
15-503/859P: Cryptography Lecturer: Manuel Blum
Topic: LALALA Date: 10 April 2006
Scribe: Yinmeng Zhang

21.1 Overview

1. A Nice Theorem

2. PKE with f(x) = x2 (mod N)

We will use the notation m ◦ n to mean m concatenated with n.

21.2 A Nice Theorem

Theorem:

Let N = pe1

1
∗ . . . pek

k
be an odd positive composite number (where the pi are distinct primes). Let

a ∈ Z
∗

n be a square (mod N).

If x, y are distinct roots of equation (1) – that is, x 6= ±y, then gcd(x + y, N) splits N – that is,
gcd(x + y, N) is a nontrivial factor of N (not 1 or N).

Notice that two distinct roots exist iff N is composite, so the ability to solve quadratic equations
mod N implies the ability to factor N . Pairs x, y are the “gold rings” of factoring algorithms.

Proof:
x2 ≡ a ≡ y2 (mod N)

So

N |x2 − y2

or

N |(x + y)(x − y)

N cannot divide x + y or x − y separately, since this would imply x ≡ ±y (mod N), which
contradicts the assumption that they are distinct. Therefore, x + y has at least one but not all
factors in common with N – thus gcd(N, x + y) is a nontrivial factor of N .

This proof is so cute, it could just become the first question on the final.

1



21.3 PKE with f(x) = x2 (mod N)

Today we discover that number theorists were secretly the great cryptographers of the last few
centuries.

As usual, we take N = P1 ∗P2 the product of two distinct odd primes. Fix NA as Alice’s PUBLIC
KEY, and its factorization PA1, PA2 as her PRIVATE KEYS.

First stab at public-key encryption or PKE using f(x) = x2 (mod N):

For any message m ∈ Z
∗

N
, we encrypt using

E(m) = m2 (mod N)

and decrypt using
D(m2) = ±m1,±m2

21.3.1 The Pluses

1. Fast!

Encryption is obviously polynomial time, but what about decryption? Alice should be the
only one who is able to decrypt messages, and Alice knows what P1 and P2 are. If she can
reduce the problem to finding the roots of m2 (mod P )1 and m2 (mod P )2, then she can
apply the CRT to find the roots mod N . Finding roots is so much fun, it could just become
the second question on the final.

2. Hard as factoring to invert E(m)

If you have a Magic Box that on input “a” (a square) returns x s.t. x2 ≡ a (mod N), then
you can factor N .

A simple expected polynomial time algorithm is to repeatedly pick x uniformly at random in
Z
∗

n, square it, and query the box. With 1/2 probability you will get a distinct root, and be
able to factor N . This is an expected polynomial time algorithm.

So, if can decrypt random numbers, then can factor N. Turning this on its head, we can
encrypt random numbers! Good for sending random session keys.

21.3.2 The Minuses (with Fixes)

1. We can only encrypt messages which are in Z
∗

N
.

If we want to encrypt messages which are much bigger than N , we can send it log N bits at
a time, reducing each piece to Z

+

N
. Sending messages which are not coprime with N is still a

problem, since anyone could run Euclid’s algorithm to retrieve the common factor.

2. If an eavesdropper Eve knows that the message is one of a small class of messages (such as
{yes, no, maybe}), then she can just encrypt each of the possible messages herself and compare
against E(m).

Notice that this would be a problem for any deterministic encryption scheme. To fix this, we
will have to add randomness (see below).

2



3. D(E(m)) is a set of four numbers. Which is the original m?

We might be tempted to say “the one that looks like English, duh”, but unfortunately one of
our pluses was that we could encrypt random numbers.

To cut D(E(x)) down to two numbers, we can require messages to be in the left half of Z
∗

n;
this will not change the distribution of encrypted messages. To get from two to one, we use
the following clever

Workaround (known padding): Before encrypting, pad m with a known prefix
(or suffix) such as THISISTHEREALMESSAGE.

This is not perfect. What if both messages have the prefix/suffix? What if you can use the
known prefix/suffix to recover information?

4. If you encrypt the same message twice with different keys, any eavesdropper who sees both
encryptions can recover the message without knowing how to factor.

That is, suppose you are working with Alice and Bob with independent public keys NA and
NB. If you send the message ENA

(m) to Alice and cc ENB
(m) to Bob, any Eve who intercepts

both messages can find m as follows:

Using CRT, calculate m2 (mod N)1N2. Since m < N1 and m < N2, m2 < N1N2. So, m2

(mod N1N2) is just plain m2, which we can find the square root of using binary search. This
is so devilish, it could just become third question on the final.

Workaround (random padding): Before encrypting, pad m with a random r, and
send the pair (E(m ◦ r), r).

Notice how we can combine this with the previous workaround: since r is sent along with the
message, we can use it to distinguish roots.

21.3.3 Improved PKE Scheme

Given m ∈ Z
∗

n,

To encrypt we choose a random r and send ((r ◦ m)2 mod NA, r),

To decrypt a pair (x2, r), we find the square roots of x2 and choose the one in the left half of Z
∗

N

which begins with the string r.

3


