Matrix-Vector Multiplication in Sub-Quadratic Time (Some Preprocessing Required)

Ryan Williams

Carnegie Mellon University

Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing

Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing
How fast can $n \times n$ matrix-vector multiplication be?

Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing
How fast can $n \times n$ matrix-vector multiplication be?
$\Theta\left(n^{2}\right)$ steps just to read the matrix!

Introduction

Matrix-Vector Multiplication: Fundamental Operation in Scientific Computing
How fast can $n \times n$ matrix-vector multiplication be?
$\Theta\left(n^{2}\right)$ steps just to read the matrix!

Main Result: If we allow $O\left(n^{2+\varepsilon}\right)$ preprocessing, then matrix-vector multiplication over any finite semiring can be done in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$.

Better Algorithms for Matrix Multiplication

Three of the major developments:

Better Algorithms for Matrix Multiplication

Three of the major developments:

- Arlazarov et al., a.k.a. "Four Russians" (1960's): $O\left(n^{3} / \log n\right)$ operations Uses table lookups
Good for hardware with short vector operations as primitives

Better Algorithms for Matrix Multiplication

Three of the major developments:

- Arlazarov et al., a.k.a. "Four Russians" (1960's): $O\left(n^{3} / \log n\right)$ operations Uses table lookups

Good for hardware with short vector operations as primitives

- Strassen (1969): $n^{\frac{\log 7}{\log 2}}=O\left(n^{2.81}\right)$ operations

Asymptotically fast, but overhead in the big-O
Experiments in practice are inconclusive about Strassen vs. Four
Russians for Boolean matrix multiplication (Bard, 2006)

Better Algorithms for Matrix Multiplication

Three of the major developments:

- Arlazarov et al., a.k.a. "Four Russians" (1960's): $O\left(n^{3} / \log n\right)$ operations Uses table lookups

Good for hardware with short vector operations as primitives

- Strassen (1969): $n^{\frac{\log 7}{\log 2}}=O\left(n^{2.81}\right)$ operations

Asymptotically fast, but overhead in the big-O
Experiments in practice are inconclusive about Strassen vs. Four
Russians for Boolean matrix multiplication (Bard, 2006)

- Coppersmith and Winograd (1990): $O\left(n^{2.376}\right)$ operations

Not yet practical

Focus: Combinatorial Matrix Multiplication Algorithms

Focus: Combinatorial Matrix Multiplication Algorithms

- Also called non-algebraic; let's call them non-subtractive
E.g. Four-Russians is combinatorial, Strassen isn't

Focus: Combinatorial Matrix Multiplication Algorithms

- Also called non-algebraic; let's call them non-subtractive
E.g. Four-Russians is combinatorial, Strassen isn't

More Non-Subtractive Boolean Matrix Mult. Algorithms:

- Atkinson and Santoro: $O\left(n^{3} / \log ^{3 / 2} n\right)$ on a $(\log n)$-word RAM
- Rytter and Basch-Khanna-Motwani: $O\left(n^{3} / \log ^{2} n\right)$ on a RAM
- Chan: Four Russians can be implemented on $O\left(n^{3} / \log ^{2} n\right)$ on a pointer machine

Main Result

The $O\left(n^{3} / \log ^{2} n\right)$ matrix multiplication algorithm can be "de-amortized"

Main Result

The $O\left(n^{3} / \log ^{2} n\right)$ matrix multiplication algorithm can be "de-amortized"

More precisely, we can:
Preprocess an $n \times n$ matrix A over a finite semiring in $O\left(n^{2+\varepsilon}\right)$
Such that vector multiplications with A can be done in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$

Main Result

The $O\left(n^{3} / \log ^{2} n\right)$ matrix multiplication algorithm can be "de-amortized"

More precisely, we can:
Preprocess an $n \times n$ matrix A over a finite semiring in $O\left(n^{2+\varepsilon}\right)$
Such that vector multiplications with A can be done in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$

Allows for "non-subtractive" matrix multiplication to be done on-line

Main Result

The $O\left(n^{3} / \log ^{2} n\right)$ matrix multiplication algorithm can be "de-amortized"

More precisely, we can:
Preprocess an $n \times n$ matrix A over a finite semiring in $O\left(n^{2+\varepsilon}\right)$
Such that vector multiplications with A can be done in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$

Allows for "non-subtractive" matrix multiplication to be done on-line
Can be implemented on a pointer machine

Main Result

The $O\left(n^{3} / \log ^{2} n\right)$ matrix multiplication algorithm can be "de-amortized"

More precisely, we can:
Preprocess an $n \times n$ matrix A over a finite semiring in $O\left(n^{2+\varepsilon}\right)$
Such that vector multiplications with A can be done in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$

Allows for "non-subtractive" matrix multiplication to be done on-line
Can be implemented on a pointer machine
This Talk: The Boolean case

Preprocessing Phase: The Boolean Case

Partition the input matrix A into blocks of $\lceil\varepsilon \log n\rceil \times\lceil\varepsilon \log n\rceil$ size:

Preprocessing Phase: The Boolean Case

Build a graph G with parts $P_{1}, \ldots, P_{n /(\varepsilon \log n)}, Q_{1}, \ldots, Q_{n /(\varepsilon \log n)}$

Preprocessing Phase: The Boolean Case

Edges of G : Each vertex v in each P_{i} has exactly one edge into each Q_{j}

Preprocessing Phase: The Boolean Case

Edges of G : Each vertex v in each P_{i} has exactly one edge into each Q_{j}

Time to build the graph:

$$
\begin{array}{lll}
\frac{n}{\varepsilon \log n} \cdot \frac{n}{\varepsilon \log n} \cdot 2^{\varepsilon \log n} \cdot(\varepsilon \log n)^{2}=O\left(n^{2+\varepsilon}\right) \\
\text { number } & \text { number } & \text { number } \\
\text { of } Q_{j} & \text { of } P_{i} & \text { of nodes } \\
& & \text { in } P_{i}
\end{array}
$$

How to Do Fast Vector Multiplications

Let v be a column vector. Want: $A \cdot v$.

How to Do Fast Vector Multiplications

Let v be a column vector. Want: $A \cdot v$.
(1) Break up v into $\varepsilon \log n$ sized chunks:

$$
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\frac{n}{\varepsilon \log n}}
\end{array}\right]
$$

How to Do Fast Vector Multiplications

(2) For each $i=1, \ldots, n /(\varepsilon \log n)$, look up v_{i} in P_{i}.

How to Do Fast Vector Multiplications

(2) For each $i=1, \ldots, n /(\varepsilon \log n)$, look up v_{i} in P_{i}.

How to Do Fast Vector Multiplications

(2) For each $i=1, \ldots, n /(\varepsilon \log n)$, look up v_{i} in P_{i}.

Takes $\tilde{O}(n)$ time.

How to Do Fast Vector Multiplications

(3) Look up the neighbors of v_{i}, mark each neighbor found.

How to Do Fast Vector Multiplications

(3) Look up the neighbors of v_{i}, mark each neighbor found.

How to Do Fast Vector Multiplications

(3) Look up the neighbors of v_{i}, mark each neighbor found.

How to Do Fast Vector Multiplications

(3) Look up the neighbors of v_{i}, mark each neighbor found.

How to Do Fast Vector Multiplications

(4) For each Q_{j}, define v_{j}^{\prime} as the OR of all marked vectors in Q_{j}

How to Do Fast Vector Multiplications

(4) For each Q_{j}, define v_{j}^{\prime} as the OR of all marked vectors in Q_{j}

Takes $\tilde{O}\left(n^{1+\varepsilon}\right)$ time

How to Do Fast Vector Multiplications

(5) Output $v^{\prime}:=\left[\begin{array}{c}v_{1}^{\prime} \\ v_{2}^{\prime} \\ \vdots \\ v_{\frac{n}{\varepsilon \log n}}^{\prime}\end{array}\right]$. Claim: $v^{\prime}=A \cdot v$.

How to Do Fast Vector Multiplications

(5) Output $v^{\prime}:=\left[\begin{array}{c}v_{1}^{\prime} \\ v_{2}^{\prime} \\ \vdots \\ v_{\frac{n}{\varepsilon \log n}}^{\prime}\end{array}\right]$. Claim: $v^{\prime}=A \cdot v$.

Proof: By definition, $v_{j}^{\prime}=\bigvee_{i=1}^{n /(\varepsilon \log n)} A_{j, i} \cdot v_{i}$.

How to Do Fast Vector Multiplications

(5) Output $v^{\prime}:=\left[\begin{array}{c}v_{1}^{\prime} \\ v_{2}^{\prime} \\ \vdots \\ v_{\bar{\prime} \frac{n}{\log n}}\end{array}\right]$. Claim: $v^{\prime}=A \cdot v$.

Proof: By definition, $v_{j}^{\prime}=\bigvee_{i=1}^{n /(\varepsilon \log n)} A_{j, i} \cdot v_{i}$.

$$
A v=\left[\begin{array}{ccc}
A_{1,1} & \cdots & A_{1, n /(\varepsilon \log n)} \\
\vdots & \ddots & \vdots \\
A_{n /(\varepsilon \log n), 1} & \cdots & A_{n /(\varepsilon \log n), n /(\varepsilon \log n)}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v \frac{n}{\varepsilon \log n}
\end{array}\right]
$$

How to Do Fast Vector Multiplications

(5) Output $v^{\prime}:=\left[\begin{array}{c}v_{1}^{\prime} \\ v_{2}^{\prime} \\ \vdots \\ v_{\bar{\varepsilon} \log n}^{\prime}\end{array}\right]$. Claim: $v^{\prime}=A \cdot v$.

Proof: By definition, $v_{j}^{\prime}=\bigvee_{i=1}^{n /(\varepsilon \log n)} A_{j, i} \cdot v_{i}$.

$$
\begin{aligned}
A v & =\left[\begin{array}{ccc}
A_{1,1} & \cdots & A_{1, n /(\varepsilon \log n)} \\
\vdots & \ddots & \vdots \\
A_{n /(\varepsilon \log n), 1} & \cdots & A_{n /(\varepsilon \log n), n /(\varepsilon \log n)}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{\frac{n}{\varepsilon \log n}}
\end{array}\right] \\
& =\left(\bigvee_{i=1}^{n /(\varepsilon \log n)} A_{1, i} \cdot v_{i}, \ldots, \bigvee_{i=1}^{n /(\varepsilon \log n)} A_{1, n /(\varepsilon \log n)} \cdot v_{i}\right)=v^{\prime} .
\end{aligned}
$$

Some Applications

Can quickly compute the neighbors of arbitrary vertex subsets
Let A be the adjacency matrix of $G=(V, E)$.
Let v_{S} be the indicator vector for a $S \subseteq V$.

Some Applications

Can quickly compute the neighbors of arbitrary vertex subsets
Let A be the adjacency matrix of $G=(V, E)$.
Let v_{S} be the indicator vector for a $S \subseteq V$.

Proposition: $A \cdot v_{S}$ is the indicator vector for $N(S)$, the neighborhood of S.

Some Applications

Can quickly compute the neighbors of arbitrary vertex subsets
Let A be the adjacency matrix of $G=(V, E)$.
Let v_{S} be the indicator vector for a $S \subseteq V$.

Proposition: $A \cdot v_{S}$ is the indicator vector for $N(S)$, the neighborhood of S.

Corollary: After $O\left(n^{2+\varepsilon}\right)$ preprocessing, can determine the neighborhood of any vertex subset in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$ time.
(One level of BFS in $o\left(n^{2}\right)$ time)

Graph Queries

Corollary: After $O\left(n^{2+\varepsilon}\right)$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$ time.

Graph Queries

Corollary: After $O\left(n^{2+\varepsilon}\right)$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$ time.

Proof: Let $S \subseteq V$.

Graph Queries

Corollary: After $O\left(n^{2+\varepsilon}\right)$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$ time.

Proof: Let $S \subseteq V$.
S is dominating $\Longleftrightarrow S \cup N(S)=V$.

Graph Queries

Corollary: After $O\left(n^{2+\varepsilon}\right)$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$ time.
Proof: Let $S \subseteq V$.

$$
S \text { is dominating } \Longleftrightarrow S \cup N(S)=V \text {. }
$$

S is independent $\Longleftrightarrow S \cap N(S)=\varnothing$.

Graph Queries

Corollary: After $O\left(n^{2+\varepsilon}\right)$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$ time.

Proof: Let $S \subseteq V$.

S is dominating $\Longleftrightarrow S \cup N(S)=V$.
S is independent $\Longleftrightarrow S \cap N(S)=\varnothing$.
S is a vertex cover $\Longleftrightarrow V-S$ is independent.

Graph Queries

Corollary: After $O\left(n^{2+\varepsilon}\right)$ preprocessing, can determine if a given vertex subset is an independent set, a vertex cover, or a dominating set, all in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$ time.

Proof: Let $S \subseteq V$.

$$
S \text { is dominating } \Longleftrightarrow S \cup N(S)=V
$$

$$
S \text { is independent } \Longleftrightarrow S \cap N(S)=\varnothing \text {. }
$$

S is a vertex cover $\Longleftrightarrow V-S$ is independent.
Each can be quickly determined from knowing S and $N(S)$.

Triangle Detection

Triangle Detection

Problem: Triangle Detection
Given: Graph G and vertex i.
Question: Does i participate in a 3-cycle, a.k.a. triangle?

Triangle Detection

Problem: Triangle Detection

Given: Graph G and vertex i.
Question: Does i participate in a 3-cycle, a.k.a. triangle?
Worst Case: Can take $\Theta\left(n^{2}\right)$ time to check all pairs of neighbors of i

Triangle Detection

Problem: Triangle Detection

Given: Graph G and vertex i.
Question: Does i participate in a 3-cycle, a.k.a. triangle?
Worst Case: Can take $\Theta\left(n^{2}\right)$ time to check all pairs of neighbors of i
Corollary: After $O\left(n^{2+\varepsilon}\right)$ preprocessing on G, can solve triangle detection for arbitrary vertices in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$ time.

Triangle Detection

Problem: Triangle Detection

Given: Graph G and vertex i.
Question: Does i participate in a 3-cycle, a.k.a. triangle?
Worst Case: Can take $\Theta\left(n^{2}\right)$ time to check all pairs of neighbors of i
Corollary: After $O\left(n^{2+\varepsilon}\right)$ preprocessing on G, can solve triangle detection for arbitrary vertices in $O\left(n^{2} /(\varepsilon \log n)^{2}\right)$ time.

Proof: Given vertex i, let S be its set of neighbors (gotten in $O(n)$ time). S is not independent $\Longleftrightarrow i$ participates in a triangle.

Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that builds on lookup table techniques

Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that builds on lookup table techniques

- Is there a preprocessing/multiplication algorithm for sparse matrices? Can we do multiplication in e.g. $O(m / \operatorname{poly}(\log n)+n)$, where $m=$ number of nonzeroes?

Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that builds on lookup table techniques

- Is there a preprocessing/multiplication algorithm for sparse matrices? Can we do multiplication in e.g. $O(m / \operatorname{poly}(\log n)+n)$,
where $m=$ number of nonzeroes?
- Can the algebraic matrix multiplication algorithms (Strassen, etc.) be applied to this problem?

Conclusion

A preprocessing/multiplication algorithm for matrix-vector multiplication that builds on lookup table techniques

- Is there a preprocessing/multiplication algorithm for sparse matrices? Can
we do multiplication in e.g. $O(m / \operatorname{poly}(\log n)+n)$,
where $m=$ number of nonzeroes?
- Can the algebraic matrix multiplication algorithms (Strassen, etc.) be applied to this problem?
- Can our ideas be extended to achieve non-subtractive Boolean matrix multiplication in $o\left(n^{3} / \log ^{2} n\right)$?

Thank you!

