
Time-Space Tradeoffs for Counting NP Solutions

Modulo Integers

Ryan Williams

Carnegie Mellon University

0-0

Introduction

Recent progress in understanding the time complexity of hard problems

in the space-bounded setting

1

Introduction

Recent progress in understanding the time complexity of hard problems

in the space-bounded setting

• Time-space tradeoffs for SAT and QUANTIFIED BOOLEAN FORMULAS

[Santhanam’01, Fortnow-Lipton-Van Melkebeek-Viglas’05, W’05, Diehl-Van Melkebeek’06]

1-a

Introduction

Recent progress in understanding the time complexity of hard problems

in the space-bounded setting

• Time-space tradeoffs for SAT and QUANTIFIED BOOLEAN FORMULAS

[Santhanam’01, Fortnow-Lipton-Van Melkebeek-Viglas’05, W’05, Diehl-Van Melkebeek’06]

• SAT requires Ω(n2 cos(π/7)) ≈ n1.801 time on RAMs using no(1) space

Also holds for VERTEX COVER, HAMILTONIAN PATH, MAX CUT, etc.

1-b

Introduction

Recent progress in understanding the time complexity of hard problems

in the space-bounded setting

• Time-space tradeoffs for SAT and QUANTIFIED BOOLEAN FORMULAS

[Santhanam’01, Fortnow-Lipton-Van Melkebeek-Viglas’05, W’05, Diehl-Van Melkebeek’06]

• SAT requires Ω(n2 cos(π/7)) ≈ n1.801 time on RAMs using no(1) space

Also holds for VERTEX COVER, HAMILTONIAN PATH, MAX CUT, etc.

Can similar limitations be proved for other problems?

1-c

Introduction

Recent progress in understanding the time complexity of hard problems

in the space-bounded setting

• Time-space tradeoffs for SAT and QUANTIFIED BOOLEAN FORMULAS

[Santhanam’01, Fortnow-Lipton-Van Melkebeek-Viglas’05, W’05, Diehl-Van Melkebeek’06]

• SAT requires Ω(n2 cos(π/7)) ≈ n1.801 time on RAMs using no(1) space

Also holds for VERTEX COVER, HAMILTONIAN PATH, MAX CUT, etc.

Can similar limitations be proved for other problems?

[Diehl-Van Melkebeek], [Viola] Lower bounds for QSAT with randomized algorithms

1-d

Introduction

2

Introduction

Let m be a fixed integer and Π be a combinatorial problem.

Is the number of solutions to a given instance of Π divisible by m?

2-a

Introduction

Let m be a fixed integer and Π be a combinatorial problem.

Is the number of solutions to a given instance of Π divisible by m?

MODmSAT: For formula F , is the number of solutions divisible by m?

[Cai-Hemachandra’92]

Define MODmP, for which MODmSAT is a complete problem.

2-b

Introduction

Let m be a fixed integer and Π be a combinatorial problem.

Is the number of solutions to a given instance of Π divisible by m?

MODmSAT: For formula F , is the number of solutions divisible by m?

[Cai-Hemachandra’92]

Define MODmP, for which MODmSAT is a complete problem.

Recent Attention: Fueled by Valiant’s accidental algorithms

– For some #P-complete problems,

• Can determine in P if the number of solutions is divisible by 7,

• But MOD2P-hard to determine if the number of solutions is divisible by 2.

2-c

Complexity of MODm P

3

Complexity of MODm P

How difficult is MODm SAT, in general?

(Is it just as hard as SAT? Is it harder??)

3-a

Complexity of MODm P

How difficult is MODm SAT, in general?

(Is it just as hard as SAT? Is it harder??)

• (Valiant-Vazirani)

RP-reduction from SAT to MODm SAT

• (Naik-Regan-Sivakumar)

O(n · poly(log n))-time randomized reduction from SAT to MOD2 SAT

• (Toda-Ogihara, Gupta)

O(nk+1)-time randomized 2-sided reduction from Σk SAT to MOD2 SAT

3-b

Complexity of MODm P

How difficult is MODm SAT, in general?

(Is it just as hard as SAT? Is it harder??)

• (Valiant-Vazirani)

RP-reduction from SAT to MODm SAT

• (Naik-Regan-Sivakumar)

O(n · poly(log n))-time randomized reduction from SAT to MOD2 SAT

• (Toda-Ogihara, Gupta)

O(nk+1)-time randomized 2-sided reduction from Σk SAT to MOD2 SAT

Naive Idea For MODm SAT Lower Bounds:

Prove lower bounds for MODm SAT by applying above reduction(s)

and appealing to known SAT lower bounds.

3-c

MAJOR OBSTACLE: RANDOMNESS

4

MAJOR OBSTACLE: RANDOMNESS

• Can’t use Valiant-Vazirani reduction or its offshoots–

since they’re randomized and space-inefficient

4-a

MAJOR OBSTACLE: RANDOMNESS

• Can’t use Valiant-Vazirani reduction or its offshoots–

since they’re randomized and space-inefficient

• Even if we could make them space-efficient, we could only say:

MODm SAT has a fast det. alg. =⇒ SAT has a fast rand. alg.

But we don’t know nontrivial randomized time lower bounds for SAT(!)

4-b

MAJOR OBSTACLE: RANDOMNESS

• Can’t use Valiant-Vazirani reduction or its offshoots–

since they’re randomized and space-inefficient

• Even if we could make them space-efficient, we could only say:

MODm SAT has a fast det. alg. =⇒ SAT has a fast rand. alg.

But we don’t know nontrivial randomized time lower bounds for SAT(!)

• Could we get rid of the randomness?

4-c

MAJOR OBSTACLE: RANDOMNESS

• Can’t use Valiant-Vazirani reduction or its offshoots–

since they’re randomized and space-inefficient

• Even if we could make them space-efficient, we could only say:

MODm SAT has a fast det. alg. =⇒ SAT has a fast rand. alg.

But we don’t know nontrivial randomized time lower bounds for SAT(!)

• Could we get rid of the randomness?

• Derandomizations? We don’t know no stinking derandomizati ons!

(But we have good reason to believe they exist [Klivans-Van Melkebeek])

4-d

Main Result

5

Main Result

Time-Space LBs for NP 7→ Time-Space LBs for MODmP

5-a

Main Result

Time-Space LBs for NP 7→ Time-Space LBs for MODmP

Transfer Principle for Time-Space Lower Bounds:

If there is an alternation-trading proof that

SAT cannot be solved in t time and s space,

5-b

Main Result

Time-Space LBs for NP 7→ Time-Space LBs for MODmP

Transfer Principle for Time-Space Lower Bounds:

If there is an alternation-trading proof that

SAT cannot be solved in t time and s space,

then for every ε > 0 and primes p 6= q, there is a proof that:

One of MODp SAT or MODq SAT can’t be solved

in t1−ε time and s1−ε space.

5-c

Outline of Talk

• Introduction

• Some Notation

• Some Preliminaries

• Alternation-Trading Proofs

• Transfer Principle

6

Some Notation

7

Some Notation

Recall DTISP[t, s] is the class of problems solvable in time t and space s.

Define DTS[t] := DTISP[t1+o(1), no(1)].

7-a

Some Notation

Recall DTISP[t, s] is the class of problems solvable in time t and space s.

Define DTS[t] := DTISP[t1+o(1), no(1)].

Notation for Alternating Classes:

• (∃ f(n)) C = class of problems solved by a machine that:

∃-guesses f(n)1+o(1) bits, then runs a C-machine.

Example: NTIME[n1+o(1)] = (∃ n)DTIME[n1+o(1)].

• (∀ f(n)) C defined similarly.

7-b

Some Notation

Recall DTISP[t, s] is the class of problems solvable in time t and space s.

Define DTS[t] := DTISP[t1+o(1), no(1)].

Notation for Alternating Classes:

• (∃ f(n)) C = class of problems solved by a machine that:

∃-guesses f(n)1+o(1) bits, then runs a C-machine.

Example: NTIME[n1+o(1)] = (∃ n)DTIME[n1+o(1)].

• (∀ f(n)) C defined similarly.

• (MODm f(n)) C = class of problems solved by a machine that:

guesses y : |y| = f(n)1+o(1), runs a C-machine N ,

accepts iff the number of y that make N accept is divisible by m.

Example: MODmTIME[n1+o(1)] = (MODm n)DTIME[n1+o(1)].

7-c

Some Preliminaries

Alternation Speedup Theorem (Trading Time For Alternations)

8

Some Preliminaries

Alternation Speedup Theorem (Trading Time For Alternations)

[Kannan] DTISP[t, s] ⊆ (∃ b · s)(∀ log b)DTISP[t/b, s]

[Fortnow-Van Melkebeek] DTISP[t, s] ⊆ (∀ b · s)(∃ log b)DTISP[t/b, s]

8-a

Some Preliminaries

Alternation Speedup Theorem (Trading Time For Alternations)

[Kannan] DTISP[t, s] ⊆ (∃ b · s)(∀ log b)DTISP[t/b, s]

[Fortnow-Van Melkebeek] DTISP[t, s] ⊆ (∀ b · s)(∃ log b)DTISP[t/b, s]

Proof Sketches:

[Kannan]

a Existentially guess configs C1, . . . , Cb+1 of a DTISP machine.

a Universally guess i ∈ [b].

a Accept iff Ci ⊢
t/b Ci+1 and C1 is initial and Cb+1 is accepting.

8-b

Some Preliminaries

Alternation Speedup Theorem (Trading Time For Alternations)

[Kannan] DTISP[t, s] ⊆ (∃ b · s)(∀ log b)DTISP[t/b, s]

[Fortnow-Van Melkebeek] DTISP[t, s] ⊆ (∀ b · s)(∃ log b)DTISP[t/b, s]

Proof Sketches:

[Kannan]

a Existentially guess configs C1, . . . , Cb+1 of a DTISP machine.

a Universally guess i ∈ [b].

a Accept iff Ci ⊢
t/b Ci+1 and C1 is initial and Cb+1 is accepting.

[Fortnow-van Melkebeek]

a Universally guess configs C1, . . . , Cb+1 of a DTISP machine.

a Existentially guess i ∈ [b].

a Accept iff (¬(Ci ⊢
t/b Ci+1) or C1 is not initial or Cb+1 is not rejecting).

8-c

A Slowdown Lemma (Trading Alternations For Time)

Idea: The assumption NTIME[n] ⊆ DTS[nc]

lets you remove alternations from a computation at little time cost

9

A Slowdown Lemma (Trading Alternations For Time)

Idea: The assumption NTIME[n] ⊆ DTS[nc]

lets you remove alternations from a computation at little time cost

Let c ≥ 1.

Theorem: For all b ≥ a ≥ 1,

NTIME[n] ⊆ DTS[nc] =⇒ (∃na)(∀nb)DTS[nb] ⊆ (∃na)DTS[nbc]

and (∀na)(∃nb)DTS[nb] ⊆ (∀na)DTS[nbc].

9-a

Alternation-Trading Proofs

10

Alternation-Trading Proofs

An alternation-trading proof that SAT /∈ DTS[nc] works by:

• Showing NTIME[n] * DTS[nc]

• Appealing to strong completeness properties of SAT

10-a

Alternation-Trading Proofs

An alternation-trading proof that SAT /∈ DTS[nc] works by:

• Showing NTIME[n] * DTS[nc]

• Appealing to strong completeness properties of SAT

Show NTIME[n] * DTS[nc] by assuming the opposite, and applying three

rules in a way that DTS[t] ⊆ DTS[t1−ε] (a contradiction) can be derived:

10-b

Alternation-Trading Proofs

An alternation-trading proof that SAT /∈ DTS[nc] works by:

• Showing NTIME[n] * DTS[nc]

• Appealing to strong completeness properties of SAT

Show NTIME[n] * DTS[nc] by assuming the opposite, and applying three

rules in a way that DTS[t] ⊆ DTS[t1−ε] (a contradiction) can be derived:

1. (Speedup) DTS[nb] ⊆ (∃ na)(∀ log n)DTS[nb−a]

DTS[nb] ⊆ (∀ na)(∃ log n)DTS[nb−a]

10-c

Alternation-Trading Proofs

An alternation-trading proof that SAT /∈ DTS[nc] works by:

• Showing NTIME[n] * DTS[nc]

• Appealing to strong completeness properties of SAT

Show NTIME[n] * DTS[nc] by assuming the opposite, and applying three

rules in a way that DTS[t] ⊆ DTS[t1−ε] (a contradiction) can be derived:

1. (Speedup) DTS[nb] ⊆ (∃ na)(∀ log n)DTS[nb−a]

DTS[nb] ⊆ (∀ na)(∃ log n)DTS[nb−a]

2. (Slowdown) (∃ na)(∀ nb)DTS[nb] ⊆ (∃ na)DTS[nbc]

and (∀ na)(∃ nb)DTS[nb] ⊆ (∀ na)DTS[nbc].

10-d

Alternation-Trading Proofs

An alternation-trading proof that SAT /∈ DTS[nc] works by:

• Showing NTIME[n] * DTS[nc]

• Appealing to strong completeness properties of SAT

Show NTIME[n] * DTS[nc] by assuming the opposite, and applying three

rules in a way that DTS[t] ⊆ DTS[t1−ε] (a contradiction) can be derived:

1. (Speedup) DTS[nb] ⊆ (∃ na)(∀ log n)DTS[nb−a]

DTS[nb] ⊆ (∀ na)(∃ log n)DTS[nb−a]

2. (Slowdown) (∃ na)(∀ nb)DTS[nb] ⊆ (∃ na)DTS[nbc]

and (∀ na)(∃ nb)DTS[nb] ⊆ (∀ na)DTS[nbc].

3. (Combination) (∃ na)(∃ nb)DTS[nd] ⊆ (∃ na + nb)DTS[nd]

(∀ na)(∀ nb)DTS[nd] ⊆ (∀ na + nb)DTS[nd]

10-e

Example: Alternation-Trading Proofs

There is an alternation-trading proof of

SAT /∈ DTS[n
√

2−ε] [Lipton-Viglas’99]

because if NTIME[n] ⊆ DTS[n
√

2−ε], then

11

Example: Alternation-Trading Proofs

There is an alternation-trading proof of

SAT /∈ DTS[n
√

2−ε] [Lipton-Viglas’99]

because if NTIME[n] ⊆ DTS[n
√

2−ε], then

DTS[n2] ⊆ (∃ n)(∀ log n)DTS[n] (Speedup)

11-a

Example: Alternation-Trading Proofs

There is an alternation-trading proof of

SAT /∈ DTS[n
√

2−ε] [Lipton-Viglas’99]

because if NTIME[n] ⊆ DTS[n
√

2−ε], then

DTS[n2] ⊆ (∃ n)(∀ log n)DTS[n] (Speedup)

⊆ (∃ n)DTS[nc] (Slowdown)

11-b

Example: Alternation-Trading Proofs

There is an alternation-trading proof of

SAT /∈ DTS[n
√

2−ε] [Lipton-Viglas’99]

because if NTIME[n] ⊆ DTS[n
√

2−ε], then

DTS[n2] ⊆ (∃ n)(∀ log n)DTS[n] (Speedup)

⊆ (∃ n)DTS[nc] (Slowdown)

⊆ DTS[nc2] (Slowdown)

11-c

Example: Alternation-Trading Proofs

There is an alternation-trading proof of

SAT /∈ DTS[n
√

2−ε] [Lipton-Viglas’99]

because if NTIME[n] ⊆ DTS[n
√

2−ε], then

DTS[n2] ⊆ (∃ n)(∀ log n)DTS[n] (Speedup)

⊆ (∃ n)DTS[nc] (Slowdown)

⊆ DTS[nc2] (Slowdown)

Contradiction when c2 < 2.

11-d

Example: Alternation-Trading Proofs

There is an alternation-trading proof of

SAT /∈ DTS[n
√

2−ε] [Lipton-Viglas’99]

because if NTIME[n] ⊆ DTS[n
√

2−ε], then

DTS[n2] ⊆ (∃ n)(∀ log n)DTS[n] (Speedup)

⊆ (∃ n)DTS[nc] (Slowdown)

⊆ DTS[nc2] (Slowdown)

Contradiction when c2 < 2.

Can prove SAT /∈ DTS[n2 cos(π/7)−ε] using alternation-trading.

11-e

Transfer Principle for Time-Space Lower Bounds

12

Transfer Principle for Time-Space Lower Bounds

Let c > 1. If there is an alternation-trading proof that

12-a

Transfer Principle for Time-Space Lower Bounds

Let c > 1. If there is an alternation-trading proof that

SAT /∈ DTS[nc],

then for every ε > 0 and primes p 6= q, there is a proof that:

Either MODp SAT /∈ DTS[nc−ε],

or MODq SAT /∈ DTS[nc−ε].

12-b

Transfer Principle for Time-Space Lower Bounds

Let c > 1. If there is an alternation-trading proof that

SAT /∈ DTS[nc],

then for every ε > 0 and primes p 6= q, there is a proof that:

Either MODp SAT /∈ DTS[nc−ε],

or MODq SAT /∈ DTS[nc−ε].

Corollary: For every prime p (except for possibly one of them)

a MODp SAT /∈ DTS[n1.8].

12-c

Transfer Principle for Time-Space Lower Bounds

Let c > 1. If there is an alternation-trading proof that

SAT /∈ DTS[nc],

then for every ε > 0 and primes p 6= q, there is a proof that:

Either MODp SAT /∈ DTS[nc−ε],

or MODq SAT /∈ DTS[nc−ε].

Corollary: For every prime p (except for possibly one of them)

a MODp SAT /∈ DTS[n1.8].

Corollary: MOD6 SAT /∈ DTS[n1.8].

Proof: If not, then both MOD2 SAT and MOD3 SAT are in DTS[n1.8], a

contradiction.

12-d

Transfer Principle: Proof Idea

13

Transfer Principle: Proof Idea

• MODp SAT ∈ DTS[nc] ⇒ MODpTIME[n] ⊆ DTS[nc]

(easy– uses reduction from NTIME[n] to SAT)

13-a

Transfer Principle: Proof Idea

• MODp SAT ∈ DTS[nc] ⇒ MODpTIME[n] ⊆ DTS[nc]

(easy– uses reduction from NTIME[n] to SAT)

• The alternation-trading rules have “modular counting counterparts”:

For all primes p 6= q and ε > 0,

(Speedup) DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

(Slowdown) MODqTIME[n] ⊆ DTS[nc] implies

(MODp na)(MODq nb)DTS[nb] ⊆ (MODp na)DTS[nbc]

(Combination)

(MODp na)(MODp nb)DTS[nd] ⊆ (MODp na + nb)DTS[nd]

13-b

Transfer Principle: Proof Idea

• MODp SAT ∈ DTS[nc] ⇒ MODpTIME[n] ⊆ DTS[nc]

(easy– uses reduction from NTIME[n] to SAT)

• The alternation-trading rules have “modular counting counterparts”:

For all primes p 6= q and ε > 0,

(Speedup) DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

(Slowdown) MODqTIME[n] ⊆ DTS[nc] implies

(MODp na)(MODq nb)DTS[nb] ⊆ (MODp na)DTS[nbc]

(Combination)

(MODp na)(MODp nb)DTS[nd] ⊆ (MODp na + nb)DTS[nd]

Informally, if SAT ∈ DTS[nc] implies DTS[t] ⊆ DTS[t1−ε], then

MODp SAT and MODq SAT are in DTS[nc−ε] also implies it.

13-c

Speedup of DTISP via Modular Counting

14

Speedup of DTISP via Modular Counting

Theorem: For all ε > 0 and b ≥ a ≥ 1,

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

14-a

Speedup of DTISP via Modular Counting

Theorem: For all ε > 0 and b ≥ a ≥ 1,

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

Proof Steps:

1. Convert DTS[nb] machine into a “canonical form”

that runs in time nb+ε and space no(1)

2. By essentially replacing “∃” with “MODp” and “∀” with “MODq”,

the Alternating Speedup Theorem works on a canonical machine.

14-b

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

15

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

Recall the notion of a configuration graph for M on x:

15-a

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

Recall the notion of a configuration graph for M on x:

GM,x:

15-b

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

Recall the notion of a configuration graph for M on x:

GM,x:

Nodes = Configurations C of M(x), Edge (C,C ′) ⇐⇒ C ⊢ C ′

M is deterministic =⇒ outdeg(GM,x) ≤ 1.

15-c

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

A deterministic machine M is canonical if, for every input x,

a indeg(GM,x) = outdeg(GM,x) = 1.

16

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

A deterministic machine M is canonical if, for every input x,

a indeg(GM,x) = outdeg(GM,x) = 1.

16-a

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

A deterministic machine M is canonical if, for every input x,

a indeg(GM,x) = outdeg(GM,x) = 1.

16-b

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

More Details:

How can we make a machine canonical?

17

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

More Details:

How can we make a machine canonical?

First, make it reversible

17-a

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

More Details:

How can we make a machine canonical?

First, make it reversible

A deterministic machine M is reversible if, for every input x,

indeg(GM,x) ≤ 1.

17-b

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

More Details:

How can we make a machine canonical?

First, make it reversible

A deterministic machine M is reversible if, for every input x,

indeg(GM,x) ≤ 1.

Define

rTISP[t, s] =

problems solvable by reversible machines in time t, space s.

17-c

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

1. Convert DTS[nb] machine into a “canonical form”

More Details:

How can we make a machine canonical?

First, make it reversible

A deterministic machine M is reversible if, for every input x,

indeg(GM,x) ≤ 1.

Define

rTISP[t, s] =

problems solvable by reversible machines in time t, space s.

Theorem: [Bennett’89] DTISP[t, s] ⊆ rTISP[t1+ε, s log t].

17-d

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

Conversion to Canonical Machines

18

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

Conversion to Canonical Machines

Take a DTS[nb] machine M and make it reversible using Bennett.

On an input, its config graph looks like:

18-a

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

From Reversible Machine to Canonical Machine

To make M canonical, we make another machine that simulates it, but starts

running “backwards” when it reaches a dead end.

19

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

From Reversible Machine to Canonical Machine

To make M canonical, we make another machine that simulates it, but starts

running “backwards” when it reaches a dead end.

19-a

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

From Reversible Machine to Canonical Machine

To make M canonical, we make another machine that simulates it, but starts

running “backwards” when it reaches a dead end.

20

DTS[nb] ⊆ (MODp na)(MODq log n)DTS[nb−a+ε]

From Reversible Machine to Canonical Machine

To make M canonical, we make another machine that simulates it, but starts

running “backwards” when it reaches a dead end.

21

The Speedup Theorem on a Canonical Machine

22

The Speedup Theorem on a Canonical Machine

1. Convert DTS[nb] machine into a “canonical form”

2. By replacing “ ∃” with “ MODp” and “ ∀” with “ MODq”,

the Alternating Speedup Theorem works on a canonical machin e.

22-a

The Speedup Theorem on a Canonical Machine

1. Convert DTS[nb] machine into a “canonical form”

2. By replacing “ ∃” with “ MODp” and “ ∀” with “ MODq”,

the Alternating Speedup Theorem works on a canonical machin e.

More Details: Let T be the runtime of the canonical machine.

22-b

The Speedup Theorem on a Canonical Machine

1. Convert DTS[nb] machine into a “canonical form”

2. By replacing “ ∃” with “ MODp” and “ ∀” with “ MODq”,

the Alternating Speedup Theorem works on a canonical machin e.

More Details: Let T be the runtime of the canonical machine.

• If we count (mod p) the number of config sequences C1, . . . , Cb+1

where the number of i satisfying Ci ⊢
T/b Ci+1 is divisible by q,

this mod-p residue is different in the accepting and rejecting cases.

22-c

The Speedup Theorem on a Canonical Machine

1. Convert DTS[nb] machine into a “canonical form”

2. By replacing “ ∃” with “ MODp” and “ ∀” with “ MODq”,

the Alternating Speedup Theorem works on a canonical machin e.

More Details: Let T be the runtime of the canonical machine.

• If we count (mod p) the number of config sequences C1, . . . , Cb+1

where the number of i satisfying Ci ⊢
T/b Ci+1 is divisible by q,

this mod-p residue is different in the accepting and rejecting cases.

• Can pre-compute the mod-p residue for the accepting case.

22-d

The Key to the Counting Simulation

23

The Key to the Counting Simulation

For a canonical machine, input x, integer ℓ, and given configuration C :

• There are unique configurations D and E s.t. C ⊢ℓ D and E ⊢ℓ C .

23-a

The Key to the Counting Simulation

For a canonical machine, input x, integer ℓ, and given configuration C :

• There are unique configurations D and E s.t. C ⊢ℓ D and E ⊢ℓ C .

A configuration sequence C1, . . . , Cb+1 has k mistakes for M(x) iff

there are exactly k pairs (Ci, Ci+1) s.t. ¬(Ci ⊢
T/b Ci+1).

23-b

The Key to the Counting Simulation

For a canonical machine, input x, integer ℓ, and given configuration C :

• There are unique configurations D and E s.t. C ⊢ℓ D and E ⊢ℓ C .

A configuration sequence C1, . . . , Cb+1 has k mistakes for M(x) iff

there are exactly k pairs (Ci, Ci+1) s.t. ¬(Ci ⊢
T/b Ci+1).

Can show that the number of configuration sequences with k mistakes:

• depends only on time-space usage and accepting/rejecting condition

• not on subtle properties of the machine’s behavior

23-c

Formal Statement

Let a complete configuration sequence C1, . . . , Cb+1 have

C1 as initial and Cb+1 as accepting.

24

Formal Statement

Let a complete configuration sequence C1, . . . , Cb+1 have

C1 as initial and Cb+1 as accepting.

Counting Lemma: Let n be an integer, let k ∈ {0, 1, . . . , b + 1}, and let M̂

be canonical. Then there are positive integers NA(n, k, b) and NR(n, k, b)

such that, for all inputs x of length n:

1. If M̂(x) accepts, then the number of complete b-configuration sequences

for M̂(x) with k mistakes is NA(n, k, b).

2. If M̂(x) rejects, then the number of complete b-configuration sequences

for M̂(x) with k mistakes is NR(n, k, b).

3. NA(n, k, b) − NR(n, k, b) = (−1)k
(

b+1
k

)

.

24-a

Conclusions and Questions

25

Conclusions and Questions

• A mapping from time-space lower bounds for nondeterminism to

analogous lower bounds for modular counting of solutions

25-a

Conclusions and Questions

• A mapping from time-space lower bounds for nondeterminism to

analogous lower bounds for modular counting of solutions

• Relies on properties of alternation-trading proofs and determinism

25-b

Conclusions and Questions

• A mapping from time-space lower bounds for nondeterminism to

analogous lower bounds for modular counting of solutions

• Relies on properties of alternation-trading proofs and determinism

• Can we prove better time lower bounds for MAJORITY SAT?

(It’s PP-complete...)

• How far can alternation-trading proofs go?

25-c

Advertisement for Upcoming Work

26

Advertisement for Upcoming Work

• Automated Time Lower Bounds:

Formalization of alternation-trading proofs

=⇒ Implementation of a theorem prover

Proofs found by a combo of exhaustive search and linear programming

26-a

Advertisement for Upcoming Work

• Automated Time Lower Bounds:

Formalization of alternation-trading proofs

=⇒ Implementation of a theorem prover

Proofs found by a combo of exhaustive search and linear programming

• Experiments suggest that our Ω(n2 cos(π/7)) time lower bound for SAT

is the best possible with the current tools(!)

26-b

Advertisement for Upcoming Work

• Automated Time Lower Bounds:

Formalization of alternation-trading proofs

=⇒ Implementation of a theorem prover

Proofs found by a combo of exhaustive search and linear programming

• Experiments suggest that our Ω(n2 cos(π/7)) time lower bound for SAT

is the best possible with the current tools(!)

If this is correct, then some REALLY NEW IDEAS will be required

to make further progress on time-space lower bounds

26-c

Thank you!

27

