Matrix-Vector Multiplication in Sub-Quadratic Time (Some Preprocessing Required)

Ryan Williams

Carnegie Mellon University

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

How fast can $n \times n$ matrix-vector multiplication be?

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

How fast can $n \times n$ matrix-vector multiplication be?

 $\Theta(n^2)$ steps just to read the matrix!

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

How fast can $n \times n$ matrix-vector multiplication be?

 $\Theta(n^2)$ steps just to read the matrix!

Main Result: If we allow $O(n^{2+\varepsilon})$ preprocessing, then matrix-vector multiplication over any finite semiring can be done in $O(n^2/(\varepsilon \log n)^2)$.

Three of the major developments:

Three of the major developments:

• Arlazarov et al., a.k.a. "Four Russians" (1960's): $O(n^3/\log n)$ operations Uses table lookups

Good for hardware with short vector operations as primitives

Three of the major developments:

- Arlazarov et al., a.k.a. "Four Russians" (1960's): $O(n^3/\log n)$ operations Uses table lookups

 Good for hardware with short vector operations as primitives
- Strassen (1969): $n^{\frac{\log 7}{\log 2}} = O(n^{2.81})$ operations

 Asymptotically fast, but overhead in the big-O

 Experiments in practice are inconclusive about Strassen vs. Four Russians for Boolean matrix multiplication (Bard, 2006)

Three of the major developments:

- Arlazarov et al., a.k.a. "Four Russians" (1960's): $O(n^3/\log n)$ operations

 Uses table lookups

 Good for hardware with short vector operations as primitives
- Strassen (1969): $n^{\frac{\log 7}{\log 2}} = O(n^{2.81})$ operations

 Asymptotically fast, but overhead in the big-O

 Experiments in practice are inconclusive about Strassen vs. Four Russians for Boolean matrix multiplication (Bard, 2006)
- Coppersmith and Winograd (1990): $O(n^{2.376})$ operations Not yet practical

Focus: Combinatorial Matrix Multiplication Algorithms

Focus: Combinatorial Matrix Multiplication Algorithms

Also called non-algebraic; let's call them non-subtractive

E.g. Four-Russians is combinatorial, Strassen isn't

Focus: Combinatorial Matrix Multiplication Algorithms

Also called *non-algebraic*; let's call them *non-subtractive* E.g. Four-Russians is combinatorial, Strassen isn't

More Non-Subtractive Boolean Matrix Mult. Algorithms:

- Atkinson and Santoro: $O(n^3/\log^{3/2} n)$ on a $(\log n)$ -word RAM
- Rytter and Basch-Khanna-Motwani: $O(n^3/\log^2 n)$ on a RAM
- Chan: Four Russians can be implemented on $O(n^3/\log^2 n)$ on a pointer machine

The $O(n^3/\log^2 n)$ matrix multiplication algorithm can be "de-amortized"

The $O(n^3/\log^2 n)$ matrix multiplication algorithm can be "de-amortized"

More precisely, we can:

Preprocess an $n \times n$ matrix A over a finite semiring in $O(n^{2+\varepsilon})$

Such that vector multiplications with A can be done in $O(n^2/(\varepsilon \log n)^2)$

The $O(n^3/\log^2 n)$ matrix multiplication algorithm can be "de-amortized"

More precisely, we can:

Preprocess an $n \times n$ matrix A over a finite semiring in $O(n^{2+\varepsilon})$

Such that vector multiplications with A can be done in $O(n^2/(\varepsilon \log n)^2)$

Allows for "non-subtractive" matrix multiplication to be done on-line

The $O(n^3/\log^2 n)$ matrix multiplication algorithm can be "de-amortized"

More precisely, we can:

Preprocess an $n \times n$ matrix A over a finite semiring in $O(n^{2+\varepsilon})$

Such that vector multiplications with A can be done in $O(n^2/(\varepsilon \log n)^2)$

Allows for "non-subtractive" matrix multiplication to be done on-line

Can be implemented on a pointer machine

The $O(n^3/\log^2 n)$ matrix multiplication algorithm can be "de-amortized"

More precisely, we can:

Preprocess an $n \times n$ matrix A over a finite semiring in $O(n^{2+\varepsilon})$

Such that vector multiplications with A can be done in $O(n^2/(\varepsilon \log n)^2)$

Allows for "non-subtractive" matrix multiplication to be done on-line

Can be implemented on a pointer machine

This Talk: The Boolean case

Partition the input matrix A into blocks of $\lceil \varepsilon \log n \rceil \times \lceil \varepsilon \log n \rceil$ size:

Build a graph G with parts $P_1, \ldots, P_{n/(\varepsilon \log n)}, Q_1, \ldots, Q_{n/(\varepsilon \log n)}$

Edges of G: Each vertex v in each P_i has exactly one edge into each Q_j

Edges of G: Each vertex v in each P_i has exactly one edge into each Q_j

Time to build the graph:

$$\frac{n}{\varepsilon \log n} \cdot \frac{n}{\varepsilon \log n} \cdot 2^{\varepsilon \log n} \cdot (\varepsilon \log n)^2 = O(n^{2+\varepsilon})$$
number number number matrix-vector mult
of Q_j of P_i of nodes of $A_{j,i}$ and v in P_i

Let v be a column vector. Want: $A \cdot v$.

Let v be a column vector. Want: $A \cdot v$.

(1) Break up v into $\varepsilon \log n$ sized chunks:

$$v = \left[egin{array}{c} v_1 \ v_2 \ dots \ v_{\overline{arepsilon} \log n} \end{array}
ight]$$

(2) For each $i=1,\ldots,n/(\varepsilon\log n)$, look up v_i in P_i .

(2) For each $i=1,\ldots,n/(\varepsilon\log n)$, look up v_i in P_i .

(2) For each $i = 1, \ldots, n/(\varepsilon \log n)$, look up v_i in P_i .

Takes $\tilde{O}(n)$ time.

ig(4ig) For each Q_j , define v_j' as the OR of all marked vectors in Q_j

(4) For each Q_j , define v_i' as the OR of all marked vectors in Q_j

Takes $\tilde{O}(n^{1+\varepsilon})$ time

(5) Output
$$v':=\begin{bmatrix}v'_1\\v'_2\\\vdots\\v'_{\frac{n}{\varepsilon\log n}}\end{bmatrix}$$
 . Claim: $v'=A\cdot v$.

(5) Output
$$v':=\begin{bmatrix}v'_1\\v'_2\\\vdots\\v'_{\frac{n}{\varepsilon\log n}}\end{bmatrix}$$
 . Claim: $v'=A\cdot v$.

Proof: By definition,
$$v_j' = \bigvee_{i=1}^{n/(\varepsilon \log n)} A_{j,i} \cdot v_i$$
.

(5) Output
$$v':=\begin{bmatrix}v'_1\\v'_2\\\vdots\\v'_{\frac{n}{\varepsilon\log n}}\end{bmatrix}$$
 . Claim: $v'=A\cdot v$.

Proof: By definition,
$$v_j' = \bigvee_{i=1}^{n/(\varepsilon \log n)} A_{j,i} \cdot v_i$$
.

Av =
$$\begin{bmatrix} A_{1,1} & \cdots & A_{1,n/(\varepsilon \log n)} \\ \vdots & \ddots & \vdots \\ A_{n/(\varepsilon \log n),1} & \cdots & A_{n/(\varepsilon \log n),n/(\varepsilon \log n)} \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_{\frac{n}{\varepsilon \log n}} \end{bmatrix}$$

(5) Output
$$v':=\begin{bmatrix}v'_1\\v'_2\\\vdots\\v'_{\frac{n}{\varepsilon\log n}}\end{bmatrix}$$
 . Claim: $v'=A\cdot v$.

Proof: By definition,
$$v_j' = \bigvee_{i=1}^{n/(\varepsilon \log n)} A_{j,i} \cdot v_i$$
.

$$Av = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n/(\varepsilon \log n)} \\ \vdots & \ddots & \vdots \\ A_{n/(\varepsilon \log n),1} & \cdots & A_{n/(\varepsilon \log n),n/(\varepsilon \log n)} \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_{\frac{n}{\varepsilon \log n}} \end{bmatrix}$$
$$= (\bigvee_{i=1}^{n/(\varepsilon \log n)} A_{1,i} \cdot v_i, \dots, \bigvee_{i=1}^{n/(\varepsilon \log n)} A_{1,n/(\varepsilon \log n)} \cdot v_i) = v'.$$

Some Applications

Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V, E).

Let v_S be the indicator vector for a $S \subseteq V$.

Some Applications

Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V, E).

Let v_S be the indicator vector for a $S \subseteq V$.

Proposition: $A \cdot v_S$ is the indicator vector for N(S), the neighborhood of S.

Some Applications

Can quickly compute the neighbors of arbitrary vertex subsets

Let A be the adjacency matrix of G = (V, E).

Let v_S be the indicator vector for a $S \subseteq V$.

Proposition: $A \cdot v_S$ is the indicator vector for N(S), the neighborhood of S.

Corollary: After $O(n^{2+\varepsilon})$ preprocessing, can determine the neighborhood of any vertex subset in $O(n^2/(\varepsilon \log n)^2)$ time.

(One level of BFS in $o(n^2)$ time)

Corollary: After $O(n^{2+\varepsilon})$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O(n^2/(\varepsilon \log n)^2)$ time.

Corollary: After $O(n^{2+\varepsilon})$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O(n^2/(\varepsilon \log n)^2)$ time.

Proof: Let $S \subseteq V$.

Corollary: After $O(n^{2+\varepsilon})$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O(n^2/(\varepsilon \log n)^2)$ time.

Proof: Let $S \subseteq V$.

$$S$$
 is dominating $\iff S \cup N(S) = V$.

Corollary: After $O(n^{2+\varepsilon})$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O(n^2/(\varepsilon \log n)^2)$ time.

Proof: Let $S \subseteq V$.

$$S$$
 is dominating $\iff S \cup N(S) = V$.

$$S$$
 is independent $\iff S \cap N(S) = \emptyset$.

Corollary: After $O(n^{2+\varepsilon})$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O(n^2/(\varepsilon \log n)^2)$ time.

Proof: Let $S \subseteq V$.

$$S$$
 is dominating $\iff S \cup N(S) = V$.

$$S$$
 is independent $\iff S \cap N(S) = \emptyset$.

S is a vertex cover $\iff V - S$ is independent.

Corollary: After $O(n^{2+\varepsilon})$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O(n^2/(\varepsilon \log n)^2)$ time.

Proof: Let $S \subseteq V$.

S is dominating $\iff S \cup N(S) = V$.

S is independent $\iff S \cap N(S) = \emptyset$.

S is a vertex cover $\iff V - S$ is independent.

Each can be quickly determined from knowing S and N(S).

Problem: Triangle Detection

Given: Graph G and vertex i.

Question: Does i participate in a 3-cycle, a.k.a. triangle?

Problem: Triangle Detection

Given: Graph G and vertex i.

Question: Does *i* participate in a 3-cycle, a.k.a. triangle?

Worst Case: Can take $\Theta(n^2)$ time to check all pairs of neighbors of i

Problem: Triangle Detection

Given: Graph G and vertex i.

Question: Does *i* participate in a 3-cycle, a.k.a. triangle?

Worst Case: Can take $\Theta(n^2)$ time to check all pairs of neighbors of i

Corollary: After $O(n^{2+\varepsilon})$ preprocessing on G, can solve triangle detection for arbitrary vertices in $O(n^2/(\varepsilon \log n)^2)$ time.

Problem: Triangle Detection

Given: Graph G and vertex i.

Question: Does *i* participate in a 3-cycle, a.k.a. triangle?

Worst Case: Can take $\Theta(n^2)$ time to check all pairs of neighbors of i

Corollary: After $O(n^{2+\varepsilon})$ preprocessing on G, can solve triangle detection for arbitrary vertices in $O(n^2/(\varepsilon \log n)^2)$ time.

Proof: Given vertex i, let S be its set of neighbors (gotten in O(n) time).

S is *not* independent \iff i participates in a triangle.

A preprocessing/multiplication algorithm for matrix-vector multiplication that builds on lookup table techniques

A preprocessing/multiplication algorithm for matrix-vector multiplication that builds on lookup table techniques

• Is there a preprocessing/multiplication algorithm for *sparse* matrices? Can we do multiplication in *e.g.* $O(m/poly(\log n) + n)$, where m = number of nonzeroes?

A preprocessing/multiplication algorithm for matrix-vector multiplication that builds on lookup table techniques

- Is there a preprocessing/multiplication algorithm for *sparse* matrices? Can we do multiplication in *e.g.* $O(m/poly(\log n) + n)$, where m = number of nonzeroes?
- Can the algebraic matrix multiplication algorithms (Strassen, etc.) be applied to this problem?

A preprocessing/multiplication algorithm for matrix-vector multiplication that builds on lookup table techniques

- Is there a preprocessing/multiplication algorithm for *sparse* matrices? Can we do multiplication in *e.g.* $O(m/poly(\log n) + n)$, where m = number of nonzeroes?
- Can the algebraic matrix multiplication algorithms (Strassen, etc.) be applied to this problem?
- Can our ideas be extended to achieve non-subtractive Boolean matrix multiplication in $o(n^3/\log^2 n)$?

Thank you!