil06, Wil07a]. All the
above results use a form of argument known as indirect diagonalization [vM04],
which proceeds by showing that the negation of the lower bound one wants to
prove implies a contradiction with a known time hierarchy theorem.

Our goal here is to develop methods for extending the results of the previ-
ous paragraph to MODp problems, in a general way that should also be useful
for proving time-space lower bounds on other types of problems in the future.
At first, it appears that we might be able to extend such results without much
trouble, given that NP can be reduced to MODpP (for all primes p) by ran-
domized reductions, via the well-known Valiant-Vazirani lemma [VV86]. A
quasilinear time version of Valiant and Vazirani’s reduction has been found by
Naik, Regan, and Sivakumar [NRS95]. Moreover, Toda and Ogihara [TO92]
showed that the entire polynomial hierarchy reduces to MODpP using two-
sided randomized reductions (but for ΣkP where k ≥ 2, the best reduction we
know of from ΣkTIME[n] to MODpP takes Θ(nk+1) time, cf. Gupta [Gup98]).
However, despite their time-efficiency, the inherent randomness of these reduc-
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tions is a major difficulty in applying them to obtain time-space lower bounds,
since we do not know how to remove the use of randomness even if we as-
sume that MODkP problems have efficient algorithms. (We note in passing
that, assuming certain unproven circuit lower bounds, deterministic versions of
Valiant-Vazirani do exist, cf. [KvM02].)

1.1. Outline of Our Results. We show how to extend the known time-
space tradeoffs for Sat to MODp-Sat, for almost all primes p. In particular, for
all distinct primes p and q, we prove that at least one of MODp-Sat and MODq-
Sat exhibits a time-space lower bound, identical to the best known for Sat.
Our primary technical contribution, proved in Sections 4 and 5, is a “speedup”
theorem showing that deterministic time and space bounded machines can be
simulated ultra-efficiently by counting modulo two relatively prime numbers.

Let p and q be integers greater than 1. Informally speaking, we say that
a MODqMODp machine is a generalization of a nondeterministic machine that
begins in a “MODq mode”, then possibly switches to a “MODp mode” at some
later point. The machine may also switch to a “deterministic mode”, in which
case the remaining computation is deterministic. These modes work similarly
to the existential and universal modes of an alternating machine: when the
machine starts from a MODm mode, acceptance occurs if and only if the number
of accepting computation paths from the current configuration is divisible by
m. Let MODqMODpTIME[T (n)] be the class of sets accepted by MODqMODp

machines running in T (n) time. Then our speedup theorem can be stated as
follows:

Theorem 1.1 (Speedup by Modular Counting). Let M be a deterministic
machine running in time T and space S, let B(n) ≤ T (n), let ε > 0 be suffi-
ciently small, and let p, q ≥ 2 be relatively prime. Then there is a MODqMODp

machine N such that L(M) = L(N), and N runs for O(B(n)S(n) logT (n)) time
in its MODq mode, runs for O(log(B(n)S(n) log T (n))) time in its MODp mode,
then runs in deterministic O(T 1+ε(n)/B(n)) time and O(S(n) log T (n)) space.
Moreover, the number of bits written during previous modes that are read by
the final deterministic mode of the computation is only O(n + S(n) log T (n)).

In our class notation (cf. Section 2.1), we write the above as:

DTISP[T (n), S(n)]

⊆ (MODq B(n)S(n) log T (n))

(MODp log(B(n)S(n) log T (n)))DTISP[
T 1+ε(n)

B(n)
, S(n) logT (n)].
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By choosing B such that BS log T = T 1+ε/B, we conclude that the class
DTISP[T (n), S(n)] is contained in MODqMODpTIME[(T (n)S(n))1/2+ε], for all
sufficiently small ε > 0.

Using Theorem 1.1 and some elementary number theory, much of the re-
search on time-space lower bounds for Sat on general models of computa-
tion [FLVV05] can be directly transferred over to MODm-Sat for various in-
tegers m; this “transfer principle” is proved in Section 6.1. Independently
of the MODm-Sat transfer arguments, we also add a new indirect diagonal-
ization argument to this line of work in Section 6.2, culminating in a new
collection of time-space lower bounds. (Note in this paper, we use the notation
g(n) ∈ Ω(f(n)) to mean that g(n) ≥ d · f(n) holds infinitely often, for some
constant d > 0.)

Theorem 1.2. The following problems require Ω(nc) time on random-access
machines using no(1) space, for all c satisfying c3 − c2 − 2c + 1 < 0, i.e. c <
2 cos(π/7) :

◦ Sat, the satisfiability problem for Boolean CNF formulas.

◦ MODp-Sat, the problem of counting the number of satisfying assignments
to a Boolean formula modulo p, for all primes p except for possibly one
of them,

◦ MODm-Sat, for all integers m that are not prime powers.

The time lower bound implied by Theorem 1.2 is Ω(n1.801...), which is the
largest known to date, even for satisfiability. We remark that the lower bound
holds not only for no(1) space but also for nd space, for sufficiently small d > 0
dependent on c. An identical theorem can be stated for any NP problem with
sufficiently efficient parsimonious reductions from Sat. More details on this
point are provided in the next section.

Unfortunately, Theorem 1.2 does not tell us which one of the primes might
be the exception in the MODp-Sat lower bound. In order for our argument
to become constructive, it seems that we would need to prove a hypothesized
time hierarchy theorem.

Hypothesis 1.3. For all primes p, there exists a prime q 6= p and time con-
structible T (n) ≥ n2 such that MODpTIME[T ] * MODqTIME[T 1−ε], for all
ε > 0.

(For definitions, cf. Section 2.) The hypothesis looks very reasonable in light
of current knowledge, such as the circuit lower bounds for computing MODp
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with OR, AND, NOT, and MODq gates [Smo87]. It seems extremely coun-
terintuitive that counting solutions modulo one prime would somehow always
be faster, if one could count modulo a different prime. We show in Section 7
that proving the hypothesis for some prime p would imply a lower bound for
MODp-Sat.

Theorem 1.4. If Hypothesis 1.3 holds for a given prime p, then MODp-Sat

requires Ω(nc) time on no(1) space machines, for c < φ ≈ 1.618, the golden
ratio.

Finally, in Section 8 we use the transfer principle to prove an unconditional
separation of complexity classes. Informally speaking, we prove that the class
SC is not equal to any unbounded level of the MODm hierarchy for polynomial
time, for every composite m that is not a prime power.

1.2. Other Related Work.

Modulo Counting Classes. The class MOD2P (also written as ⊕P) was
introduced by Papadimitriou and Zachos [PZ83], and the class MODkP for
arbitrary k was introduced by Cai and Hemachandra [CH90]. Beigel and
Gill [BG92] showed several closure properties hold for these classes—for ex-
ample, for all primes p, the class MODpP is closed under union, intersection,
and complement. Thus it is strongly believed that MODpP 6= NP for all primes
p.

In contrast to the Valiant-Vazirani lemma and Toda’s theorem, which show
the power of MODkP, Beigel, Buhrman, and Fortnow [BBF98] demonstrated a
very interesting oracle collapse/separation for MOD classes. A consequence of
their oracle construction is that for all distinct primes p and q, there is an oracle
A such that PA = MODpP

A, yet MODqP
A = NPA = EXPA. That is, there are

relativized worlds where for any primes p and q, counting NP solutions modulo
p is easy, yet counting NP solutions modulo q is as hard as exponential time.

Circuit Lower Bounds with Composite Gates. There has been substan-
tial work on trying to prove lower bounds for circuits with MOD6 gates, and in
general, circuits with MODpq gates where p and q are distinct primes [BST90,
Gro01, CGPT06]. Circuits with such gates appear to be possibly far more pow-
erful than circuits with merely AND, OR, NOT, and MODp gates (for some
fixed prime p). Our work shows the power of MODpq-Sat, as the known proofs
of lower bounds for Sat can be extended to it.
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Lower Bounds for the Counting Hierarchy. Several interesting lower
bounds on counting problems have been discovered in the past. Allender and
Gore [AG94] proved that uniform ACC0 is properly contained in PP. Caussinus
et al. [CMTV98] showed that uniform ACC0 is properly contained in MODPH

(a counting version of the polynomial hierarchy). Allender [All99] showed that
the Permanent is not in TC0, thus TC0 6= PP. Allender et al. [AKRRV01]
proved time-space tradeoffs for MAJ-MAJ-SAT (MAJ-MAJ-SAT is a complete
problem in the second level of the counting hierarchy, a generalization of MAJ-
SAT), showing that it is not contained in unbounded-error probabilistic time
n1+o(1) and nδ space for all δ < 1.

2. Preliminaries

We assume familiarity with the usual complexity theoretic notions of time,
space, and alternation. All functions used to bound runtime and space are
assumed to be time constructible within the appropriate space bounds.

2.1. Machine Models. Formally, our underlying machine model shall be
the random access Turing machine. The particular details of the machine’s in-
ner workings will not affect our results (many other models would work equally
well), but for concreteness we include a brief description. We use the random
access Turing machine model, which has (along with the usual finite control)
read-only random access to an input tape, and read-write random access to a
finite number of worktapes. Each tape is equipped with an index tape, which
holds a binary string of length that is logarithmic in the length of the respec-
tive tape. We define that the head of a tape is always situated at the location
denoted on its corresponding index tape.

Define DTISP[T (n), S(n)] to be the class of sets accepted by a machine
that runs in T (n) time and S(n) space, simultaneously. We shall extensively
study the DTISP class in the subpolynomial space (S(n) = no(1)) setting. For
convenience, we use the notation

DTS[T (n)] := DTISP[T (n)1+o(1), no(1)]

to avoid negligible o(1) additive factors in the exponent. In general, we also
follow this convention when writing classes like NTIME[na] or ΣkTIME[nb]; for
the purposes of polynomial-strength lower bounds, these classes are “equiva-
lent” to NTIME[na+o(1)] and ΣkTIME[nb+o(1)], and so we omit these extra o(1)
factors except when their inclusion might aid understanding.
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Mod Machines. We define a MODm machine to be a nondeterministic ma-
chine with a modified acceptance condition: it accepts an input if and only if
the number of its accepting computation paths is divisible by m. It is clear
that for any MODm machine M running in O(nk) time, there is a constant
c and linear time deterministic machine A such that M accepts a string x iff
there are ℓm strings y of length c|x|k such that A(x, y) accepts, for some integer
ℓ > 0. We define MODmTIME[T (n)] to be the class of languages accepted by a
MODm machine in T (n) time.

Building on MODm machines, we use an extension of alternating machines
introduced by Allender and Gore [AG94], which has not only existential and
universal modes but also MODm modes, for various moduli m. For obvious
reasons, we call these modular-alternating machines. A state in a MODm mode
acts as one expects it would, in the following sense. Let us assume that the
configuration graph for a given alternating machine is a tree. Let σ be a con-
figuration in MODm mode where the previous configuration was in a different
type of mode (so, an alternation has just occurred). Let T be the maximal
subtree of configurations, rooted at σ, where no alternation takes place. Then
σ is accepting iff the number of leaves of T that are accepting is divisible by
m.

We point out that this notion is somewhat subtle: note that it makes sense
for a machine to be in a MOD6 mode, then alternate to another, different
MOD6 mode, and that such a machine may be more powerful than a MOD6

machine. This is because we do not know how to feasibly “merge” consecutive
MOD6 modes into one, as is possible with existential, universal, and MODp

modes where p is prime. (In fact, a formalization of this question is studied in
Theorem 8.1.)

Let us suppose that an alternating machine alternates to specific modes only
at specific timesteps, irrespective of the input or current configuration. We say
that the signature of such a machine is a chronological description of the modes
taken during any path of the computation. Typically, the pseudocode for an
alternating machine contains commands of the form “Existentially guess x of
length b” and “Universally guess x of length b”, where x is some string and b
is a positive integer. (These commands mean that the machine is switched to
that particular mode and x is chosen over all possible strings of length b.) In a
similar manner, our pseudocode for a machine with MODk in its signature uses
the command “Modulo k guess x of length b” analogously.

Notation for Alternating Classes. To precisely describe classes that cap-
ture alternating and modular-alternating computations, we use an unorthodox
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but natural notation that we have found convenient for our arguments. Define
(∃ f(n))C to be the class of languages recognized by a nondeterministic ma-
chine N that, on input x, writes a f(n)1+o(1) bit string y nondeterministically
and feeds the input 〈x, y〉 to a machine from class C. The classes (∀ f(n))C
and (MODm f(n))C are defined analogously (with co-nondeterministic ma-
chines and MODm machines, respectively). Note that when (for example)
C = DTIME[nk], the n refers to the original input length, which could poten-
tially be different from the length of the input 〈x, y〉 fed to C. So for example,
a language is in (MOD2 n2)DTIME[n4] if there is an algorithm A that, given
inputs x ∈ L of length n, there are an odd number of y’s of length n2+o(1) such
that A(x, y) accepts in O(n4) time.

When a machine recognizing a language in class (∃ f(n))C is guessing its
f(n)1+o(1) bits, we say that the machine is in an existential quantifier. Similarly,
one can define being in a universal quantifier for (∀ f(n))C, and being in a
MODm quantifier for (MODm f(n))C.

2.2. The Completeness of MODp-Sat. Our lower bound for MODp-Sat

first proves that MODpTIME[n] * DTS[nc] for a constant c > 1, then argues
that this implies MODp-Sat is not in DTS[nc−o(1)]. This sort of strategy (ex-
ploiting the completeness of a problem) has been invoked in other lower bound
arguments as well [FLVV05, AKRRV01, vMR05]. In particular, we apply the
following result:

Theorem 2.1 ([FLVV05, Tou01]). Sat ∈ DTS[nc] =⇒ NTIME[n] ⊆ DTS[nc].

Theorem 2.2. Let m ≥ 2 be an integer. If MODm-Sat ∈ DTS[nc], then
MODmTIME[n] ⊆ DTS[nc].

Proof. (Sketch) The proof of Theorem 2.1 gives a reduction from an ar-
bitrary L ∈ NTIME[n] to Sat that takes a string x and converts it to an
equivalent formula that is of length at most |x| · poly(log |x|), and each bit of
the formula can be computed individually in poly(log |x|) time. From this, the
implication

Sat is in nc time and no(1) space =⇒ NTIME[n] ⊆ DTS[nc+o(1)]

follows by performing the appropriate reduction and executing the presumed
Sat algorithm. We point out that the reduction above is actually parsimonious:
that is, the number of witnesses for an x ∈ L equals the number of satisfying
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assignments to the resulting formula. From this property, the theorem follows
immediately.

For completeness, the remainder of our argument describes why the reduc-
tion is parsimonious. From a deterministic linear time algorithm M(·, ·), there
is a reduction and a constant c with the following properties on a given input
x: the reduction produces a CNF formula φM,x(y, z), and there is a bit string
y (representing a witness for M on x) of length c|x| making M(x, y) accept iff
the same y (construed as a Boolean variable assignment) along with some z
of length c|x| · poly(log |x|) satisfies φM,x(y, z). Each such valid z encodes the
computation history of the deterministic algorithm M running on (x, y), and is
therefore unique with respect to a given (x, y) pair. In more detail, z encodes
k + 1 sequences of tuples, where k is the number of tapes of M . Each tuple
encodes a snapshot of the computation at some time step: the current state,
the symbols read at the beginning of the step, the position of a particular tape
head, and the symbols that are written. The first tuple sequence is in temporal
order, having the form

{〈i, state, symbol read, head position, symbol written〉},

for time steps i = 1, . . . , c|x| and a head position on one of the k tapes. (We
have k tuples for each time step i, one tuple for each tape.) For ℓ = 2, . . . , k+1,
the ℓth tuple sequence represents the spatial order of the (ℓ− 1)st tape, having
the form

{〈i, state, symbol read, j, symbol written〉},

for tape positions j = 1, . . . , c|x| on the (ℓ − 1)st worktape, where the i are
increasing when j is fixed. That is, there can be multiple tuples indexed by
j, ordered by increasing i. Each tuple takes O(log |x|) bits to encode, as each
index tape holds an O(log |x|) bit string. The precise function of φM,x(y, z) is
to check that:

(a) the k tuples for the first step are all in an initial state,

(b) the k tuples for the ith step lead to the k tuples for the (i + 1)st step via
some valid transition (for all i),

(c) the k tuples for the last step are all in a common accepting state, and

(d) all symbols claimed to be read are indeed valid (the first time the ith
symbol is read, it is the ith bit of the input if i ≤ |x|, or a blank if i > |x|;
when a symbol is written to a cell, it is also read later from the same
cell).
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Conditions (a) and (c) can be easily checked with a short CNF formula over a
small set of variables in the temporally ordered sequence of tuples. Condition
(b) can also be checked with a short CNF formula over the variables encoding
the temporally ordered tuple sequence. To determine condition (d), one formula
checks that the temporally ordered sequence is a permutation of the k spatially
ordered sequences (this is the most technical step, which can be achieved by
using efficient sorting networks [vM07]), and another formula uses the variables
of the spatially ordered sequence to verify that (1) when a tape cell is first read,
it contains the appropriate value, and (2) every symbol read in a tape cell was
the last symbol previously written in that cell. The upshot is that values of all
variables in these formulas are completely determined by the tuple sequences, as
these formulas encode deterministic computations (in particular, they encode
the evaluations of certain circuits on fully specified inputs).

Therefore for any particular guess y for M(x, y), there is precisely one valid
setting for the tuple sequences, so there is a one-to-one correspondence be-
tween y’s that make M(x, y) accept, and (y, z) pairs that satisfy the formula
φM,x(y, z). Hence the number of valid y such that M(x, y) accepts is divisible
by m iff the number of (y, z) satisfying φM,x is divisible by m, so the above type
of reduction also serves as a reduction from an arbitrary L ∈ MODmTIME[n]
to MODm-Sat. �

3. Intuition Behind This Work

The manner in which our results are proved is perhaps more interesting than
the results themselves. Over the next two sections, we shall prove the Speedup
By Modular Counting Theorem (Theorem 1.1), which gives a new method
for simulating deterministic computations with restricted time and space, via
counting. We begin in Section 4 by showing that every machine M has an
equivalent canonical version M̂ . The canonical version uses roughly the same
time and space as M ; however, the task of counting particular properties of
M̂ ’s configurations is much easier. The canonical machine simulation follows
from an efficient reversible simulation of irreversible computation, first given by
Bennett [Ben89]. Our efficient procedure for simulating M̂ on an input x counts
the number of certain objects (which we call “complete configuration sequences
with a number of mistakes divisible by p” for an integer p ≥ 2) efficiently with
one call to a MODpTIME[n] oracle. In Section 5, we prove that the number of
such objects counted in the accepting case is congruent to 1 modulo q, and the
number counting in the rejecting case is 0 modulo q, for q ≥ 2 relatively prime
to p. Thus one can tell the difference between the accepting and rejecting cases
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by counting modulo q.
We apply Theorem 1.1 in the remaining sections, showing how to trans-

fer diagonalization arguments establishing time-space tradeoffs for nondeter-
minism directly to time-space tradeoffs for counting solutions modulo inte-
gers, by substituting nondeterminism with “counting mod p”, and cononde-
terminism with “counting mod q”. For example, Lipton and Viglas [LV99]

proved an Ω(n
√

2−ε) time lower bound for solving Sat on no(1)-space ma-
chines. One way to phrase their argument uses the fact (proved in Theo-
rem 5.1) that DTISP[t, s] ⊆ Σ2TIME[(ts)1/2] in the following way: assuming
NTIME[n] ⊆ DTS[nc], one can prove

DTS[n2] ⊆ Σ2TIME[n1+o(1)] ⊆ NTIME[nc+o(1)] ⊆ DTS[nc2].

(The first inclusion follows from the fact; the last two inclusions follow by as-
sumption and standard padding arguments.) For c2 < 2, the above inclusion
implies a contradiction by a non-trivial diagonalization argument (cf. Sec-
tion 6.2).

We call the above kind of lower bound proof an alternation-trading proof,
and show that any such proof can be modified so that it works for modular
counting rather than nondeterminism. To illustrate, an analogous lower bound
for MOD6TIME[n] can be obtained by assuming MOD6TIME[n] ⊆ DTS[nc], and
proving for all ε > 0 that

DTS[n2] ⊆ (MOD3 n1+ε)(MOD2 n1+ε)DTS[n1+ε]

⊆ (MOD3 n1+ε)DTS[nc(1+ε)]

⊆ DTS[nc2(1+ε)].

The first inclusion follows from the Speedup by Modular Counting Theorem
(Theorem 1.1), and the second and third inclusions follow from the observa-
tions that MOD2TIME[n] ⊆ MOD6TIME[n] ⊆ DTS[nc], and MOD3TIME[n] ⊆
MOD6TIME[n] ⊆ DTS[nc]. Again, for c2 < 2, we can obtain a contradiction
when ε is sufficiently small. The above kind of transfer can be carried out on
other time-space tradeoff arguments similarly.

4. Canonical Machines

We begin by recalling the definition of a configuration graph. Let M be a
deterministic machine running in time T (n) and space S(n) ≥ log n, and let x
be an input string.
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Definition 4.1. The configuration graph GM,x of M(x) has 2cS(n) nodes for
a sufficiently large integer c > 1, where every node of the graph is uniquely
labeled by a cS(n)-bit string. There is an arc from the node labeled v to the
node labeled w if and only if, when v and w are construed as configurations of
M , the configuration w is obtained by executing M on x in configuration v for
one step.

Since M is deterministic, observe that the outdegree of any node in GM,x

is at most one. Notice that our definition of configuration graph includes all
possible strings of length cS(n) as nodes, so many of the nodes do not corre-
spond to legitimate machine configurations. Those nodes will have indegree
and outdegree zero.

For our simulations of DTS, we require the machine being simulated to have
a configuration graph of a very regular type, which we call canonical. It turns
out that a deterministic small-space machine can be converted into a canonical
one, without a significant increase in time and space usage.

Definition 4.2. A machine M is canonical iff for all inputs x, every node in
the configuration graph GM,x has outdegree and indegree exactly one. That
is, the graph is a union of disjoint cycles along with isolated nodes having
self-loops.

By definition, a canonical machine does not halt, since no configuration
has outdegree zero. Thus we need to modify the acceptance condition for a
canonical machine.

Definition 4.3. Let M be canonical. M accepts input x if and only if M(x)
(started in its initial configuration) reaches a configuration with an “accept”
state before it reaches its initial configuration again, or before it reaches a
rejecting configuration.

A canonical machine is obviously deterministic, but it also enjoys the fol-
lowing useful property.

Proposition 4.4. Let M be canonical, let c be a node of GM,x, and let t be
a non-negative integer. Then there are unique configurations c′t and c′′t such
that, when M(x) is executed from c′t for t steps, M(x) ends in configuration c,
and when M(x) is executed from c for t steps, M(x) ends in configuration c′′t .

Proposition 4.4 does not hold for deterministic machines in general, as there
can be numerous configurations that lead to a common configuration by execut-
ing each one for t steps, and the number of such configurations can, in principle,
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depend upon the given input. The “unique predecessor” and “unique succes-
sor” properties of canonical machines shall prove to be indispensable in our
later simulations of space-bounded computation.

4.1. Making Machines Canonical. In order to show that every deter-
ministic machine can be turned into an equivalent canonical one, we apply a
theorem of Bennett that shows how to convert any deterministic machine into
one that is reversible, with negligible penalty to its time and space complexity.
Recall the definition of reversible machine: a deterministic machine is reversible
if and only if its configuration graph on all inputs is such that all nodes have
indegree at most one and outdegree at most one.

Theorem 4.5 (Bennett [Ben89]). Let M be a deterministic machine running
in time T (n) and space S(n), where T ε(n) ≥ S(n) for all ε > 0. Then for every
integer k ≥ 1, there is a reversible machine M ′ that runs in O(T 1+1/k(n)) time
and O(S(n) log2 T (n)) space, such that L(M) = L(M ′).

Bennett originally stated his result in terms of Turing machines, but it works
equally well for random access machines. We outline the proof of Theorem 4.5
in the following paragraphs.

Suppose M is a deterministic machine to be simulated on input x, and
it runs in time T and space S. We assume without loss of generality that
M has a unique accepting configuration. The most näıve way to simulate M
reversibly would be to store a history of M ’s configurations on blank tape as
the simulation progresses step-by-step. Doing this, there is always a unique
step in reverse: take the previous configuration written to the configuration
list, update M to be back in that configuration, and erase that configuration
from the history. However, this simulation would require Ω(TS) space, so it is
unsuitable for us.

The high-level idea behind Bennett’s simulation M ′ is to maintain only
O(log2 T ) past configurations of M(x) in storage, adding and erasing configu-
rations from history in a more intelligent way. Informally, the simulation works
as follows: after it reaches a new configuration it hasn’t reached before, it be-
gins simulating backwards, reversibly erasing previous stored configurations in
the process. Finally it continues simulating (forwards) from the new configura-
tion. By storing enough intermediate configurations, the runtime of Bennett’s
simulation is only O(T 1+1/k).

In more detail, suppose we want to simulate M for ℓm steps for a constant
ℓ ≥ 2, starting from a given configuration C. We assume without loss of
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generality that the tape alphabet of M ′ is binary, and that zeroes are analogous
to blanks. The procedure M ′ can be described recursively as follows:

◦ If m = 0 then

– Simulate M from C for one step, and XOR the configuration D
obtained in a designated block of S cells on a tape T0.

◦ If m ≥ 1, then let C1 = C in the following.

– For i = 1, . . . , ℓ, recursively simulate M from Ci for ℓm−1 steps. Let
Ci+1 be the configuration obtained, and XOR it with the block of
S cells immediately to the right of Ci on a tape Tm. (On blank
tape, this for-loop has the effect of producing a list of configurations
C1C2 · · ·Cℓ+1 on tape Tm.)

– For i = ℓ − 1, . . . , 1, recursively simulate M from Ci for ℓm−1 steps.
Let Ci+1 be the result, and XOR it with the block of S cells imme-
diately to the right of Ci on Tm. Then, using only XOR operations,
move the configuration Cℓ+1 immediately to the right of Ci on Tm.
(This for-loop has the effect of producing just the list C1Cℓ+1 on a
tape Tm.)

We have been deliberately vague in writing precise XOR instructions in
the above, to keep the description simple. The primary idea is that when the
simulation is run once, the XOR operation occurs on blank cells (zeroes); when
the simulation is run the second time, the configuration Ci is XORed where it
was written the first time, “erasing” that block of cells. At the end of the ℓm-
step simulation, only the final configuration Cℓ+1 is stored: the second for-loop
simulates from Cℓ−1, then erases Cℓ (by XORing), moves Cℓ+1 into the block
where Cℓ used to be, then simulates from Cℓ−2, erases Cℓ−1, moves Cℓ+1 to
where Cℓ−1 used to be, etc., until only C1Cℓ+1 is on the tape. It is important to
observe that if this simulation were run in reverse where the tapes consist only
of C1 and blanks, then the “move” instruction of the second for-loop would
have no effect. (Technically, the “move” instruction of the second for-loop
should also appear analogously in the first for-loop, but we have omitted it for
simplicity.)

It is clear that M ′ faithfully simulates M , since it simulates M step-for-step.
Bennett proves that M ′ is also reversible: at every stage of the computation,
the previous step and next step are both uniquely determined. This follows
from the reversible properties of the XOR operation, and by the design of the
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recursive procedure itself. In more detail, the reverse of the above procedure is
essentially itself: if we perform all the recursive calls in reverse order (starting
with the last recursive call of the above procedure, and ending with the first
recursive call), we obtain the same set of recursive calls. While the above pro-
cedure uses m tapes, such a machine can be implemented with little overhead
on a RAM, for small m.

Let us sketch the space and time analysis of the above simulation, following
Levine and Sherman [LS90]. Since there are 2ℓ− 1 recursive calls, the runtime
of M ′ is on ℓm steps is given by the recurrence:

T ′(ℓ0) = O(S),
T ′(ℓm) = (2ℓ − 1)T ′(ℓm−1) + O(S),

or T ′(ℓm) ≤ O((2ℓ − 1)mS). As the runtime of M is T = ℓm, by choosing
ℓ = Θ(2k′

) for a given k′ > k, one can show the runtime of M ′ is O((2ℓ−1)mS) ≤
O(T 1+1/k′

S) ≤ O(T 1+1/k′+ε) for all ε > 0, by our assumption on S. Hence for
sufficiently small ε > 0, the runtime is O(T 1+1/k). It can be verified that the
space usage of M ′ for ℓm steps is given by the recurrence:

S ′(ℓ0) = O(S),
S ′(ℓm) = S ′(ℓm−1) + O(ℓS).

Therefore the space usage of M ′ is O(ℓS logℓ T ) ≤ O(S log T ), for any constant
k.

Two properties are immediate from the description of M ′.

Remark 4.6. The reversible machine M ′ of Theorem 4.5 has the following
properties:

(i) For all positive integers n, there is a unique configuration An that can be
computed in O(S(n)) time such that, on all x of length n, M ′(x) accepts
⇐⇒ M ′(x) is in configuration An after a prescribed number of steps
from its initial configuration.

(ii) There is a machine M ′
R such that on all x, GM ′

R
,x is equivalent to GM ′,x

except that all arcs point in the opposite directions. That is, M ′ on x
goes from configuration C to C ′ in one step if and only if M ′

R on x goes
from configuration C ′ to C in one step.

Applying the above two remarks, it is not difficult to construct an equivalent
canonical machine for any deterministic machine that has the same asymptotic
time and space complexity as the reversible simulation of Theorem 4.5.
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Theorem 4.7. Let M be a deterministic machine running in time T (n) and
space S(n). For all ε > 0, there exists a canonical machine M̂ that runs in
T 1+ε(n) time and O(S(n) log2 T (n)) space, with L(M̂) = L(M).

Proof. The first step is to apply Theorem 4.5 with k > 1/ε, turning M into
an equivalent reversible machine M ′. Let M ′

R be the machine guaranteed by
Remark 4.6. Since M ′ is reversible, M ′

R is reversible as well. Thus the graphs
GM ′,x and GM ′

R
,x already have maximum indegrees and outdegrees of at most

one. To obtain an equivalent M̂ so that every node of some GM̂,x has indegree
and outdegree exactly one, we make the following change.

M̂ has two modes for each state of M : forward and backward. M̂ starts in
forward mode from the initial configuration of M ′, and simulates M ′ normally.
Two rules are applied:

◦ If M̂ is in forward mode and reaches a configuration where no transi-
tion applies, then in one transition, M̂ switches to backward and starts
executing M ′

R.

◦ If M̂ is in backward mode and reaches a configuration where no transition
applies, then in one transition, M̂ switches to forward and starts executing
M ′.

We claim that M̂ is canonical. Notice that GM̂,x has precisely double the

nodes of GM ′,x, one for each of the two modes of M̂ . Thus we can label each
node of GM̂,x as a pair 〈C, m〉, where C is a configuration of GM ′,x and m is

a mode. Therefore M̂(x) has precisely twice the number of configurations as
M ′(x).

Let 〈C, m〉 be a configuration of GM̂,x. There are four possible cases.

1. C has outdegree 0 and indegree 0. (That is, C is not a legal machine
configuration.) Then the edges adjacent to 〈C, forward〉 and 〈C, backward〉
in GM̂,x are (〈C, forward〉, 〈C, backward〉) and (〈C, backward〉, 〈C, forward〉).

2. C has outdegree 1 and indegree 1. Let (C, C ′) and (C ′′, C) be the
respective edges. Then the adjacent edges for the node 〈C, forward〉 are
(〈C, forward〉, 〈C ′, forward〉) and (〈C ′′, forward〉, 〈C, forward〉). Similarly, the
node 〈C, backward〉 has the adjacent edges (〈C ′, backward〉, 〈C, backward〉),
and (〈C, backward〉, 〈C ′′, backward〉).

3. C has outdegree 1 and indegree 0. Let (C, C ′) be the respective
edge. Then the edges adjacent to the node 〈C, forward〉 in GM̂,x are
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(〈C, forward〉, 〈C ′, forward〉) and (〈C, backward〉, 〈C, forward〉). Similarly,
(〈C, backward〉, 〈C, forward〉) and (〈C ′, backward〉, 〈C, backward〉) are the
edges adjacent to 〈C, backward〉 in GM̂,x.

4. C has outdegree 0 and indegree 1. Analogous to the previous case.

Finally, note M(x) accepts in T (|x|) time if and only if M̂(x) accepts in
T 1+ε(|x|) time, and M̂(x) uses only O(S(|x|) logT (|x|)) space. �

5. Simulating Space-Bounded Machines By Counting

In this section, we establish Theorem 1.1, which shows that any language in
DTISP[T (n), S(n)] can be simulated extremely efficiently by a machine of sig-
nature MODqMODp, for any p, q ≥ 2 that are relatively prime. To do this, we
first review a method for simulating any time T (n), space S(n) machine by a
Σ2 machine that runs in (T (n) · S(n))1/2 time [Nep70, Kan84]. That is, one
can “speed up” a deterministic machine by introducing two quantifiers in the
computation, when the machine’s time-space product is small. We sketch the
construction here for completeness.

Theorem 5.1 (Follows from Nepomnjascii [Nep70], Kannan [Kan84]).

DTISP[T (n), S(n)] ⊆ Σ2TIME[(T (n)S(n))1/2].

Moreover, for every B(n) ≤ T (n),

DTISP[T (n), S(n)] ⊆ (∃ B(n)S(n))(∀ log B(n)S(n))DTISP[T (n)/B(n), S(n)].

Proof. Let M be a random access machine running in T (n) time and
S(n) space. Its simulation N(x) begins by existentially guessing a sequence
of B(|x|) configurations of M(x). N(x) then appends the initial configu-
ration to the beginning of the sequence and the accepting configuration to
the end of the sequence. Finally, N(x) universally guesses an integer i ∈
{0, . . . , B(|x|)} and simulates M(x) starting from the ith configuration in the
sequence, accepting if and only if the (i + 1)st configuration in the sequence is
reached in T (|x|)/B(|x|) steps. It is easy to see that for all x, M(x) accepts if
and only if N(x) accepts. Observe that for B(n) =

√

T (n)/S(n), we have
DTISP[T (n), S(n)] ⊆ Σ2TIME[(T (n)S(n))1/2]. Furthermore, the existential
guess has length O(B(n)S(n)), the universal guess has length O(log(B(n)S(n))),
and the remaining deterministic computation runs in T (n)/B(n) time and S(n)
space. �
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We shall prove that, with some modifications, a simulation akin to the above
can successfully simulate canonical machines when the existential modes of N
are replaced by MODq modes, and the universal modes are replaced by MODp

modes, where p and q are relatively prime. Theorem 1.1 follows from such a
simulation. We begin with some definitions. Let machine M run in time T (n),
and let B ≥ 1 in the following.

Definition 5.2. A B-configuration sequence for M on x is a tuple of the form
〈C0, C1, . . . , CB, CB+1〉, where Ci are configurations of M on x.

Such a sequence is called complete if C0 is the unique initial configuration
of M and CB+1 is the unique accepting configuration.

Such a sequence is correct if for all i = 0, . . . , B − 1, when M(x) is run for

⌊T (|x|)/(B + 1)⌋ + 1

steps from Ci, the resulting configuration is Ci+1, and when M(x) is run for

max{T (|x|) − B (⌊T (|x|)/(B + 1)⌋ + 1) , 1}

steps from CB, the resulting configuration is CB+1.
If a B-configuration sequence is not correct then it is said to have a mistake

at the pair (Ci, Ci+1) when Ci does not result in Ci+1 in the proper number of
steps.

Notice that

T (|x|) − B (⌊T (|x|)/(B + 1)⌋ + 1) ≤ T (|x|) − BT (|x|)/(B + 1)

= T (|x|)/(B + 1)

≤ ⌊T (|x|)/(B + 1)⌋ + 1,

so the last pair (CB, CB+1) of a configuration sequence requires no more steps
than the other pairs. Also observe the number of B-configuration sequences
depends solely on the space complexity of the machine.

Claim 5.3. Let n and B be positive integers, and let M be a machine running
in space S(n). There is a number N(n) such that for all x satisfying |x| = n,
the number of B-configuration sequences for M(x) is precisely N(n).

Proof. Without loss of generality, the number of configurations for M on
inputs of length n is 2cS(n)+d for some integers c > 1 and d > 1 that are
independent of n. Thus the total number of B-configuration sequences is
N(n) = 2(B+2)(cS(n)+d). �
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Clearly, for any input x, the number of B-configuration sequences that are
correct and complete is either zero (M(x) rejects) or one (M(x) accepts). The
next lemma shows that, for canonical machines, the number of configuration
sequences that are merely correct (but not necessarily complete) depends solely
on the input length:

Lemma 5.4. Let M̂ be canonical and let C(n) be the number of configurations
of M̂ on inputs of length n. Let x be an input and n = |x|. Then for every
integer B, the number of correct B-configuration sequences for M̂(x) is exactly
C(n). In fact, a correct B-configuration sequence is uniquely determined by
specifying an integer i ∈ {0, 1, . . . , B + 1} and a configuration c.

Proof. For each configuration, there is exactly one correct B-configuration
sequence that starts with that configuration, by Proposition 4.4. Moreover,
Proposition 4.4 implies that, by specifying even a single configuration c and
its position in a correct B-configuration sequence, the rest of the correct B-
configuration sequence is uniquely determined, as all configurations prior to c
and all configurations after c are unique. �

We now give a way to differentiate between the accepting and rejecting cases
for a canonical machine, by counting the mistakes in configuration sequences.
The Counting Lemma shows that on any input x, the number of complete B-
configuration sequences with k mistakes at adjacent pairs depends only on the
input length n, the number of configurations B in the sequence, and whether
or not the input leads to acceptance.

Lemma 5.5 (Counting Lemma). Let n and B ≥ 1 be positive integers, let
k = 0, 1, . . . , B + 1, and let M̂ be canonical. Then there are positive integers
NA(n, k, B) and NR(n, k, B) such that, for all inputs x of length n:

(i) If M̂(x) accepts, then the number of complete B-configuration sequences
for M̂(x) with exactly k mistakes (at adjacent pairs) is NA(n, k, B).

(ii) If M̂(x) rejects, then the number of complete B-configuration sequences
for M̂(x) with exactly k mistakes (at adjacent pairs) is NR(n, k, B).

The proof shows that NA(n, k, B) =
(

B+1
k

)
NA(n, k) and NR(n, k, B) =

(
B+1

k

)
NR(n, k), where NA(n, k) (respectively, NR(n, k)) is defined to be the

number of complete B-configuration sequences with mistakes at some fixed set
of k adjacent pairs, on the condition that M(x) accepts (respectively, M(x)
rejects) and n = |x|. Then NA(n, k) and NR(n, k) are shown to be well-defined
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(that is, they do not depend on the k-set that we choose, and they only depend
on the input x up to acceptance and rejection). This implies (i) and (ii).

Proof. Fix a canonical M̂ and input x of length n. We count the number of
ways that one can choose a complete B-configuration sequence with precisely
k mistakes at adjacent pairs.

Define NA(n, k) (and NR(n, k), respectively) to be the number of complete
B-configuration sequences with mistakes at exactly a particular set of k adja-
cent pairs, on the condition that M̂(x) accepts (rejects, respectively). Assum-
ing these quantities are well-defined (that is, they depend only on n and k), we
claim that for all k ≥ 0,

(5.6)
NA(n, k, B) =

(
B+1

k

)
NA(n, k)

NR(n, k, B) =
(

B+1
k

)
NR(n, k).

The equation (5.6) follows since there are B + 1 possible adjacent pairs for
which a mistake can occur, so the total number of possible choices for picking
the k points at which a mistake occurs is

(
B+1

k

)
.

We now turn to proving that NA(n, k) and NR(n, k) are well-defined. The
proof is by induction on k. When k = 0, we have:

◦ NA(n, 0) = 1. The computation is deterministic, so there is only one
complete B-configuration sequence with no mistakes, on the condition
that M̂(x) accepts.

◦ NR(n, 0) = 0. When we assume that M̂(x) rejects, there is no complete
B-configuration sequence with no mistakes.

For the inductive step, recall that C(n) is the number of configurations of
M̂ on inputs of length n. We prove for all k ≥ 1 that

(5.7)
NA(n, k) = (C(n) − 1)k−1 − NA(n, k − 1)
NR(n, k) = (C(n) − 1)k−1 − NR(n, k − 1).

Let i1, . . . , ik ∈ {0, . . . , B} be the specified points for which our B-configuration
sequences will make a mistake, with i1 < i2 < · · · < ik. We want to show that
the number of complete B-configuration sequences with mistakes precisely at
the pairs (Cij , Cij+1), for j = 1, . . . , k, is a quantity independent of the set
{i1, . . . , ik} and the particular input x.

First we claim that the number of complete B-configuration sequences with
mistakes at the pairs (Cij , Cij+1) for j = 1, . . . , k − 1, and no mistakes at the
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pairs indexed by {0, . . . , B} − {i1, . . . , ik}, is exactly (C(n) − 1)k−1. (Note we
allow for a mistake to possibly happen at the pair (Cik , Cik+1).) This is due to
Proposition 4.4: for every configuration Cij , there are C(n) − 1 configurations
that it does not lead to, for any prescribed number of steps.

However, this quantity is overcounting—we need to subtract out those con-
figuration sequences with a mistake at the first k−1 pairs, but no mistake any-
where else. But this quantity is NA(n, k−1) if M̂(x) accepts, and NR(n, k−1) if
M̂(x) rejects, by the induction hypothesis. Therefore the equation (5.7) holds,
and the quantities NA(n, k), NR(n, k) are well-defined for all n and k. �

The Counting Lemma gives exact values for the number of mistakes in con-
figuration sequences. One might ask if we can simulate a canonical machine by
simply counting, over all complete B-configuration sequences, all the mistakes
made by adjacent pairs. By choosing B = (T (n)/S(n))1/2, such a simulation
could be implemented in roughly (T (n)S(n))1/2 time as a #P function using
an argument like that of Theorem 5.1, yielding a speedup of a time T (n), space
S(n) machine by a #P function.

However, the total number of mistakes committed by all adjacent pairs
over all complete B-configuration sequences is the same in the accepting and
rejecting cases, so the above proposal does not work. (To see this, note that
the quantity is the sum over all j = 0, . . . , B of the number of complete B-
configuration sequences having a mistake at (Cj, Cj+1). For every fixed j, this
number of sequences is C(n)B−1(C(n) − 1), so it does not depend on accep-
tance or rejection.) Instead, we count the number of complete B-configuration
sequences where the number of mistakes is divisible by some integer p ≥ 2, and
compute this number of sequences modulo another integer q that is relatively
prime to p. It turns out that this is enough to distinguish between the accepting
and rejecting cases. We first need a simple lemma.

Lemma 5.8. Let p, q ≥ 2 be relatively prime, let ℓ > 0 be an integer, and let

k = 0, . . . , ⌊ qℓ

p
⌋. If k = 0, then

(
qℓ

kp

)
≡ 1 mod q; if k > 0, then

(
qℓ

kp

)
≡ 0 mod q.

Proof. When k = 0, the lemma is obvious. Let k > 0. We have

kp ·

(
qℓ

kp

)

= qℓ ·

(
qℓ − 1

kp − 1

)

.

(Both sides count the number of ways that one can choose kp elements from
a collection of qℓ, and place a mark on one of the kp elements.) Note that
0 < kp ≤ ⌊qℓ/p⌋p < qℓ, where the last inequality is strict because p and q are
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relatively prime. Therefore, there is a non-trivial factor of qℓ that divides
(

qℓ

kp

)
,

and thus
(

qℓ

kp

)
≡ 0 mod q. �

(Notice that the lemma holds under an even weaker condition, namely that
p does not divide qℓ for every ℓ > 0. Since it is unclear what the power of this
weaker condition is, to keep it simple we just assume that p and q are relatively
prime.) For any positive integers B, p, and q, define

MISTAKESA(n, B, p, q) :=





⌊(B+1)/p⌋
∑

k=0

NA(n, kp, B)



 mod q

and

MISTAKESR(n, B, p, q) :=





⌊(B+1)/p⌋
∑

k=0

NR(n, kp, B)



 mod q.

These quantities denote the number (modulo q) of complete B-configuration
sequences where the number of mistakes is divisible by p, in the case where the
underlying machine accepts or rejects, respectively. In order for a MODqMODp

simulation of this kind to work, we need to know the residue modulo q that we
“expect” to see in the accepting case, and we need this residue to be different
from the rejecting case. The next lemma satisfies these requirements.

Lemma 5.9. Let B = qℓ − 1, for an integer q ≥ 2 and positive integer ℓ. Then
for every p ≥ 2 relatively prime to q,

MISTAKESA(n, B, p, q) ≡ 1 mod q, MISTAKESR(n, B, p, q) ≡ 0 mod q.

Proof.

MISTAKESA(n, B, p, q) =
∑⌊(B+1)/p⌋

k=0 NA(n, kp, B)

=
∑⌊(B+1)/p⌋

k=0 NA(n, kp)
(

B+1
kp

)
(Lemma 5.5)

=
∑⌊qℓ/p⌋

k=0 NA(n, kp)
(

qℓ

kp

)
.

But
(

qℓ

kp

)
≡ 0 mod q for all k = 1, . . . , ⌊qℓ/p⌋ (Lemma 5.8) and when k =

0, NA(n, 0) and
(

qℓ

kp

)
are both 1 mod q, by Lemmas 5.5 and 5.8, respec-

tively. Therefore MISTAKESA(n, B, p, q) ≡ 1 mod q. An analogous argument
shows that MISTAKESR(n, B, p, q) ≡ 0 mod q (the only difference being that
NR(n, 0) = 0). �
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Combining the two previous lemmas, we can immediately conclude that for
an input x of length n and appropriate p, q, and B:

◦ if M̂(x) accepts, then the number (modulo q) of complete B-configuration
sequences with its number of mistakes divisible by p is 1, and

◦ if M̂(x) rejects, then the same quantity is 0.

We finally arrive at the proof of the Speedup by Modular Counting Theorem
(Theorem 1.1). Recall its statement:

Theorem 1.1 Let M be a deterministic machine running in time T and
space S, let B(n) ≤ T (n), let ε > 0 be sufficiently small, and let p, q ≥ 2 be
relatively prime. Then there is a MODqMODp machine N such that L(M) =
L(N), and N runs for O(B(n)S(n) logT (n)) time in its MODq mode, runs for
O(log(B(n)S(n) log T (n))) time in its MODp mode, then runs in deterministic
O(T 1+ε(n)/B(n)) time and O(S(n) logT (n)) space. Moreover, the number of
bits written during previous modes that are read by the final deterministic mode
of the computation is only O(n + S(n) log T (n)).

Proof of Theorem 1.1. Given M that runs in time T (n) and space S(n),
let M̂ be the efficient canonical version of M guaranteed by Theorem 4.7 that
runs in time T ′(n) = T 1+ε(n) and space S ′(n) = S(n) log T (n). Let In be the
unique initial configuration for M̂ on inputs of length n. We may also assume
that M̂ has a unique accepting configuration: by Remark 4.6, the reversible
version M ′ of M has a unique accepting configuration An on inputs of length
n. Then define Ân = 〈An, forward〉 to be the unique accepting configuration for
M̂ .

Informally, the idea is to run the Σ2 simulation of M̂ from Theorem 5.1,
but we replace the existential mode with a “MODq mode” and the universal
mode with a “MODp mode”.

Fix an input x so that M̂(x) runs in T ′(|x|) time. Let ℓ be the small-
est integer such that B(|x|) ≤ qℓ. Pseudocode for the simulation of M̂ by a
MODqMODp machine follows:

(0) Set B′ = qℓ − 1.

(1) Modulo q guess either one of q−1 dummy accepting paths, or a list of B′

configurations C1, . . . , CB′ of M̂(x).

Let C0 = In and CB′+1 = Ân.
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(2) Modulo p guess i = 0, . . . , B′.

If i < B′ then s := ⌊T ′(|x|)/(B′ + 1)⌋ + 1,
else s := max{1, T ′(|x|) − B · (⌊T ′(|x|)/(B′ + 1)⌋ + 1)}.

Accept if and only if M̂(x) run from configuration Ci for s steps does not
result in Ci+1.

First, note that B′ = Θ(B(n)). We claim that Steps (1) and (2), taken
as a computation with signature MODqMODp, accepts if and only if M̂(x)
accepts. Step (2) accepts if and only if the number of mistakes in the given
sequence C0, . . . , CB′+1 is divisible by p. Let t be the total number of complete
B′-configuration sequences for M̂(x) with a number of mistakes divisible by p.
Then Steps (1) and (2) accept if and only if

q − 1 + t ≡ 0 mod q,

which is equivalent to t ≡ 1 mod q, i.e. t ≡ MISTAKESA(n, B′, p, q) mod q
(by Lemma 5.9), which is true if and only if M̂(x) accepts.

Finally, observe that the deterministic part of the above computation (the
last line of Step (2)) requires only O(T ′(n)/(B′ + 1)) ≤ O(T ′(n)/B(n)) time
and O(S ′(n)) space. The deterministic part only takes x and two configurations
as input, so its input has length O(n + S ′(n)). �

6. Lower Bounds for Counting Solutions Modulo

Composites

We are now prepared to prove lower bounds. In this section we define the notion
of an alternation-trading proof, which encompasses all known proofs to date
of time-space lower bounds for satisfiability and quantified Boolean formulas.
Then we show that alternation-trading proofs can always be transformed into
lower bounds for MODm-Sat, for certain choices of m. This is done by using
simple properties of modular arithmetic, as well as our Speedup by Modular
Counting Theorem. One of our results is that there exists at most one prime p
for which MODpTIME[n] ⊆ DTISP[nc, no(1)] can hold, when c < 1.801. In fact,
something stronger can be shown: we demonstrate a transfer principle that
shows how to translate certain time-space lower bound proofs for NTIME[n]
into analogous arguments for MODpTIME[n]. Intuitively, the statement of the
transfer principle says that if efficient Sat algorithms imply a contradiction via
indirect diagonalization, then efficient MODp-Sat and MODq-Sat algorithms
also lead to a contradiction. Finally, we prove a new time lower bound for
NTIME[n] in the subpolynomial (no(1)) space setting.
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Definition 6.1. Let c > 1, and let r(n), s(n) be polynomials. An alternation-
trading proof of

NTIME[n] ⊆ DTS[nc] =⇒ DTS[r(n)] ⊆ DTS[s(n)]

is a list of complexity classes of the form

(Q1 na1)(Q2 na2) · · · (Qk nak)DTS[nak+1 ],

where Qi ∈ {∃, ∀}, k is a non-negative integer, and ai > 0 for all i. (When
k = 0, the class is deterministic.) The first and last classes on the list are
DTS[r(n)] and DTS[s(n)], respectively. Each class on the list is obtained from
the previous class by applying one of three rules:

(i) (Quantifier Speedup) For all B ≥ 1 and T ≥ B,

DTS[T ] ⊆ (∃ B · no(1))(∀ log T )DTS[T/B]
DTS[T ] ⊆ (∀ B · no(1))(∃ log T )DTS[T/B],

(Theorem 5.1)

where the DTS predicate of the alternating simulation reads only no(1)

bits of the first quantifier. This rule is applied by replacing the DTS

predicate in a class by a two-quantifier simulation of it.

(ii) (Quantifier Removal) For all b ≥ a ≥ 1,

NTIME[n] ⊆ DTS[nc] =⇒
(∃na)(∀nb)DTS[nb] ⊆ (∃na)DTS[nbc]
(∀na)(∃nb)DTS[nb] ⊆ (∀na)DTS[nbc]

.

This rule is applied by replacing the last quantifier and DTS predicate of
a complexity class with one quantifier and the appropriate DTS predicate.

(iii) (Quantifier Combination) For all a, b ≥ 0 and d ≥ 1,

(∃ na)(∃ nb)DTS[nd] ⊆ (∃ na + nb)DTS[nd]
(∀ na)(∀ nb)DTS[nd] ⊆ (∀ na + nb)DTS[nd].

This rule is applied by replacing adjacent quantifiers of the same type by
a single quantifier.

Note that the Quantifier Removal rule follows by a simple padding argu-
ment; informally speaking, we need b ≥ a ≥ 1 because one can “pad up”, but
not “down”.

Every known (model-independent) time-space lower bound for Sat can be
written as an alternation-trading proof that shows NTIME[n] ⊆ DTS[nc] =⇒
DTS[r(n)] ⊆ DTS[s(n)], for polynomials r and s such that r(n)/s(n) ≥ Ω(nδ)
for some δ > 0. (An example of such a proof can be found in Section 3.)
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6.1. The Transfer Principle. We now state the transfer principle, which
effectively shows that the alternating classes in an alternation-trading proof
can be replaced with modular-alternating classes:

Transfer Principle for Time-Space Lower Bounds on Modular Count-
ing: Suppose there is an alternation-trading proof of

NTIME[n] ⊆ DTS[nc] =⇒ DTS[r(n)] ⊆ DTS[s(n)]

for some constant c and polynomials r(n), s(n). Then for all primes p, q with
p 6= q and for all ε > 0, there is a polynomial s′ε(n) such that limε→0 s′ε(n) =
s(n) and

(MODpTIME[n] ⊆ DTS[nc−ε] and MODqTIME[n] ⊆ DTS[nc−ε])

=⇒ DTS[r(n)] ⊆ DTS[s′ε(n)].

Proof Sketch of Transfer Principle. First, observe that there are
concrete analogues to the three rules used in an alternation-trading proof:

1. (MOD Speedup) Theorem 1.1 says that

DTS[T ] ⊆ (MODp B · no(1))(MODq log T )DTS[T 1+ε/B]
DTS[T ] ⊆ (MODq B · no(1))(MODp log T )DTS[T 1+ε/B].

Moreover, the modular counting algorithm that simulates DTS reads only
no(1) bits guessed in the first MOD mode of the algorithm.

2. (MOD Removal) If MODpTIME[n] ⊆ DTS[nc], MODqTIME[n] ⊆ DTS[nc],
then for b ≥ a ≥ 1,

(MODp na)(MODq nb)DTS[nb] ⊆ (MODp na)DTS[nbc]
(MODq na)(MODp nb)DTS[nb] ⊆ (MODq na)DTS[nbc],

which holds by standard padding arguments.

3. (MOD Combination) For all primes p, (MODp na)(MODp nb)DTS[nd] ⊆
(MODp na + nb)DTS[nd]. This was shown by Beigel and Gill [BG92];
Papadimitriou and Zachos [PZ83] effectively proved the result for p = 2.
The proof uses Fermat’s Little Theorem that ap−1 ≡ 1 mod p.
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Let ε > 0. By assumption, there is a proof of

NTIME[n] ⊆ DTS[nc] =⇒ DTS[r(n)] ⊆ DTS[s(n)]

that begins with the class DTS[r(n)] and applies the three rules (Quanti-
fier Speedup, Quantifier Removal, and Quantifier Combination) in some se-
quence. Each such rule application places DTS[r(n)] inside of a new class,
until DTS[r(n)] is placed in DTS[s(n)]. To prove that

(MODpTIME[n] ⊆ DTS[nc−ε] and MODqTIME[n] ⊆ DTS[nc−ε])

=⇒ DTS[r(n)] ⊆ DTS[s′ε(n)]

for some s′ε(n), start with DTS[r(n)] and apply the modular analogues of the
three rules (MOD Speedup, MOD Removal, and MOD Combination) in place
of the original rules, deriving analogous containments.

In particular, suppose that every ∃-quantifier (∀-quantifier) in the original
proof is systematically replaced with a MODp mode (respectively, MODq mode)
in the proof of DTS[r(n)] ⊆ DTS[s′ε(n)]. The Quantifier Removal and Quantifier
Combination rules have exactly the same parameters as the MOD Removal
and MOD Combination rules, but each invocation of MOD Speedup (instead
of Quantifier Speedup) in the new proof results in an additive ε factor in the
exponent. However, the resulting polynomial runtime s′ε(n) of the final DTS

class still has the property that if ε = 0, then the derived polynomial is exactly
s(n). Therefore limε→0 s′ε(n) = s(n). �

6.2. Implications. The transfer principle implies two significant corollaries.
Both say that certain proofs-by-contradiction that NTIME[n] * DTS[nc] can be
mapped over to proofs that MODkTIME[n] * DTS[nc−ε], for various integers k.

Corollary 6.2. Suppose there is an alternation-trading proof of

NTIME[n] ⊆ DTS[nc] =⇒ DTS[nk+δ] ⊆ DTS[nk],

for some k ≥ 1 and δ > 0. Then for every m > 1 that is not a prime power,
and for all ε > 0,

MODmTIME[n] * DTS[nc−ε].

First we show that if NTIME[n] ⊆ DTS[nc] =⇒ DTS[nk+δ] ⊆ DTS[nk], then
actually the separation NTIME[n] * DTS[nc] holds. This result is necessary
because we do not actually know if DTS[nk+δ] * DTS[nk] holds unconditionally
(note the space bounds of both classes are the same).
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Theorem 6.3. If NTIME[n] ⊆ DTS[nc], then DTS[nk+δ] * DTS[nk] for all
k ≥ 1 and δ > 0.

Proof. Suppose that NTIME[n] ⊆ DTS[nc] and DTS[nk+δ] ⊆ DTS[nk] hold.
By translation, DTS[nk+δ] ⊆ DTS[nk] implies

DTS[n(k+δ)2/k] ⊆ DTS[nk+δ] ⊆ DTS[nk],

and therefore

DTS[n(k+δ)·((k+δ)/k)i

] ⊆ DTS[nk],

for all i ≥ 0. Since δ > 0, this implies DTS[nL] ⊆ DTS[nk] for all L ≥ k. Thus
NTIME[n] ⊆ DTS[nc] implies that for all L > k,

NTIME[nL] ⊆ DTS[nLc] ⊆ DTS[nk] ⊆ coNTIME[nk],

which contradicts the fact that NTIME[nL] * coNTIME[nL−ε] for all ε > 0 (this
follows by a standard diagonalization argument). �

There is a modular analogue of this separation as well, with an identical
proof:

Theorem 6.4. Let p ≥ 2 be arbitrary. If MODpTIME[n] ⊆ DTS[nc] then
DTS[nk+δ] * DTS[nk] for all k ≥ 1 and δ > 0.

Using the above, we can obtain the Corollary.

Proof of Corollary 6.2. If m is not a prime power, then it has two
distinct primes p and q as factors. Therefore, MODpTIME[t] ⊆ MODmTIME[t]
and MODqTIME[t] ⊆ MODmTIME[t] for all time bounds t (cf. [BG92] for a
proof). Thus MODmTIME[n] ⊆ DTS[nc−ε] implies

MODpTIME[n] ⊆ DTS[nc−ε] and

MODqTIME[n] ⊆ DTS[nc−ε].

Therefore, by the transfer principle one can use the presumed alternation-
trading proof to obtain DTS[nk+δ] ⊆ DTS[s′ε(n)], where s′ε(n) is a polynomial
that converges to nk for ε → 0, contradicting Theorem 6.4. �
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Corollary 6.5. Suppose there is an alternation-trading proof of

NTIME[n] ⊆ DTS[nc] =⇒ DTS[nk+δ] ⊆ DTS[nk],

for some k ≥ 1 and δ > 0. Then for all primes p except for possibly one of
them, MODpTIME[n] * DTS[nc−ε] for all ε > 0. That is, there is at most one
prime p for which MODpTIME[n] is in nc−ε time and no(1) space.

Proof. If there are two different primes p and q with MODpTIME[n] ⊆
DTS[nc−ε] and MODqTIME[n] ⊆ DTS[nc−ε], then the transfer principle applies
as in Corollary 6.2, and a contradiction can be established with Theorem 6.4.
Thus at most one prime p can satisfy MODpTIME[n] ⊆ DTS[nc−ε]. �

6.3. New Time Lower Bound for Sat. We now proceed with a new time-
space lower bound for NTIME[n]. Theorem 1.2 follows immediately from it,
coupled with the above two results and the completeness results for Sat and
MOD-Sat (Theorems 2.1 and 2.2).

Theorem 6.6. For all c ≥ 1 such that c3−c2 −2c+1 < 0, i.e. c < 2 cos(π/7),

NTIME[n] * DTS[nc].

Furthermore, the result can be obtained with an alternation-trading proof that
NTIME[n] ⊆ DTS[nc] implies DTS[nk+δ] ⊆ DTS[nk] for some k ≥ 1 and δ > 0.

For the sake of mathematical curiosity, let us first make a few remarks
about the constant 2 cos(π/7) = 1.8019 · · · and how it arises. Whereas the
golden ratio is the unique solution in (1, 2) to the equation c2 = 1 + 1/(c − 1),
our quantity is the unique solution in (1, 2) to c2 = 2 + 1/(c − 1).

To compute the roots of p(c) = c3 − c2 − 2c + 1, with a little foresight we
let c = 2 cos(u), and recall that 2 cos(x) = eix + e−ix. Plugging into p, we get

p(c) = (eiu + e−iu)3 − (eiu + e−iu)2 − 2(eiu + e−iu) + 1

= (e3iu + e−3iu) − (e2iu + e−2iu) + (eiu + e−iu) − 1,

after simplifying. Multiplying by e3iu, the above sum becomes

(e6iu + 1) − (e5iu + eiu) + (e4iu + e2iu) − e3iu,

which is

e6iu − e5iu + e4iu − e3iu + e2iu − eiu + 1 =
e7iu + 1

eiu + 1
.
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For u 6= π, the roots of p are given by e7iu = −1, leading to the three equations:

e7u1i = eπi, e7u2i = e3πi, and e7u3i = e5πi.

That is, the roots are c1 = 2 cos(π/7), c2 = 2 cos(3π/7), c3 = 2 cos(5π/7), where
only c1 > 1.

The lower bound proof requires a speedup simulation from our previous
work [Wil06]. Effectively, this simulation says that if we assume that nondeter-
ministic linear time can be simulated in nc time and no(1) space, that assumption
can be applied to improve the special case of Nepomnjascii’s theorem, proven
earlier in Theorem 5.1.

Lemma 6.7 (Conditional Speedup [Wil06]). Suppose there is a c < 2 satisfy-
ing NTIME[n] ⊆ DTS[nc]. Then for all d < c/(c − 1),

DTS[nd] ⊆ (∃ n)(∀ log n)DTS[n] ∩ (∀ n)(∃ log n)DTS[n].

Moreover, the proof uses only the three rules of alternation-trading proofs.

Note that c < 2 implies c/(c − 1) > 2, so the above alternating speedup of
nd time and no(1) space is better than the square root gotten from Theorem 5.1.

Proof. Define the sequence d0 := 2, dk := 1 + dk−1

c
. We prove by induction

that for all k ≥ 0,

DTS[ndk ] ⊆ (∃ n)(∀ log n)DTS[n] ∩ (∀ n)(∃ log n)DTS[n].

As the sequence {dk} is monotone increasing and converges to c/(c− 1) (when
c < 2), the theorem follows.

The case k = 0 follows from Theorem 5.1, as DTS[n2] ⊆ Σ2TIME[n1+o(1)] ∩
Π2TIME[n1+o(1)], using the Quantifier Speedup rule of alternation-trading proofs.

For the inductive step, consider the class DTS[ndk+1 ] = DTS[n1+dk/c]. By
the Quantifier Speedup rule, DTS[n1+dk/c] is contained in

(∃ n)(∀ log n)DTS[ndk/c].

Note that dk/c ≥ 1. The conondeterministic part of the Σ2 class above always
has input of length O(n). Therefore by the Quantifier Removal rule, we can
apply the assumption NTIME[n] ⊆ DTS[nc] to the (∀ log n)DTS[ndk/c] part,
obtaining the class

(∃ n)DTS[ndk ].
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Finally, by induction hypothesis, DTS[ndk ] ⊆ (∃n)(∀ log n)DTS[n], so the above
class is contained in

(∃ n)(∃ n)(∀ log n)DTS[n] ⊆ (∃ n)(∀ log n)DTS[n],

by the Quantifier Combination rule. By closure of DTS under complementation,
we have that DTS[ndk+1 ] ⊆ (∀ n)(∃ log n)DTS[n] as well. �

The crux of the n1.801 lower bound rests in the following result, which is a
subtle combination of the golden ratio proof strategy of Fortnow-Van Melkebeek
and our Conditional Speedup Lemma (Lemma 6.7).

Lemma 6.8. Suppose there is c < 2 such that NTIME[n] ⊆ DTS[nc]. Then for
all integers k ≥ 1, and d satisfying c2 ≥ d, c ≤ d < c/(c − 1),

DTS[nd+
∑k

i=1
(c2/d)i

] ⊆ Σ2TIME[n(c2/d)k+o(1)] ∩ Π2TIME[n(c2/d)k+o(1)].

The proof applies only the three rules of alternation-trading proofs.

Let us say a few words about why this lemma is helpful. Our goal is to have
DTS[na] ⊆ Σ2TIME[nb] where the ratio a/b is as large as possible. Then, using
Quantifier Removal, we may prove consequences of the form

DTS[na] ⊆ Σ2TIME[nb] ⊆ NTIME[nbc] ⊆ DTS[nbc2 ].

For a/b > c2, we can get a contradiction with Theorem 6.3. The Conditional
Speedup Lemma gives us an a/b ratio of c/(c − 1) − ε. To get a larger ratio,
we let a and b increase, and doing so we can exceed c/(c − 1) − ε. The trick
is interleave applications of the Conditional Speedup Lemma (where the alter-
nating simulations always choose a number of configurations that is linear in
the input length) with Quantifier Speedups where we choose more than just a
linear number of configurations.

Proof of Lemma 6.8. Suppose c < 2 is such that NTIME[n] ⊆ DTS[nc].
Pick d satisfying the required properties. The proof is by induction on k. For
k = 0, the task is just to show DTS[nd] ⊆ Σ2TIME[n1+o(1)], which is precisely
Lemma 6.7.

For the inductive step, consider the class DTS[nd+
∑k

i=1
(c2/d)i

]. By Theo-
rem 5.1,

DTS[nd+
∑k

i=1
(c2/d)i

] ⊆ (∃ n(c2/d)k

)(∀ log n)DTS[nd+
∑k−1

i=1
(c2/d)i

],
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where the DTS[· · · ] part of the Σ2 computation has input of length n + no(1)

(the original input x, and two configurations). This step uses the Quantifier
Speedup rule. By the induction hypothesis,

(∃ n(c2/d)k

)(∀ log n)DTS[nd+
∑k−1

i=1
(c2/d)i

]

⊆ (∃ n(c2/d)k

)(∀ log n)Π2TIME[n(c2/d)k−1+o(1)].

Applying the assumption that NTIME[n] ⊆ DTS[nc] (via the Quantifier Re-
moval rule) to the Π2 part (which takes input of length n + no(1)),

(∃ n(c2/d)k

)(∀ log n)Π2TIME[n(c2/d)k−1+o(1)]

⊆ (∃ n(c2/d)k

)(∀ log n)coNTIME[nc·(c2/d)k−1+o(1)].

By the Quantifier Combination rule,

(∃ n(c2/d)k

)(∀ log n)coNTIME[nc·(c2/d)k−1+o(1)]

⊆ (∃ n(c2/d)k

)coNTIME[nc·(c2/d)k−1+o(1)].

Now the input to the coNTIME part has length O(n(c2/d)k

) ≤ O(nc·(c2/d)k−1

),
since d ≥ c. Therefore we can use Quantifier Removal again to obtain

(∃ n(c2/d)k

)coNTIME[nc·(c2/d)k−1+o(1)] ⊆ (∃ n(c2/d)k

)DTS[nc2·(c2/d)k−1

].

But by Lemma 6.7, the DTS part of the above can be replaced with a Σ2

computation, in particular

(∃ n(c2/d)k

)DTS[nc2·(c2/d)k−1

] ⊆ (∃ n(c2/d)k

)(∃ n(c2/d)k

)(∀ log n)DTS[n(c2/d)k

].

Finally,

(∃ n(c2/d)k

)(∃ n(c2/d)k

)(∀ log n)DTS[n(c2/d)k

] ⊆ (∃ n(c2/d)k

)(∀ log n)DTS[n(c2/d)k

]

by Quantifier Combination. This completes the proof. �

Now we show how Lemma 6.8 implies Theorem 6.6, the n1.801 lower bound.

Proof of Theorem 6.6. Assuming NTIME[n] ⊆ DTS[nc] and Lemma 6.8,

DTS[nd+
∑k

i=1
(c2/d)i

] ⊆ Σ2TIME[n(c2/d)k+o(1)]

⊆ NTIME[nc(c2/d)k+o(1)] ⊆ DTS[nc2(c2/d)k

].
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A contradiction with Theorem 6.3 is reached (and thus NTIME[n] * DTS[nc])
precisely when

d +
k∑

i=1

(c2/d)i > c2 · (c2/d)k,

that is, when

c2 <
k∑

i=1

(
c2

d

)i−k

+ d ·

(
d

c2

)k

⇐⇒ c2 <
k−1∑

j=0

(
d

c2

)j

+ d ·

(
d

c2

)k

⇐⇒ c2 <
1 −

(
d
c2

)k

1 −
(

d
c2

) + d ·

(
d

c2

)k

(6.9)

By assumption, (d/c2)k < 1 for all k ≥ 1, and

lim
k→∞

(d/c2)k = 0.

Therefore, assuming c ≥ φ (the golden ratio), for any ε > 0 we can set d =
c/(c−1)−ε and find a k such that 0 < (d/c2)k ≤ ε. Hence the inequality (6.9) is
implied by the inequality:

c2 <
1 − ε

1 − c/(c−1)−ε
c2

.

Simple algebraic manipulation yields the equivalent condition

c2 − (c/(c − 1) − ε) < (1 − ε).

Multiplying through by (c − 1), the condition becomes

c2(c − 1) − (c − ε(c − 1)) < ((c − 1) − ε(c − 1))

⇐⇒ c3 − c2 − 2c + 1 < 2ε(1 − c)(6.10)

Now, as ε approaches 0, the RHS approaches 0. We arrive at the following
condition implying a contradiction:

c3 − c2 − 2c + 1 < 0,

which is what we wanted to prove. That is, for any c satisfying c3−c2−2c+1 <
0, one can choose an ε > 0 such that c and ε satisfy inequality (6.10), and
therefore inequality (6.9) as well. �

The above argument can be extended to prove the following time-space
tradeoff for Sat:



34 R. Ryan Williams

Corollary 6.11. For all c < 2 cos(π/7) there is a d ∈ (0, 1) such that Sat is
not in DTISP[nc, nd].

Proof. (Sketch) In the above proofs, one can replace the no(1) space bound
by nd for a sufficiently small d > 0. The sizes of quantifiers in the alternating
simulations increase only by an additive factor of qkd in the exponents, where
qk is a constant that depends on the (finite) sequence of k Quantifier Speedup
and Quantifier Removal rules used. �

7. Lower Bounds for Counting Solutions Modulo
Particular Primes

In the previous section, we obtained a time lower bound for MODp-Sat for
all but possibly one prime p; however, the result was non-constructive. Such
a result is frustrating, as it does not let us point to a single prime for which
the lower bound actually holds. We can prove lower bounds for counting satis-
fying assignments modulo particular primes, provided that a conjectured time
hierarchy theorem holds. We recall Hypothesis 1.3 and Theorem 1.4 from the
Introduction:

Hypothesis 1.3. For all primes p, there exists a prime q 6= p and time con-
structible T (n) ≥ n2 such that MODpTIME[T ] * MODqTIME[T 1−ε], for all
ε > 0.

Theorem 1.4. If Hypothesis 1.3 holds for a given prime p, then MODp-Sat

requires Ω(nc) time on no(1) space machines, for c < φ, the golden ratio.

To prove the theorem, we require a modular version of the Conditional
Speedup Theorem (Theorem 6.7):

Theorem 7.1. If there is a c < 2 and prime p satisfying MODpTIME[n] ⊆
DTS[nc], then for all d < c/(c − 1) and primes q 6= p,

DTS[nd] ⊆ (MODq n)(MODp log n)DTS[n].

Proof. Analogous to the proof of Theorem 6.7. �

Now we are prepared to prove Theorem 1.4. Suppose for contradiction that

(7.2) MODpTIME[n] ⊆ DTS[nc]

and for some T (n) ≥ n2,

(7.3) MODpTIME[T ] * MODqTIME[T 1−ε].
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Starting with the class MODpTIME[n1/(c−1)−ε], we derive

MODpTIME[n1/(c−1)−ε] ⊆ DTS[nc/(c−1)−cε] by (7.2)

⊆ (MODq n)(MODp log n)DTS[n] by Theorem 7.1

⊆ (MODq n)DTS[nc] by (7.2)

⊆ MODqTIME[nc].

Suppose c(c − 1) < 1. Then the above inclusion implies MODpTIME[n2] ⊆
MODqTIME[n2−δ] for some δ > 0, but this contradicts (7.3). Therefore (7.2)
does not hold for any c satisfying c(c − 1) < 1, i.e. for c less than the golden
ratio φ ≈ 1.618. This completes the proof of Theorem 1.4.

8. Deterministic Small Space Versus Modular Counting

Using the Speedup By Modular Counting Theorem, one can establish other
“modular-counting analogues” of known results about the power of alternating
computation. For example, if MOD6TIME[nk] is efficiently closed under Turing
reductions for any k, then a major separation result would be obtained. Recall
that SC := DTISP[nO(1), (log n)O(1)].

Theorem 8.1. If there is some k ≥ 1 such that (MOD6MOD6)TIME[nk] ⊆
MOD6TIME[nk+o(1)], then SC 6= MOD6P.

Therefore, if a modular-alternating machine with two MOD6 modes can be
efficiently simulated by a machine with only one MOD6 mode, then it follows
that logarithmic space is different from MOD6P. Theorem 8.1 is a “modular
analogue” of a result for nondeterminism that follows from the work of Fort-
now [For00].

Theorem 8.2. If Σ2TIME[nk] ⊆ NTIME[nk+o(1)] then SC 6= NP.

Proof of Theorem 8.1. It follows from the Speedup by Modular Count-
ing Theorem that for any integer ℓ ≥ 1 and real k ≥ 1, DTISP[nℓ+k, poly(log n)]
can be simulated by a machine with signature (MOD6)

ℓ+1 (i.e. ℓ + 1 separate
MOD6 modes) that guesses O(n) bits in each mode, and the last deterministic
mode runs in nk+ε time, for any ε > 0. By the assumption, the last ℓ MOD6

modes of this machine can be “removed”, while only increasing the runtime by
a o(1) additive factor in the exponent. Therefore

(8.3) DTISP[nℓ+k, poly(log n)] ⊆ MOD6TIME[nk+o(1)]
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for any ℓ ≥ 1. Now, if SC = MOD6P, then MOD6-Sat ∈ DTISP[nj , poly(log n)],
for some j. By a slightly strengthened version of Theorem 2.2 (cf. [vM07]), we
also have that MOD6TIME[n] ⊆ DTISP[nj+o(1), poly(log n)]. But this implies

MOD6TIME[n1+k] ⊆ DTISP[nj(1+k)+o(1), poly(log n)] ⊆ MOD6TIME[nk+o(1)],

by setting ℓ = (j(1 + k) − k) and applying inclusion (8.3). This contradicts
the time hierarchy for MOD6 computations, so we must conclude that SC 6=
MOD6P. �

Similarly, the following can be proved with essentially the same argument.

Theorem 8.4. If there are primes p 6= q and k ≥ 1 such that MODpTIME[nk] ⊆
MODqTIME[nk+o(1)] and MODqTIME[nk] ⊆ MODpTIME[nk+o(1)], then SC 6=
MODpP and SC 6= MODqP.

Proof. (Sketch) Another corollary of the Speedup by Modular Counting
Theorem is that DTISP[nℓ+k, poly(log n)] can be simulated by a machine with
signature (MODp MODq)

ℓ+1 that runs in n1+o(1) time in each modular mode,
and the last deterministic mode runs in nk+ε time, for arbitrarily small ε. If
either SC = MODpP or SC = MODqP were to hold, we could obtain a contra-
diction by applying the two assumptions, just as in the proof of Theorem 8.1. �

Finally, we give an unconditional separation. Fortnow [For00] showed that
NL is not equal to any non-constant level of the polynomial time hierarchy. We
can give an analogous separation result for the class SC. For an integer m and
function s(n), define the class (MODm)s(n)P to contain just those languages
recognized by a modular-alternating machine that runs in polynomial time,
uses only MODm modes, and makes at most s(n) mode alternations in any of
its computation paths.

Theorem 8.5. Let s(n) be any monotone increasing unbounded function.
Then SC 6= (MODm)s(n)P, for any composite m that is not a prime power.

Proof. (Sketch) We claim that for all ε > 0,

SC ⊆
⋃

k≥1

(MODm n)kDTIME[n1+ε],

where (MODm n)aC is shorthand for the class

(MODm n) · · · (MODm n)
︸ ︷︷ ︸

a

C.
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From the proof of Theorem 8.1, it follows that for any k ≥ 1 and sufficiently
small ε > 0,

DTISP[nk, poly(log n)] ⊆ (MODm n)k+1DTISP[n1+ε, poly(log n)].

This proves the claim. The theorem follows from the fact that
⋃

k≥0

(MODm n)kDTIME[n1+ε] ( (MODm)s(n)P,

which holds by a simple diagonalization. �

9. Conclusion

We have proven the first superlinear time lower bounds for counting NP solu-
tions modulo small integers, on random access machines that use subpolynomial
space. For example, the best known time-space lower bound for MOD6-Sat is
the same as that for Sat. To arrive at our results, we discovered a way to trans-
fer lower bound proofs for nondeterminism to the setting of modular counting,
using a lemma that shows the number of configuration sequences of a canonical
machine with a prescribed number of mistakes on a given input depends solely
upon the space usage of the machine and the acceptance/rejection condition of
that input. Such a tool may prove to be useful in other time-space lower bound
arguments as well. For example, one may be able to prove strong time-space
lower bounds for the Majority Sat problem using the Counting Lemma, but
we have not yet found a way to do this. Currently the best time-space lower
bound we know for Majority Sat is the same as the one known for Sat.

An Ω(nφ−o(1)) time and no(1) space lower bound for MODp-Sat for a partic-
ular prime p follows from a conjectured time hierarchy, which we consider to
be an interesting open problem:

Conjecture: There are primes q 6= p and time constructible T (n) ≥ n2

such that for all ε > 0,

MODpTIME[T ] * MODqTIME[T 1−ε].

We have recently formalized the “indirect diagonalization” paradigm be-
hind ours and the previous lower bound arguments, and have implemented a
computer program that can feasibly search over the space of short lower bound
proofs that follow the alternation-trading rules [Wil07a, Wil07b]. Contrary to
our expectations, preliminary results strongly suggest that the Ω(n2 cos(π/7)−ε)
time lower bound is the best possible, using the current techniques. Therefore,
to obtain better lower bounds in the future, it appears that one will need to
add truly new ideas to the current arguments.
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