
A New Combinatorial Approach For Sparse

Graph Problems

Guy E. Blelloch, Virginia Vassilevska, and Ryan Williams

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA
{guyb,virgi,ryanw}@cs.cmu.edu

Abstract. We give a new combinatorial data structure for representing
arbitrary Boolean matrices. After a short preprocessing phase, the data
structure can perform fast vector multiplications with a given matrix,
where the runtime depends on the sparsity of the input vector. The data
structure can also return minimum witnesses for the matrix-vector prod-
uct. Our approach is simple and implementable: the data structure works
by precomputing small problems and recombining them in a novel way.
It can be easily plugged into existing algorithms, achieving an asymp-
totic speedup over previous results. As a consequence, we achieve new
running time bounds for computing the transitive closure of a graph,
all pairs shortest paths on unweighted undirected graphs, and finding
a maximum node-weighted triangle. Furthermore, any asymptotic im-
provement on our algorithms would imply a o(n3/ log2 n) combinatorial
algorithm for Boolean matrix multiplication, a longstanding open prob-
lem in the area. We also use the data structure to give the first asymp-
totic improvement over O(mn) for all pairs least common ancestors on
directed acyclic graphs.

1 Introduction

A large collection of graph problems in the literature admit essentially two solu-
tions: an algebraic approach and a combinatorial approach. Algebraic algorithms
rely on the theoretical efficacy of fast matrix multiplication over a ring, and re-
duce the problem to a small number of matrix multiplications. These algorithms
achieve unbelievably good theoretical guarantees, but can be impractical to im-
plement given the large overhead of fast matrix multiplication. Combinatorial
algorithms rely on the efficient preprocessing of small subproblems. Their the-
oretical guarantees are typically worse, but they usually lead to more practical
improvements. Combinatorial approaches are also interesting in that they have
the capability to tackle problems that seem to be currently out of the reach of
fast matrix multiplication. For example, many sparse graph problems are not
known be solvable quickly with fast matrix multiplication, but a combinatorial
approach can give asymptotic improvements. (Examples are below.)

In this paper, we present a new combinatorial method for preprocessing an
n × n dense Boolean matrix A in O(n2+ε) time (for any ε > 0) so that sparse
vector multiplications with A can be done faster, while matrix updates are not
too expensive to handle. In particular,

1

– for a vector v with t nonzeros, A · v can be computed in O(n
log n (t/κ + n/`))

time, where ` and κ are parameters satisfying
(

`
κ

)

≤ nε, and
– row and/or column updates to the matrix can be performed in O(n1+ε) time.

The matrix-vector multiplication can actually return a vector w of minimum
witnesses; that is, w[i] = k iff k is the minimum index satisfying A[i, k] ·v[k] 6= 0.
The data structure is simple, does not use devious “word tricks” or hide any
large constants, and can be implemented on a pointer machine.1 We apply our
data structure to four fundamental graph problems: transitive closure, all pairs
shortest paths, minimum weight triangle, and all pairs least common ancestors.
All four are known to be solvable in n3−δ time for some δ > 0, but the algorithms
are algebraic and do not exploit the potential sparsity of graphs. With the right
settings of the parameters ` and κ, our data structure can be applied to all the
above four problems, giving the best runtime bounds for sparse problems to date.

Transitive Closure: We have a directed graph on n nodes and m edges, and
wish to find all pairs of nodes (u, v) whether there is a path from u to v in the
graph. Transitive closure has myriad applications and a long history of ideas.
The best known theoretical algorithms use O(M(n)) time [10, 13] where M(n)
is the complexity of n × n Boolean matrix product, and O(mn/ log n + n2)
time [5, 3]. Algebraic matrix multiplication implies an O(nω) algorithm, where
ω < 2.376 [6], and combinatorial matrix multiplication gives an O(n3/ log2 n)
runtime [2, 14, 18]. Our data structure can be used to implement transitive clo-

sure in O(mn(log(n2

m)/ log2 n)+n2) time. This constitutes the first combinatorial

improvement on the bounds of O(n3/ log2 n) and O(mn/ log n + n2) that follow
from Four Russians preprocessing, and it establishes the best known running
time for general sparse graphs.

All Pairs Shortest Paths (APSP): We want to construct a representation of a
given graph, so that for any pair of nodes, a shortest path between the pair
can be efficiently obtained from the representation. The work on APSP is deep
and vast; here we focus on the simplest case where the graph is undirected and
unweighted. For this case, Galil and Margalit [11] and Seidel [15] gave O(nω)
time algorithms. These algorithms do not improve on the simple O(mn + n2)
algorithm (using BFS) when m = o(nω−1). The first improvement over O(mn)

was given by Feder and Motwani [9] who gave an O(mn log(n2

m)/ log n) time

algorithm. Recently, Chan presented new algorithms that take Ô(mn/ log n)
time.2 We show that APSP on undirected unweighted graphs can be computed

in O(mn log(n2

m)/ log2 n) time. Our algorithm modifies Chan’s O(mn/ log n +
n2 log n) time solution, implementing its most time-consuming procedure effi-
ciently using our data structure.

1 When implemented on the w-word RAM, the multiplication operation runs in
O(n

w
(t/k+n/`)). In fact, all of the combinatorial algorithms mentioned in this paper

can be implemented on a w-word RAM in O(T (n)(log n)/w) time, where T (n) is the
runtime stated.

2 The Ô notation suppresses poly(log log n) factors.

All Pairs Weighted Triangles: Here we have a directed graph with an arbitrary
weight function w on the nodes. We wish to compute, for all pairs of nodes
v1 and v2, a node v3 that such that (v1, v3, v2, v1) is a cycle and

∑

i w(vi) is
minimized or maximized. The problem has applications in data mining and pat-
tern matching. Recent research has uncovered interesting algebraic algorithms
for this problem [17], the current best being O(n2.575), but again it is somewhat
impractical, relying on fast rectangular matrix multiplication. (We note that
the problem of finding a single minimum or maximum weight triangle has been
shown to be solvable in nω+o(1) time [8].) The proof of the result in [17] also
implies an O(mn/ log n) algorithm. Our data structure lets us solve the problem

in O(mn log(n2

m)/ log2 n) time.

Least Common Ancestors on DAGs: Given a directed acyclic graph G on n
nodes and m edges, fix a topological order on the nodes. For all pairs of nodes
s and t we want to compute the highest node in topological order that still has
a path to both s and t. Such a node is called a least common ancestor (LCA)
of s and t. The all pairs LCA problem is to determine an LCA for every pair of
vertices in a DAG. In terms of n, the best algebraic algorithm for finding all pairs
LCAs uses the minimum witness product and runs in O(n2.575) [12, 7]. Czumaj,
Kowaluk, and Lingas [12, 7] gave an algorithm for finding all pairs LCAs in a

sparse DAG in O(mn) time. We improve this runtime to O(mn log(n2

m)/ log n).

1.1 On the optimality of our algorithms

We have claimed that all the above problems (with the exception of the last
one) can be solved in O(mn log(n2/m)/ log2 n) time. How does this new runtime
expression compare to previous work? It is easier to see the impact when we let
m = n2/s for a parameter s. Then

mn log(n2/m)

log2 n
=

n3

log2 n
·
log s

s
(1)

Therefore, our algorithms yield asymptotic improvements on “medium density”
graphs, where the number of edges is in the range n2−o(1) ≤ m ≤ o(n2).

At first glance, such an improvement may appear small. We stress that
our algorithms have essentially reached the best that one can do for these
problems, without resorting to fast matrix multiplication or achieving a ma-
jor breakthrough in combinatorial matrix algorithms. As all of the above prob-
lems can be used to simulate Boolean matrix multiplication, (1) implies that an

O
(

mn log(n2/m)
f(n) log2 n

)

algorithm for any of the above problems and any unbounded

function f(n) would entail an asymptotic improvement on combinatorial Boolean

matrix multiplication, a longstanding open problem. Note that an O
(

mn
f(n) log n

)

combinatorial algorithm does not imply such a breakthrough: let m = n2/s and
f(n) = o(log n) and observe O(mn/(f(n) log n)) = O(n3/(sf(n) log n)); such an
algorithm is still slow on sufficiently dense matrices.

1.2 Related Work

Closely related to our work is Feder and Motwani’s ingenious method for com-
pressing sparse graphs, introduced in STOC’91. In the language of Boolean ma-
trices, their method runs in Õ(mn1−ε) time and decomposes an n × n matrix
A with m nonzeros into an expression of the form A = (A1 ∗ A2) ∨ A3, where
∗ and ∨ are matrix product and pointwise-OR, A1 is n × mnε, A2 is mnε × n,

A1 and A2 have O(m log(n2/m)
log n) nonzeros, and A3 has O(n1+ε) nonzeros. Such a

decomposition has many applications to speeding up algorithms.

While a (log n)/ log(n2/m) factor of savings crops up in both approaches, our
approach is markedly different from graph compression; in fact it seems orthog-
onal. From the above viewpoint, Feder-Motwani’s graph compression technique
can be seen as a method for preprocessing a sparse Boolean matrix so that mul-

tiplications of it with arbitrary vectors can be done in O
(

m log(n2/m)
log n

)

time. In

contrast, our method preprocesses an arbitrary matrix so that its products with
sparse vectors are faster, and updates to the matrix are not prohibitive. This
sort of preprocessing leads to a Feder-Motwani style improvement for a new set
of problems. It is especially applicable to problems in which an initially sparse
graph is augmented and becomes dense over time, such as transitive closure.

Our data structure is related to one given previously by the third author [18],
who showed how to preprocess a matrix over a constant-sized semiring in O(n2+ε)
time so that subsequent vector multiplications can be performed in O(n2/ log2 n)
time. Ours is a significant improvement over this data structure in two ways: the
runtime of multiplication now varies with the sparsity of the vector (and is
never worse than O(n2/ log2 n)), and our data structure also returns minimum
witnesses for the multiplication. Both of these are non-trivial augmentations that
lead to new applications.

2 Preliminaries and Notation

Define H(x) = x log2(1/x)+ (1−x) log2(1/(1−x)). H is often called the binary
entropy function. All logarithms are assumed to be base two. Throughout this
paper, when we consider a graph G = (V,E) we let m = |E| and n = |V |.
G can be directed or undirected; when unspecified we assume it is directed. We
define δG(s, v) to be the distance in G from s to v. We assume G is always weakly
connected, so that m ≥ n−1. We use the terms vertex and node interchangeably.
For an integer `, let [`] refer to {1, . . . , `}.

We denote the typical Boolean product of two matrices A and B by A · B.
For two Boolean vectors u and v, let u ∧ v and u ∨ v denote the componentwise
AND and OR of u and v respectively; let ¬v be the componentwise NOT on v.

A minimum witness vector for the product of a Boolean matrix A with a
Boolean vector v is a vector w such that w[i] = 0 if ∨j(A[i][j] · v[j]) = 0, and if
∨j(A[i][j] · v[j]) = 1, w[i] is the minimum index j such that A[i][j] · v[j] = 1.

3 Combinatorial Matrix Products With Sparse Vectors

We begin with a data structure which after preprocessing stores a matrix while
allowing efficient matrix-vector product queries and column updates to the ma-
trix. On a matrix-vector product query, the data structure not only returns the
resulting product matrix, but also a minimum witness vector for the product.

Theorem 1. Let B be a d × n Boolean matrix. Let κ ≥ 1 and ` > κ be in-
teger parameters. Then one can create a data structure with O(dnκ

` ·
∑κ

b=1

(

`
b

)

)
preprocessing time so that the following operations are supported:

– given any n×1 binary vector r, output B ·r and a d×1 vector w of minimum
witnesses for B·r in O(d log n+ d

log n

(

n
` + mr

κ

)

) time, where mr is the number
of nonzeros in r;

– replace any column of B by a new column in O(dκ
∑κ

b=1

(

`
b

)

) time.

The result can be made to work on a pointer machine as in [18]. Observe
that the näıve algorithm for B · r that simulates Θ(log n) word operations on a
pointer machine would take O(dmr

log n) time, so the above runtime gives a factor of
κ savings provided that ` is sufficiently large. The result can also be generalized
to handle products over any fixed size semiring, similar to [18].
Proof of Theorem 1. Let 0 < ε < 1 be a sufficiently small constant in the
following. Set d′ = d d

dε log nee and n′ = dn/`e. To preprocess B, we divide it into

block submatrices of at most dε log ne rows and ` columns each, writing Bji to
denote the j, i submatrix, so

B =

B11 . . . B1n′

...
. . .

...
Bd′1 . . . Bd′n′

.

Note that entries from the kth column of B are contained in the submatrices
Bjdk/`e for j = 1, . . . , d′, and the entries from kth row are in Bdk/`ei for i =
1, . . . , n′. For simplicity, from now on we omit the ceilings around ε log n.

For every j = 1, . . . , d′, i = 1, . . . , n′ and every ` length vector v with at most
κ nonzeros, precompute the product Bji · v, and a minimum witness vector w
which is defined as: for all k = 1, . . . ε log n,

w[k] =

{

0 if (Bji · v)[k] = 0
(i − 1)` + w′ if Bji[k][w′] · v[w′] = 1 and ∀w′′ < w′, Bji[k][w′′] · v[w′′] = 0.

Store the results in a look-up table. Intuitively, w stores the minimum witnesses
for Bji ·v with their indices in [n], that is, as if Bji is construed as an n×n matrix
which is zero everywhere except in the (j, i) subblock which is equal to Bji, and
v is construed as a length n vector which is nonzero only in its ith block which
equals v. This product and witness computation on Bji and v takes O(κε log n)

time. There are at most
∑κ

b=1

(

`
b

)

such vectors v, and hence this precomputation

takes O(κ log n
∑κ

b=1

(

`
b

)

) time for fixed Bji. Over all j, i the preprocessing takes

O(dn
` log n · κ log n

∑κ
b=1

(

`
b

)

) = O(dnκ
`

∑κ
b=1

(

`
b

)

) time.
Suppose we want to modify column k of B in this representation. This re-

quires recomputing Bjdk/`e · v and the witness vector for this product, for all
j = 1, . . . , n′ and for all length ` vectors v with at most κ nonzeros. Thus a
column update takes only O(dκ

∑κ
b=1

(

`
b

)

) time.
Now we describe how to compute B · r and its minimum witnesses. Let mr

be the number of nonzeros in r. We write r = [r1 · · · rn′]T where each ri is a
vector of length `. Let mri be the number of nonzeros in ri.

For each i = 1, . . . , n′, we decompose ri into a union of at most dmri/κe
disjoint vectors rip of length ` and at most κ nonzeros, so that ri1 contains the
first κ nonzeros of ri, ri2 the next κ, and so on, and ri = ∨prip. Then, for each
p = 1, . . . , dmri/κe, rip has nonzeros with larger indices than all rip′ with p′ < p,
i.e. if rip[q] = 1 for some q, then for all p′ < p and q′ ≥ q, rip′ [q′] = 0.

For j = 1, . . . , d′, let Bj = [Bj1 . . . Bjn′]. We shall compute vj = Bj · r
separately for each j and then combine the results as v = [v1, . . . , vd′]T . Fix
j ∈ [d′]. Initially, set vj and wj to be the all-zeros vector of length ε log n. The
vector wj shall contain minimum witnesses for Bj · r.

For each i = 1, . . . , n′ in increasing order, consider ri. In increasing order for
each p = 1, . . . , dmri/κe, process rip as follows. Look up v = Bji · rip and its
witness vector w. Compute y = v ∧ ¬vj and then set vj = v ∨ vj . This takes
O(1) time. Vector y has nonzeros in exactly those coordinates h for which the
minimum witness of (Bj ·r)[h] is a minimum witness of (Bji ·rip)[h]; since over all
i′ and p′ the nonzeros of ri′p′ partition the nonzeros of r, this minimum witness is
not a minimum witness of any (Bji′ ·ri′p′)[h] with i′ 6= i or p′ 6= p. In this situation
we say that the minimum witness is in rip. In particular, if y 6= 0, rip contains
some minimum witnesses for Bj · r and the witness vector wj for Bj · r needs
to be updated. Then, for each q = 1, . . . , ε log n, if y[q] = 1, set wj [q] = w[q].
This ensures that after all i, p iterations, v =

∨

i,p (Bji · rip) = Bj · r and wj is

the product’s minimum witness vector. Finally, we output B · r = [v1 · · · vd′]T

and w = [w1 . . . wd′]. Updating wj can happen at most ε log n times, because
each wj [q] is set at most once for q = 1, . . . , ε log n. Each individual update
takes O(log n) time. Hence, for each j, the updates to wj take O(log2 n) time,
and over all j, the minimum witness computation takes O(d log n). Computing

vj = Bj · r for a fixed j takes O(
∑n′

i=1dmri/κe) ≤ O(
∑n′

i=1(1 + mri/κ)) time.
Over all j = 1, . . . , d/(ε log n), the computation of B · r takes asymptotically

d

log n

n/`
∑

i=1

(

1 +
mri

κ

)

≤
d

log n

(n

`
+

mr

κ

)

.

In total, the running time is O(d log n + d
log n (n

` + mr

κ)). 2

Let us demonstrate what the data structure performance looks like with a
particular setting of the parameters ` and k. From Jensen’s inequality we have:

Fact 1 H(a/b) ≤ 2a/b log(b/a), for b ≥ 2a.

Corollary 1. Given a parameter m and 0 < ε < 1, any d×n Boolean matrix A
can be preprocessed in O(dn1+ε) time, so that every subsequent computation of

AB can be determined in O(de log n + md log(ne/m)
log2 n

) time, for any n× e Boolean

matrix B with at most m nonzeros.

Proof. When m ≥ en
2 , the runtime in the theorem is Ω(end/ log2 n), and can be

achieved via Four Russians processing. If m ≤ en1−ε then ε log n ≤ log en
m and

running a standard sparse matrix multiplication with log n bit operations in O(1)

time achieves O(md/ log n) ≤ O(md log(en/m)
log2 n

) time. If en1−ε < m < en
2 , apply

Theorem 1 with ` = ε en
m · (log n)/ log(en

m), and κ = ε(log n)/ log(en
m) ≥ 1. Then

by Fact 1 and m < en
2 , we can show that

(

`
κ

)

≤ nε. Hence the preprocessing step
takes O(dn1+εm/(ne)) = O(dn1+ε) time. Matrix-vector multiplication with a

vector of mi nonzeros takes O
(

d log n + d
log n

(

m log(en/m)
e log n + mi log(en/m)

log n

))

time.

If mi is the number of nonzeros in the ith column of B, as
∑

i mi = m, the full

matrix product A · B can be done in O
(

de log n + md log(en/m)
log2 n

)

time. 2

It follows that Boolean matrix multiplication for n×n matrices can be done

in O(n2+ε + mn log n2

m / log2 n) time, provided that at least one of the matrices
has only m nonzeros. We note that such a result could also be obtained by con-
struing the sparse matrix as a bipartite graph, applying Feder-Motwani’s graph
compression to represent the sparse matrix as a product of two sparser matrices
(plus a matrix with n2−δ nonzeros), then using an O(mn/ log n) Boolean matrix
multiplication algorithm on the resulting matrices. However, given the complex-
ity of this procedure (especially the graph compression, which is involved) we
believe that our method is more practical. Theorem 1 also leads to two other
new results almost immediately.

Minimum Witnesses for Matrix Multiplication. The minimum witness product
of two n × n Boolean matrices A and B is the n × n matrix C defined as
C[i][j] = minn

k=1{k | A[i][k] · B[k][j] = 1}, for every i, j ∈ [n]. This product
has applications to several graph algorithms. It has been used to compute all
pairs least common ancestors in DAGs [12, 7], to find minimum weight triangles
in node-weighted graphs [17], and to compute all pairs bottleneck paths in a
node weighted graph [16]. The best known algorithm for the minimum witness
product is by Czumaj, Kowaluk and Lingas [12, 7] and runs in O(n2.575) time.
However, when one of the matrices has at most m = o(n1.575) nonzeros, nothing
better than O(mn) was known (in terms of m) for combinatorially computing
the minimum witness product. As an immediate corollary of Theorem 1, we
obtain the first asymptotic improvement for sparse matrices: an algorithm with
O(mn log(n2/m)/ log2 n) running time.

Corollary 2. Given n × n Boolean matrices A and B, where B has at most
m nonzero entries, all pairs minimum witnesses of A · B can be computed in
O(n2 + mn log(n2/m)/ log2 n) time.

Minimum Weighted Triangles. The problem of computing for all pairs of nodes
in a node-weighted graph a triangle (if any) of minimum weight passing through
both nodes can be reduced to finding minimum witnesses as follows ([17]). Sort
the nodes in order of their weight in O(n log n) time. Create the adjacency matrix
A of the graph so that the rows and columns are in the sorted order of the
vertices. Compute the minimum witness product C of A. Then, for every edge
(i, j) ∈ G, the minimum weight triangle passing through i and j is (i, j, C[i][j]).
From this reduction and Corollary 2 we obtain the following.

Corollary 3. Given a graph G with m edges and n nodes with arbitrary node
weights, there is an algorithm which finds for all pairs of vertices i, j, a triangle

of minimum weight sum going through i, j in O(n2 + mn log(n2

m)/ log2 n) time.

4 Transitive Closure

The transitive closure matrix of an n node graph G is the n×n Boolean matrix
A for which A[i][j] = 1 if and only if node i is reachable from node j in G.
In terms of n, the complexity of computing the transitive closure of an n node
graph is equivalent to that of multiplying two Boolean n × n matrices [1], thus
the best known algorithm in terms of n is O(nω). However, when the sparsity of
G is taken into account, it is unclear how to use an algorithm for sparse matrix
multiplication to solve transitive closure in the same runtime. While Feder and

Motwani’s [9] graph compression implies an O(mn log(n2

m)/ log2 n) algorithm for
sparse matrix product, this result gives little insight on how to compute the
transitive closure of a sparse graph—since the number of edges in the transitive
closure is independent of m in general, maintaining a graph compression will not
suffice. In contrast, the data structure of Theorem 1 is perfectly suited for use
with a dynamic programming algorithm for transitive closure.

Theorem 2. Transitive closure can be computed in O(n2 + mn log(n2

m)/ log2 n)
time on graphs with n nodes and m edges.

Proof. We first compute the strongly connected components of G in O(m + n)
time. We then contract them in linear time to obtain a DAG G′. Clearly, if we
have the transitive closure matrix of G′, we can recover the transitive closure
matrix of G with an extra O(n2) additive overhead: for every edge (u, v) in the
transitive closure graph of G′, go through all pairs of vertices (i, j) such that i
is in u and j is in v and add 1 to the transitive closure matrix of G. Hence it
suffices for us to compute the transitive closure of a DAG G′.

First, we topologically sort G′ in O(m + n) time. Our transitive closure
algorithm is based on a dynamic programming formulation of the problem given
by Cheriyan and Mehlhorn [5], later also mentioned by Chan [3]. The algorithm
proceeds in n iterations; after the kth iteration, we have computed the transitive
closure of the last k nodes in the topological order. At every point, the current
transitive closure is maintained in a Boolean matrix R, such that R[u][v] = 1 iff u
is reachable from v. Let R[·][v] denote column v of R. Let p be the (k+1)st node

in reverse topological order. We wish to compute R[·][p], given all the vectors
R[·][u] for nodes u after p in the topological order. To do this, we compute the
componentwise OR of all vectors R[·][u] for the neighbors u of p.

Suppose R is a matrix containing columns R[·][u] for all u processed so far,
and zeros otherwise. Let vp be the outgoing neighborhood vector of p: vp[u] = 1
iff there is an arc from p to u. Construing vp as a column vector, we want to
compute R · vp. Since all outgoing neighbors of p are after p in the topological
order, and we process nodes in reverse order, correctness follows.

We now show how to implement the algorithm using the data structure of
Theorem 1. Let R be an n × n matrix such that at the end of the algorithm
R is the transitive closure of G′. We begin with R set to the all zero matrix.
Let κ ≥ 1, and ` > κ be parameters to be set later. After O((n2κ/`)

∑κ
b=1

(

`
b

)

)
preprocessing time, the data structure for R from Theorem 1 is complete.

Consider a fixed iteration k. Let p be the kth node in reverse topological order.
As before, vp is the neighborhood column vector of p, so that vp has outdeg(p)
nonzero entries. Let 0 < ε < 1 be a constant. We use the data structure to
compute rp = R · vp in O(n1+ε + n2/(` log n) + outdeg(p) · n/(κ log n)) time.
Then we set rp[p] = 1, and R[·][p] := rp, by performing a column update on R

in O(nκ
∑κ

b=1

(

`
b

)

) time. This completes iteration k. Since there are n iterations
and since

∑

p outdeg(p) = m, the overall running time is asymptotic to

n2κ

`

κ
∑

b=1

(

`

b

)

+ n2+ε +
n3

` log n
+

mn

κ log n
+ n2κ

κ
∑

b=1

(

`

b

)

.

If for some ε′ > 0, m ≤ n2−ε′

, then we can ignore the O(n2+ε) preprocessing

step and execute the original algorithm, in O(mn/ log n) ≤ O(mn log n2

m / log2 n)
time. Otherwise, we set ` and κ to minimize the running time. Similar to Corol-

lary 1, we set n3

` log n = mn
κ log n , (implying ` = κn2/m), and nε =

∑`m/n2

b=1

(

`
b

)

.

For m ≤ n2/2,
∑m`/n2

b=1

(

`
b

)

= O(2`H(m/n2)) = O(2` m

n2
log n

2

m). Hence we want

` m
n2 log n2

m = log nε, and ` = ε′ n2 log n
m log(n2/m) , κ = ε′ log n

log(n2/m) for ε′ < ε suffices.

Since for all ε′ > 0, m ≥ n2−ε′

, we can pick any ε′ < ε and we will have
κ ≥ 1. For sufficiently small ε′ the runtime is Ω(n2+ε), and the final runtime is
O(n2 + mn log(n2/m)/ log2 n). 2

5 APSP on Unweighted Undirected Graphs

Our data structure can also be applied to solve all pairs shortest paths (APSP)
on unweighted undirected graphs, yielding the fastest algorithm for sparse graphs
to date. Chan [4] gave two algorithms for this problem, which constituted the

first major improvement over the O(mn log(n2/m)
log n + n2) obtained by Feder and

Motwani’s graph compression [9]. The first algorithm is deterministic running
in O(n2 log n + mn/ log n) time, and the second one is Las Vegas running in
O(n2 log2 log n/ log n + mn/ log n) time on the RAM. To prove the following
Theorem 3, we implement Chan’s first algorithm, along with some modifications.

Theorem 3. The All Pairs Shortest Paths problem in unweighted undirected
graphs can be solved in O(n2+ε + mn log(n2/m)/ log2 n) time, for any ε > 0.

By running our algorithm when m = Ω(n1+ε log2 n) for some ε > 0 and Chan’s
second algorithm otherwise, we obtain the following result.

Theorem 4. On the probabilistic RAM, the APSP problem on unweighted undi-
rected graphs can be solved in O(n2 log2 log n/ log n+mn log(n2/m)/ log2 n) time,
with high probability.

To be able to prove Theorem 3, let us focus on a particular part of Chan’s first
algorithm that produces the bottleneck in its runtime. The algorithm contains
a subprocedure P (d), parameterized by an integer d < n. The input to P (d) is
graph G = (V,E), a collection of n/d vertices {s1, . . . , sn/d}, and a collection of

n/d disjoint vertex subsets {S1, . . . , Sn/d}, such that ∀ i ∈ [n/d], every s ∈ Si

has distance at most 2 from si. P (d) outputs the | ∪i Si| × n matrix D, such
that for every s ∈ ∪iS

i and v ∈ V , D[s][v] = δG(s, v). Notice, | ∪i Si| ≤ n. This
procedure P (d) is significant for the following reason:

Lemma 1 (Implicit in Chan [4]). If P (d) can be implemented in O(T (P (d)))
time, then APSP on unweighted undirected graphs is in O(T (P (d))+n2 ·d) time.

Setting d = nε, Theorem 3 is obtained from the following lemma.

Lemma 2. P (d) is implementable in O(n2+ε+ mn
d + mn log(n2/m)

log2 n
) time, ∀ε > 0.

Proof. First, we modify Chan’s original algorithm slightly. As in Chan’s algo-
rithm, we first do breadth-first search from every si in O(mn/d) time over-
all. When doing this, for each distance ` = 0, . . . , n − 1, we compute the sets
Ai

` = {v ∈ V | δG(si, v) = `}. Suppose that the rows (columns) of a matrix
M are in one-to-one correspondence with the elements of some set U . Then, for
every u ∈ U , let ū be the index of the row (column) of M corresponding to u.

Consider each (si, S
i) pair separately. Let k = |Si|. For ` = 0, . . . , n − 1, let

B` = ∪`+2
j=`−2A

i
`, where Ai

j = {} when j < 0, or j > n − 1.
The algorithm proceeds in n iterations. Each iteration ` = 0, . . . , n − 1 pro-

duces a k × |B`| matrix D`, and a k × n matrix OLD (both Boolean), such that
for all s ∈ Si, u ∈ B` and v ∈ V ,

D`[s̄][ū] = 1 iff δG(s, u) = ` and OLD[s̄][v̄] = 1 iff δG(s, v) ≤ `.

At the end of the last iteration, the matrices D` are combined in a k×n matrix
Di such that D[s̄][v̄] = ` iff δG(s, v) = `, for every s ∈ Si, v ∈ V . At the end of
the algorithm, the matrices Di are concatenated to create the output D.

In iteration 0, create a k×|B0| matrix D0, so that for every s ∈ Si, D0[s̄][s̄] =
1, and all 0 otherwise. Let OLD be the k×n matrix with OLD[s̄][v̄] = 1 iff v = s.

Consider a fixed iteration `. We use the output (D`−1, OLD) of iteration `−1.
Create a |B`−1| × |B`| matrix N`, such that ∀u ∈ B`−1, v ∈ B`, N`[ū][v̄] = 1 iff
v is a neighbor of u. Let N` have m` nonzeros. If there are b` edges going out of
B`, one can create N` in O(b`) time: Reuse an n × n zero matrix N , so that N`

will begin at the top left corner. For each v ∈ B` and edge (v, u), if u ∈ B`−1,
add 1 to N [ū][v̄]. When iteration ` ends, zero out each N [ū][v̄].

Multiply D`−1 by N` in O(k · |B`−1|
1+ε +m`k log(n2

m)/ log2 n) time (applying
Corollary 1). This gives a k × |B`| matrix A such that for all s ∈ Si and v ∈
B`, A[s̄][v̄] = 1 iff there is a length-` path between s and v. Compute D` by
replacing A[s̄][v̄] by 0 iff OLD[s̄][v̄] = 1, for each s ∈ Si, v ∈ B`. If D`[s̄][v̄] = 1,
set OLD[s̄][v̄] = 1.

Computing the distances from all s ∈ Si to all v ∈ V can be done in O(m +
∑n−1

`=1

(

k · |B`−1|
1+ε + m`k log(n2/m)/ log2 n + b`

)

) time. However, since every

node appears in at most O(1) sets B`,
∑n−1

`=0 |B`| ≤ O(n),
∑

` b` ≤ O(m) and
∑

` m` ≤ O(m). The runtime becomes O(kn1+ε + mk log(n2/m)/ log2 n + m).
When we sum up the runtimes for each (si, S

i) pair, since the sets Si are disjoint,
we obtain asymptotically

n/d
∑

i=1

(

m + |Si| ·

(

n1+ε +
m log(n2/m)

log2 n

))

=
mn

d
+ n2+ε +

mn log(n2/m)

log2 n
.

As the data structure returns witnesses, we can also return predecessors. 2

6 All Pairs Least Common Ancestors in a DAG

To our knowledge, the best algorithm in terms of m and n for finding all pairs
least common ancestors (LCAs) in a DAG, is a dynamic programming algorithm
by Czumaj, Kowaluk and Lingas [12, 7] which runs in O(mn) time. We improve
the runtime of this algorithm to O(mn log(n2/m)/ log n) using the following
generalization of Theorem 1, the proof of which is omitted. Below, for an n × n
real matrix B and n × 1 Boolean vector r, B � r is the vector c with c[i] =
maxk=1,...,n(A[i][k] · r[k]) for each i ∈ [n]. This product clearly generalizes the
Boolean matrix-vector product.

Theorem 5. Let B be a d × n matrix with β-bit entries. Let 0 < ε < 1 be
constant, and let κ ≥ 1 and ` > κ be integer parameters. Then one can create
a data structure with O(dnκ

` · d β
log ne ·

∑κ
b=1

(

`
b

)

) preprocessing time so that the
following operations are supported on a pointer machine:

– given any n × 1 binary vector r, output B � r in O(dnε + dβ
log n

(

n
` + mr

κ

)

)
time, where mr is the number of nonzeros in r;

– replace any column of B by a new column in O(dκd β
log ne

∑κ
b=1

(

`
b

)

) time.

Due to space limitations, the proof of the following is also omitted.

Theorem 6. The all pairs least common ancestors problem on n node and m
edge DAGs can be solved in O(mn log(n2/m)/ log n) time.

7 Conclusion

We have introduced a new combinatorial data structure for performing matrix-
vector multiplications. Its power lies in its ability to compute sparse vector prod-
ucts quickly and tolerate updates to the matrix. Using the data structure, we
gave new running time bounds for four fundamental graph problems: transitive
closure, all pairs shortest paths on unweighted graphs, maximum weight triangle,
and all pairs least common ancestors.

References

1. A. V. Aho, J. E. Hopcroft, and J. Ullman. The design and analysis of computer
algorithms. Addison-Wesley Longman Publishing Co., Boston, MA, 1974.

2. V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On economical
construction of the transitive closure of an oriented graph. Soviet Math. Dokl.,
11:1209–1210, 1970.

3. T. M. Chan. All-pairs shortest paths with real weights in O(n3/ log n) time. Proc.

WADS, 3608:318–324, 2005.
4. T. M. Chan. All-pairs shortest paths for unweighted undirected graphs in o(mn)

time. Proc. SODA, pages 514–523, 2006.
5. J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks on the

random access computer. Algorithmica, 15(6):521–549, 1996.
6. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-

sions. J. Symbolic Computation, 9(3):251–280, 1990.
7. A. Czumaj, M. Kowaluk, and A. Lingas. Faster algorithms for finding lowest

common ancestors in directed acyclic graphs. TCS, 380(1–2):37–46, 2007.
8. A. Czumaj and A. Lingas. Finding a heaviest triangle is not harder than matrix

multiplication. Proc. SODA, pages 986–994, 2007.
9. T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up

algorithms. Proc. STOC, pages 123–133, 1991.
10. M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and transitive

closure. Proc. FOCS, pages 129–131, 1971.
11. Z. Galil and O. Margalit. All pairs shortest paths for graphs with small integer

length edges. JCSS, 54:243–254, 1997.
12. M. Kowaluk and A. Lingas. LCA queries in directed acyclic graphs. Proc. ICALP,

3580:241–248, 2005.
13. J. I. Munro. Efficient determination of the transitive closure of a directed graph.

Inf. Process. Lett., 1(2):56–58, 1971.
14. W. Rytter. Fast recognition of pushdown automaton and context-free languages.

Information and Control, 67(1–3):12–22, 1985.
15. R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs.

JCSS, 51:400–403, 1995.
16. A. Shapira, R. Yuster, and U. Zwick. All-pairs bottleneck paths in vertex weighted

graphs. Proc. SODA, pages 978–985, 2007.
17. V. Vassilevska, R. Williams, and R. Yuster. Finding the smallest H-subgraph in

real weighted graphs and related problems. Proc. ICALP, 4051:262–273, 2006.
18. R. Williams. Matrix-vector multiplication in sub-quadratic time: (some preprocess-

ing required). Proc. SODA, pages 995–1001, 2007.

