Better Time-Space Lower Bounds for SAT and Related Problems

Ryan Williams
Carnegie Mellon University

June 12, 2005

Introduction

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

Introduction

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on random-access machines using $n^{o(1)}$ space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover, etc. [Raz and Van Melkebeek]

Introduction

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on random-access machines using $n^{o(1)}$ space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover, etc. [Raz and Van Melkebeek]

Previous time lower bounds for SAT (assuming $n^{o(1)}$ space):

- $\omega(n)$ [Kannan 84]

Introduction

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on random-access machines using $n^{o(1)}$ space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover, etc. [Raz and Van Melkebeek]

Previous time lower bounds for SAT (assuming $n^{o(1)}$ space):

- $\omega(n)$ [Kannan 84]
- $\Omega\left(n^{1+\varepsilon}\right)$ for some $\varepsilon>0 \quad$ [Fortnow 97]

Introduction

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on random-access machines using $n^{o(1)}$ space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover, etc. [Raz and Van Melkebeek]

Previous time lower bounds for SAT (assuming $n^{o(1)}$ space):

- $\omega(n)$ [Kannan 84]
- $\Omega\left(n^{1+\varepsilon}\right)$ for some $\varepsilon>0 \quad$ [Fortnow 97]
- $\Omega\left(n^{\sqrt{2}-\varepsilon}\right)$ for all $\varepsilon>0 \quad$ [Lipton and Viglas 99]

Introduction

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on random-access machines using $n^{o(1)}$ space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover, etc. [Raz and Van Melkebeek]
Previous time lower bounds for SAT (assuming $n^{o(1)}$ space):

- $\omega(n)$ [Kannan 84]
- $\Omega\left(n^{1+\varepsilon}\right)$ for some $\varepsilon>0 \quad$ [Fortnow 97]
- $\Omega\left(n^{\sqrt{2}-\varepsilon}\right)$ for all $\varepsilon>0 \quad$ [Lipton and Viglas 99]
- $\Omega\left(n^{\phi-\varepsilon}\right)$ where $\phi=1.618 \ldots$ [Fortnow and Van Melkebeek 00]

Our Main Result

$\sqrt{2}$ and ϕ are nice constants...
The constant of our work will be (larger, but) not-so-nice.

Our Main Result

$\sqrt{2}$ and ϕ are nice constants...
The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires $n^{\Upsilon_{k}}$ time (infinitely often) on a random-access machine using $n^{o(1)}$ workspace, where Υ_{k} is the positive solution in $(1,2)$ to

$$
\Upsilon_{k}^{3}\left(\Upsilon_{k}-1\right)=k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots(k-1)^{2^{-k+3}}\right)
$$

Our Main Result

$\sqrt{2}$ and ϕ are nice constants...
The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires $n^{\Upsilon_{k}}$ time (infinitely often) on a random-access machine using $n^{o(1)}$ workspace, where Υ_{k} is the positive solution in $(1,2)$ to

$$
\Upsilon_{k}^{3}\left(\Upsilon_{k}-1\right)=k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots(k-1)^{2^{-k+3}}\right)
$$

Define $\Upsilon:=\lim _{k \rightarrow \infty} \Upsilon_{k}$. Then: $n^{\Upsilon-\varepsilon}$ lower bound.

Our Main Result

$\sqrt{2}$ and ϕ are nice constants...
The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires $n^{\Upsilon_{k}}$ time (infinitely often) on a random-access machine using $n^{o(1)}$ workspace, where Υ_{k} is the positive solution in $(1,2)$ to

$$
\Upsilon_{k}^{3}\left(\Upsilon_{k}-1\right)=k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots(k-1)^{2^{-k+3}}\right)
$$

Define $\Upsilon:=\lim _{k \rightarrow \infty} \Upsilon_{k}$. Then: $n^{\Upsilon-\varepsilon}$ lower bound.
(Note: the Υ stands for 'Ugly')

Our Main Result

$\sqrt{2}$ and ϕ are nice constants...
The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires $n^{\Upsilon_{k}}$ time (infinitely often) on a random-access machine using $n^{o(1)}$ workspace, where Υ_{k} is the positive solution in $(1,2)$ to

$$
\Upsilon_{k}^{3}\left(\Upsilon_{k}-1\right)=k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots(k-1)^{2^{-k+3}}\right)
$$

Define $\Upsilon:=\lim _{k \rightarrow \infty} \Upsilon_{k}$. Then: $n^{\Upsilon-\varepsilon}$ lower bound.
(Note: the Υ stands for 'Ugly')
However, $\Upsilon \approx \sqrt{3}+\frac{6}{10000}$, so we'll present the result with $\sqrt{3}$.

Points About The Method We Use

- The theorem says for any sufficiently restricted machine, there is an infinite set of SAT instances it cannot solve correctly We will not construct such a set of instances for every machine!

Proof is by contradiction: it would be absurd, if such a machine could solve SAT almost everywhere

- Ours and the above cited methods use artificial computational models (alternating machines) to prove lower bounds for explicit problems in a realistic model

Outline

- Preliminaries and Proof Strategy
- A Speed-Up Theorem
(small-space computations can be accelerated using alternation)
- A Slow-Down Lemma
(NTIME can be efficiently simulated implies Σ_{k} TIME can be efficiently simulated with some slow-down)
- Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound
(the starting point for our approach)
- Our Inductive Argument
(how to derive a better bound from Lipton-Viglas)
- From $n^{1.66}$ to $n^{1.732}$
(a subtle argument that squeezes more from the induction)

Preliminaries: Two possibly obscure complexity classes

- DTISP $[t, s]$ is deterministic time t and space s, simultaneously (Note DTISP $[t, s] \neq \operatorname{DTIME}[t] \cap \operatorname{SPACE}[s]$ in general)
We will be looking at DTISP $\left[n^{k}, n^{o(1)}\right]$ for $k \geq 1$.
- NQL $:=\bigcup_{c \geq 0}$ NTIME $\left[n(\log n)^{c}\right]=$ NTIME $[n \cdot \operatorname{poly}(\log n)]$

The NQL stands for "nondeterministic quasi-linear time"

Preliminaries: SAT Facts

Satisfiability (SAT) is not only NP-complete, but also:
Theorem: [Cook 85, Gurevich and Shelah 89, Tourlakis 00]
SAT is NQL-complete, under reductions doable in $O(n \cdot \operatorname{poly}(\log n))$ time and $O(\log n)$ space (simultaneously). Moreover the i th bit of the reduction can be computed in $O(\operatorname{poly}(\log n))$ time.

Let \mathcal{D} be closed under quasi-linear time, logspace reductions.

Preliminaries: SAT Facts

Satisfiability (SAT) is not only NP-complete, but also:
Theorem: [Cook 85, Gurevich and Shelah 89, Tourlakis 00]
SAT is NQL-complete, under reductions doable in $O(n \cdot \operatorname{poly}(\log n))$ time and $O(\log n)$ space (simultaneously). Moreover the i th bit of the reduction can be computed in $O(\operatorname{poly}(\log n))$ time.

Let \mathcal{D} be closed under quasi-linear time, logspace reductions.
Corollary: If NTIME $[n] \nsubseteq \mathcal{D}$, then SAT $\notin \mathcal{D}$.
If one can show NTIME $n]$ is not contained in some \mathcal{D}, then one can name an explicit problem (SAT) not in \mathcal{D} (modulo polylog factors)

Preliminaries: Some Hierarchy Theorems

For reasonable $t(n) \geq n$,

$$
\mathrm{NTIME}[t] \nsubseteq \operatorname{coNTIME}[o(t)] .
$$

Furthermore, for integers $k \geq 1$,

$$
\Sigma_{k} \operatorname{TIME}[t] \nsubseteq \Pi_{k} \operatorname{TIME}[o(t)] .
$$

So, there's a tight time hierarchy within levels of the polynomial hierarchy.

Proof Strategy

Show if SAT has a sufficiently good algorithm, then one contradicts a hierarchy theorem.

Proof Strategy

Show if SAT has a sufficiently good algorithm, then one contradicts a hierarchy theorem.

Strategy of Prior work:

1. Show that DTISP $\left[n^{c}, n^{o(1)}\right]$ can be "sped-up" when simulated on an alternating machine
2. Show that $\mathrm{NTIME}[n] \subseteq \operatorname{DTISP}\left[n^{c}, n^{o(1)}\right]$ allows those alternations to be "removed" without much "slow-down"
3. Contradict a hierarchy theorem for small c

Proof Strategy

Show if SAT has a sufficiently good algorithm, then one contradicts a hierarchy theorem.

Strategy of Prior work:

1. Show that DTISP $\left[n^{c}, n^{o(1)}\right]$ can be "sped-up" when simulated on an alternating machine
2. Show that $\mathrm{NTIME}[n] \subseteq \operatorname{DTISP}\left[n^{c}, n^{o(1)}\right]$ allows those alternations to be "removed" without much "slow-down"
3. Contradict a hierarchy theorem for small c

Our proof will use the Σ_{k} time versus Π_{k} time hierarchy, for all k

Outline

- Preliminaries
- A Speed-Up Theorem
- A Slow-Down Lemma
- Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound
- Our Inductive Argument
- $\operatorname{From} n^{1.66}$ to $n^{1.732}$

A Speed-Up Theorem
 (Trading Time for Alternations)

Let:

- $t(n)=n^{c}$ for rational $c \geq 1$,
- $s(n)$ be $n^{o(1)}$, and
- $k \geq 2$ be an integer.

Theorem: [Fortnow and Van Melkebeek 00] [Kannan 83] $\mathrm{DTISP}[t, s] \subseteq \Sigma_{k} \operatorname{TIME}\left[t^{1 / k+o(1)}\right] \cap \Pi_{k} \operatorname{TIME}\left[t^{1 / k+o(1)}\right]$.

A Speed-Up Theorem

(Trading Time for Alternations)

Let:

- $t(n)=n^{c}$ for rational $c \geq 1$,
- $s(n)$ be $n^{o(1)}$, and
- $k \geq 2$ be an integer.

Theorem: [Fortnow and Van Melkebeek 00] [Kannan 83]

$$
\mathrm{DTISP}[t, s] \subseteq \Sigma_{k} \operatorname{TIME}\left[t^{1 / k+o(1)}\right] \cap \Pi_{k} \operatorname{TIME}\left[t^{1 / k+o(1)}\right]
$$

That is, for any machine M running in time t and using small workspace, there is an alternating machine M^{\prime} that makes k alternations and takes roughly $\sqrt[k]{t}$ time.

Moreover, M^{\prime} can start in either an existential or a universal state

Proof of the speed-up theorem

Let x be input, M be the small space machine to simulate
Goal: Write a clever sentence in first-order logic with k (alternating) quantifiers that is equivalent to $M(x)$ accepting

Proof of the speed-up theorem

Let x be input, M be the small space machine to simulate
Goal: Write a clever sentence in first-order logic with k (alternating) quantifiers that is equivalent to $M(x)$ accepting

Let C_{j} denote configuration of $M(x)$ after j th step: bit string encoding head positions, workspace contents, finite control

By space assumption on $M,\left|C_{j}\right| \in n^{o(1)}$

Proof of the speed-up theorem

Let x be input, M be the small space machine to simulate
Goal: Write a clever sentence in first-order logic with k (alternating) quantifiers that is equivalent to $M(x)$ accepting

Let C_{j} denote configuration of $M(x)$ after j th step: bit string encoding head positions, workspace contents, finite control

By space assumption on $M,\left|C_{j}\right| \in n^{o(1)}$
$M(x)$ accepts iff there is a sequence $C_{1}, C_{2}, \ldots, C_{t}$ where

- C_{1} is the "initial" configuration,
- C_{t} is in "accept" state
- For all i, C_{i} leads to C_{i+1} in one step of M on input x.

Proof of speed-up theorem: The case $k=2$

$M(x)$ accepts iff
$\left(\exists C_{0}, C_{\sqrt{t}}, C_{2 \sqrt{t}}, \ldots, C_{t}\right)$
$(\forall i \in\{1, \ldots, \sqrt{t}\})$
[$C_{i \cdot \sqrt{t}}$ leads to $C_{(i+1) \cdot \sqrt{t}}$ in \sqrt{t} steps, C_{0} is initial, C_{t} is accepting]

Proof of speed-up theorem: The case $k=2$

$M(x)$ accepts iff
$\left(\exists C_{0}, C_{\sqrt{t}}, C_{2 \sqrt{t}}, \ldots, C_{t}\right)$
$(\forall i \in\{1, \ldots, \sqrt{t}\})$
[$C_{i \cdot \sqrt{t}}$ leads to $C_{(i+1) \cdot \sqrt{t}}$ in \sqrt{t} steps, C_{0} is initial, C_{t} is accepting]
Runtime on an alternating machine:

- \exists takes $O(\sqrt{t} \cdot s)=t^{1 / 2+o(1)}$ time to write down the C_{j} 's
- \forall takes $O(\log t)$ time to write down i
- $[\cdots]$ takes $O(\sqrt{t} \cdot s)$ deterministic time to check

Two alternations, square root speedup

Proof of speed-up theorem: The $k=3$ case, first attempt

For $k=2$, we had
$\left(\exists C_{0}, C_{\sqrt{t}}, C_{2 \sqrt{t}}, \ldots, C_{t}\right)$
$(\forall i \in\{0,1, \ldots, \sqrt{t}\})$
[$C_{i \cdot \sqrt{t}}$ leads to $C_{(i+1) \cdot \sqrt{t}}$ in \sqrt{t} steps, C_{0} initial, C_{t} accepting]

Proof of speed-up theorem: The $k=3$ case, first attempt

For $k=2$, we had
$\left(\exists C_{0}, C_{\sqrt{t}}, C_{2 \sqrt{t}}, \ldots, C_{t}\right)$
$(\forall i \in\{0,1, \ldots, \sqrt{t}\})$
[$C_{i \cdot \sqrt{t}}$ leads to $C_{(i+1) \cdot \sqrt{t}}$ in \sqrt{t} steps, C_{0} initial, C_{t} accepting]
Observation: The $[\cdots]$ is an $O(\sqrt{t})$ time and small-space computation, thus we can speed it up by a square root as well

Proof of speed-up theorem: The $k=3$ case, first attempt

For $k=2$, we had
$\left(\exists C_{0}, C_{\sqrt{t}}, C_{2 \sqrt{t}}, \ldots, C_{t}\right)$
$(\forall i \in\{0,1, \ldots, \sqrt{t}\})$
[$C_{i \cdot \sqrt{t}}$ leads to $C_{(i+1) \cdot \sqrt{t}}$ in \sqrt{t} steps, C_{0} initial, C_{t} accepting]
Observation: The $[\cdots]$ is an $O(\sqrt{t})$ time and small-space computation, thus we can speed it up by a square root as well

Straightforward way of doing this leads to:
$\left(\exists C_{0}, C_{t^{2 / 3}}, C_{2 \cdot t^{2 / 3}}, \ldots, C_{t}\right)\left(\forall i \in\left\{0,1, \ldots, t^{1 / 3}\right\}\right)$
$\left(\exists C_{i \cdot t^{2 / 3}+t^{1 / 3}}, C_{i \cdot t^{2 / 3}+2 \cdot t^{1 / 3}}, \ldots, C_{(i+1) \cdot t^{2 / 3}}\right)(\forall j \in\{1, \ldots, \sqrt{t}\})$
[$C_{i \cdot t^{2 / 3}+j \cdot t^{1 / 3}}$ leads to $C_{i \cdot t^{2 / 3}}+(j+1) \cdot t^{1 / 3}$ in $t^{1 / 3}$ steps, C_{0} initial, C_{t} accepting]
$k=2$ has one "stage"

$k=2$ has one "stage"

$k=3$ has two "stages"

Proof of speed-up theorem: Not quite enough for $k=3$

The $k=3$ sentence we gave uses four quantifiers, for only $t^{1 / 3}$ time (we want only three quantifier blocks)

Proof of speed-up theorem: Not quite enough for $k=3$

The $k=3$ sentence we gave uses four quantifiers, for only $t^{1 / 3}$ time (we want only three quantifier blocks)

Idea: Take advantage of the computation's determinism - only one possible configuration at any step

Proof of speed-up theorem: Not quite enough for $k=3$

The $k=3$ sentence we gave uses four quantifiers, for only $t^{1 / 3}$ time (we want only three quantifier blocks)

Idea: Take advantage of the computation's determinism - only one possible configuration at any step

The acceptance condition for $M(x)$ can be complemented:
$M(x)$ accepts iff
($\forall C_{0}, C_{\sqrt{t}}, C_{2 \sqrt{t}}, \ldots, C_{t}$ rejecting)
$(\exists i \in\{1, \ldots, \sqrt{t}\})$
[$C_{i \cdot \sqrt{t}}$ does not lead to $C_{i \cdot \sqrt{t}+\sqrt{t}}$ in \sqrt{t} steps]
"For all configuration sequences C_{1}, \ldots, C_{t} where C_{t} is rejecting, there exists a configuration C_{i} that does not lead to C_{i+1} "

The $k=3$ case

We can therefore rewrite the $k=3$ case, from
$\left(\exists C_{0}, C_{t^{2 / 3}}, C_{2 \cdot t^{2 / 3}}, \ldots, C_{t}\right.$ accepting $)\left(\forall i \in\left\{0,1, \ldots, t^{1 / 3}\right\}\right)$
$\left(\exists C_{i \cdot t^{2 / 3}+t^{1 / 3}}, C_{i \cdot t^{2 / 3}+2 \cdot t^{1 / 3}}, \ldots, C_{(i+1) \cdot t^{2 / 3}}\right)(\forall j \in\{1, \ldots, \sqrt{t}\})$ [$C_{i \cdot t^{2 / 3}}+j \cdot t^{1 / 3}$ leads to $C_{i \cdot t^{2 / 3}+(j+1) \cdot t^{1 / 3}}$ in $t^{1 / 3}$ steps]
to:

The $k=3$ case

We can therefore rewrite the $k=3$ case, from
$\left(\exists C_{0}, C_{t^{2 / 3}}, C_{2 \cdot t^{2 / 3}}, \ldots, C_{t}\right.$ accepting $)\left(\forall i \in\left\{0,1, \ldots, t^{1 / 3}\right\}\right)$
$\left(\exists C_{i \cdot t^{2 / 3}+t^{1 / 3}}, C_{i \cdot t^{2 / 3}+2 \cdot t^{1 / 3}}, \ldots, C_{(i+1) \cdot t^{2 / 3}}\right)(\forall j \in\{1, \ldots, \sqrt{t}\})$
[$C_{i \cdot t^{2 / 3}+j \cdot t^{1 / 3}}$ leads to $C_{i \cdot t^{2 / 3}+(j+1) \cdot t^{1 / 3}}$ in $t^{1 / 3}$ steps]
to:
$\left(\exists C_{0}, C_{t^{2 / 3}}, C_{2 \cdot t^{2 / 3}}, \ldots, C_{t}\right.$ accepting $)\left(\forall i \in\left\{0,1, \ldots, t^{1 / 3}\right\}\right)$ $\left(\forall C_{i \cdot t^{2 / 3}+t^{1 / 3}}, \ldots, C_{(i+1) \cdot t^{2 / 3}-t^{1 / 3}}, C_{(i+1) \cdot t^{2 / 3}}^{\prime} \neq C_{(i+1) \cdot t^{2 / 3}}\right)$
$(\exists j \in\{1, \ldots, \sqrt{t}\})$
[$C_{i \cdot t^{2 / 3}+j \cdot t^{1 / 3}}$ does not lead to $C_{i \cdot t^{2 / 3}+(j+1) \cdot t^{1 / 3}}$ in $t^{1 / 3}$ steps]

The $k=3$ case

We can therefore rewrite the $k=3$ case, from
$\left(\exists C_{0}, C_{t^{2 / 3}}, C_{2 \cdot t^{2 / 3}}, \ldots, C_{t}\right.$ accepting $)\left(\forall i \in\left\{0,1, \ldots, t^{1 / 3}\right\}\right)$
$\left(\exists C_{i \cdot t^{2 / 3}+t^{1 / 3}}, C_{i \cdot t^{2 / 3}+2 \cdot t^{1 / 3}}, \ldots, C_{(i+1) \cdot t^{2 / 3}}\right)(\forall j \in\{1, \ldots, \sqrt{t}\})$
[$C_{i \cdot t^{2 / 3}+j \cdot t^{1 / 3}}$ leads to $C_{i \cdot t^{2 / 3}+(j+1) \cdot t^{1 / 3}}$ in $t^{1 / 3}$ steps]
to:
$\left(\exists C_{0}, C_{t^{2 / 3}}, C_{2 \cdot t^{2 / 3}}, \ldots, C_{t}\right.$ accepting $)\left(\forall i \in\left\{0,1, \ldots, t^{1 / 3}\right\}\right)$ $\left(\forall C_{i \cdot t^{2 / 3}+t^{1 / 3}}, \ldots, C_{(i+1) \cdot t^{2 / 3}-t^{1 / 3}}, C_{(i+1) \cdot t^{2 / 3}}^{\prime} \neq C_{(i+1) \cdot t^{2 / 3}}\right)$
$(\exists j \in\{1, \ldots, \sqrt{t}\})$
[$C_{i \cdot t^{2 / 3}+j \cdot t^{1 / 3}}$ does not lead to $C_{i \cdot t^{2 / 3}+(j+1) \cdot t^{1 / 3}}$ in $t^{1 / 3}$ steps]
Voila! Three quantifier blocks. This is in $\Sigma_{3} \operatorname{TIME}\left[t^{1 / 3+o(1)}\right]$ (and similarly one can show it's in Π_{3} TIME $\left[t^{1 / 3+o(1)}\right]$)

This can be generalized...

For arbitrary $k \geq 3$, one simply guesses (existentially or universally) $t^{1 / k}$ configurations at each stage

This can be generalized...

For arbitrary $k \geq 3$, one simply guesses (existentially or universally) $t^{1 / k}$ configurations at each stage

- Inverting quantifiers means the number of alternations only increases by one for every stage

$$
(\exists \forall)(\forall \exists)(\exists \forall) \cdots
$$

This can be generalized...

For arbitrary $k \geq 3$, one simply guesses (existentially or universally) $t^{1 / k}$ configurations at each stage

- Inverting quantifiers means the number of alternations only increases by one for every stage

$$
(\exists \forall)(\forall \exists)(\exists \forall) \cdots
$$

- There are $k-1$ stages of guessing $t^{1 / k}$ configurations, then $t^{1 / k}$ time to deterministically verify configurations

Outline

- Preliminaries
- A Speed-Up Theorem
- A Slow-Down Lemma
- Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound
- Our Inductive Argument
- From $n^{1.66}$ to $n^{1.732}$

A Slow-Down Lemma

(Trading Alternations For Time)

Main Idea: The assumption NTIME $[n] \subseteq$ DTIME $\left[n^{c}\right]$ allows one to remove alternations from a computation, with a small time increase

A Slow-Down Lemma

(Trading Alternations For Time)

Main Idea: The assumption NTIME $[n] \subseteq \mathrm{DTIME}\left[n^{c}\right]$ allows one to remove alternations from a computation, with a small time increase

Let $t(n) \geq n$ be a polynomial, $c \geq 1$.
Lemma: If $\mathrm{NTIME}[n] \subseteq \mathrm{DTIME}\left[n^{c}\right]$ then for all $k \geq 1$, $\Sigma_{k} \operatorname{TIME}[t] \subseteq \Sigma_{k-1} \operatorname{TIME}\left[t^{c}\right]$.

We prove the following, which will be very useful in our final proof.

A Slow-Down Lemma

(Trading Alternations For Time)

Main Idea: The assumption NTIME $[n] \subseteq$ DTIME $\left[n^{c}\right]$ allows one to remove alternations from a computation, with a small time increase

Let $t(n) \geq n$ be a polynomial, $c \geq 1$.
Lemma: If $\mathrm{NTIME}[n] \subseteq \mathrm{DTIME}\left[n^{c}\right]$ then for all $k \geq 1$, $\Sigma_{k} \operatorname{TIME}[t] \subseteq \Sigma_{k-1} \operatorname{TIME}\left[t^{c}\right]$.

We prove the following, which will be very useful in our final proof.
Theorem: If $\Sigma_{k} \operatorname{TIME}[n] \subseteq \Pi_{k} \operatorname{TIME}\left[n^{c}\right]$ then

$$
\Sigma_{k+1} \operatorname{TIME}[t] \subseteq \Sigma_{k} \operatorname{TIME}\left[t^{c}\right] .
$$

A Slow-Down Lemma: Proof

Assume $\sum_{k} \operatorname{TIME}[n] \subseteq \Pi_{k} \operatorname{TIME}\left[n^{c}\right]$
Let M be a Σ_{k+1} machine running in time t

A Slow-Down Lemma: Proof

Assume $\Sigma_{k} \operatorname{TIME}[n] \subseteq \Pi_{k} \operatorname{TIME}\left[n^{c}\right]$
Let M be a Σ_{k+1} machine running in time t
Recall $M(x)$ can be characterized by a first-order sentence:

$$
\begin{aligned}
& \left(\exists x_{1},\left|x_{1}\right| \leq t(|x|)\right)\left(\forall x_{2},\left|x_{2}\right| \leq t(|x|)\right) \cdots \\
& \quad\left(Q z,\left|x_{k+1}\right| \leq t(|x|)\right)\left[P\left(x, x_{1}, x_{2}, \ldots, x_{k+1}\right)\right]
\end{aligned}
$$

where P "runs" in time $t(|x|)$

A Slow-Down Lemma: Proof

Assume $\Sigma_{k} \operatorname{TIME}[n] \subseteq \Pi_{k} \operatorname{TIME}\left[n^{c}\right]$
Let M be a Σ_{k+1} machine running in time t
Recall $M(x)$ can be characterized by a first-order sentence:

$$
\begin{aligned}
& \left(\exists x_{1},\left|x_{1}\right| \leq t(|x|)\right)\left(\forall x_{2},\left|x_{2}\right| \leq t(|x|)\right) \cdots \\
& \quad\left(Q z,\left|x_{k+1}\right| \leq t(|x|)\right)\left[P\left(x, x_{1}, x_{2}, \ldots, x_{k+1}\right)\right]
\end{aligned}
$$

where P "runs" in time $t(|x|)$
Important Point: input to P is of $O(t(|x|))$ length, so P actually runs in linear time with respect to the length of its input

A Slow-Down Lemma: Proof

Assume $\Sigma_{k} \operatorname{TIME}[n] \subseteq \Pi_{k} \operatorname{TIME}\left[n^{c}\right]$
Define

$$
\begin{aligned}
R\left(x, x_{1}\right):= & \left(\forall x_{2},\left|x_{2}\right| \leq t(|x|)\right) \cdots \\
& \left(Q z,\left|x_{k+1}\right| \leq t(|x|)\right) \\
& {\left[P\left(x, x_{1}, x_{2}, \ldots, x_{k+1}\right)\right] }
\end{aligned}
$$

A Slow-Down Lemma: Proof

Assume $\Sigma_{k} \operatorname{TIME}[n] \subseteq \Pi_{k} \operatorname{TIME}\left[n^{c}\right]$
Define

$$
\begin{aligned}
R\left(x, x_{1}\right):= & \left(\forall x_{2},\left|x_{2}\right| \leq t(|x|)\right) \cdots \\
& \left(Q z,\left|x_{k+1}\right| \leq t(|x|)\right) \\
& {\left[P\left(x, x_{1}, x_{2}, \ldots, x_{k+1}\right)\right] }
\end{aligned}
$$

So $M(x)$ accepts iff $\left(\exists x_{1},\left|x_{1}\right| \leq t(|x|)\right) R\left(x, x_{1}\right)$

A Slow-Down Lemma: Proof

Assume $\Sigma_{k} \operatorname{TIME}[n] \subseteq \Pi_{k} \operatorname{TIME}\left[n^{c}\right]$
Define

$$
\begin{aligned}
R\left(x, x_{1}\right):= & \left(\forall x_{2},\left|x_{2}\right| \leq t(|x|)\right) \cdots \\
& \left(Q z,\left|x_{k+1}\right| \leq t(|x|)\right) \\
& {\left[P\left(x, x_{1}, x_{2}, \ldots, x_{k+1}\right)\right] }
\end{aligned}
$$

So $M(x)$ accepts iff $\left(\exists x_{1},\left|x_{1}\right| \leq t(|x|)\right) R\left(x, x_{1}\right)$

- By definition, R recognized by a Π_{k} machine in time $t(|x|)$, i.e. linear time $\left(\left|x_{1}\right|=t(|x|)\right)$.

A Slow-Down Lemma: Proof

Assume $\Sigma_{k} \operatorname{TIME}[n] \subseteq \Pi_{k} \operatorname{TIME}\left[n^{c}\right]$
Define

$$
\begin{aligned}
R\left(x, x_{1}\right):= & \left(\forall x_{2},\left|x_{2}\right| \leq t(|x|)\right) \cdots \\
& \left(Q z,\left|x_{k+1}\right| \leq t(|x|)\right) \\
& {\left[P\left(x, x_{1}, x_{2}, \ldots, x_{k+1}\right)\right] }
\end{aligned}
$$

So $M(x)$ accepts iff $\left(\exists x_{1},\left|x_{1}\right| \leq t(|x|)\right) R\left(x, x_{1}\right)$

- By definition, R recognized by a Π_{k} machine in time $t(|x|)$, i.e. linear time $\left(\left|x_{1}\right|=t(|x|)\right)$.
- By assumption, there is R^{\prime} equivalent to R that starts with an \exists, has k quantifier blocks, is in $t(|x|)^{c}$ time

A Slow-Down Lemma: Proof

Assume $\Sigma_{k} \operatorname{TIME}[n] \subseteq \Pi_{k} \operatorname{TIME}\left[n^{c}\right]$
Define $\quad R\left(x, x_{1}\right):=\left(\forall x_{2},\left|x_{2}\right| \leq t(|x|)\right) \cdots$

$$
\begin{aligned}
& \left(Q z,\left|x_{k+1}\right| \leq t(|x|)\right) \\
& {\left[P\left(x, x_{1}, x_{2}, \ldots, x_{k+1}\right)\right]}
\end{aligned}
$$

So $M(x)$ accepts iff $\left(\exists x_{1},\left|x_{1}\right| \leq t(|x|)\right) R\left(x, x_{1}\right)$

- By definition, R recognized by a Π_{k} machine in time $t(|x|)$, i.e. linear time $\left(\left|x_{1}\right|=t(|x|)\right)$.
- By assumption, there is R^{\prime} equivalent to R that starts with an \exists, has k quantifier blocks, is in $t(|x|)^{c}$ time
$M(x)$ accepts iff $\left[\left(\exists x_{1},\left|x_{1}\right| \leq t(|x|)\right) R^{\prime}\left(x, x_{1}\right)\right] \longleftarrow \Sigma_{k} \operatorname{TIME}\left[t^{c}\right]$

Outline

- Preliminaries
- A Speed-Up Theorem
- A Slow-Down Lemma
- Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound
- Our Inductive Argument
- $\operatorname{From} n^{1.66}$ to $n^{1.732}$

Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound (Rephrased)

Lemma: If NTIME $[n] \subseteq \operatorname{DTISP}\left[n^{c}, n^{o(1)}\right]$ for some $c \geq 1$, then for all polynomials $t(n) \geq n$, $\mathrm{NTIME}[t] \subseteq \mathrm{DTISP}\left[t^{c}, t^{o(1)}\right]$
Theorem: NTIME $[n] \nsubseteq$ DTISP $\left[n^{\sqrt{2}-\varepsilon}, n^{o(1)}\right]$

Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound (Rephrased)

Lemma: If NTIME $[n] \subseteq \operatorname{DTISP}\left[n^{c}, n^{o(1)}\right]$ for some $c \geq 1$, then for all polynomials $t(n) \geq n$, $\mathrm{NTIME}[t] \subseteq \mathrm{DTISP}\left[t^{c}, t^{o(1)}\right]$
Theorem: NTIME $[n] \nsubseteq$ DTISP $\left[n^{\sqrt{2}-\varepsilon}, n^{o(1)}\right]$
Proof: Assume NTIME $[n] \subseteq$ DTISP $\left[n^{c}, n^{o(1)}\right]$
(We will find a c that implies a contradiction)

Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound (Rephrased)

Lemma: If NTIME $n n \subseteq \operatorname{DTISP}\left[n^{c}, n^{o(1)}\right]$ for some $c \geq 1$, then for all polynomials $t(n) \geq n$, $\mathrm{NTIME}[t] \subseteq \mathrm{DTISP}\left[t^{c}, t^{o(1)}\right]$
Theorem: NTIME $[n] \nsubseteq$ DTISP $\left[n^{\sqrt{2}-\varepsilon}, n^{o(1)}\right]$
Proof: Assume NTIME $[n] \subseteq$ DTISP $\left[n^{c}, n^{o(1)}\right]$
(We will find a c that implies a contradiction)

- Σ_{2} TIME $[n] \subseteq$ NTIME $\left[n^{c}\right]$, by slow-down theorem

Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound (Rephrased)

Lemma: If NTIME $[n] \subseteq \operatorname{DTISP}\left[n^{c}, n^{o(1)}\right]$ for some $c \geq 1$, then for all polynomials $t(n) \geq n$, $\operatorname{NTIME}[t] \subseteq \operatorname{DTISP}\left[t^{c}, t^{o(1)}\right]$
Theorem: NTIME $[n] \nsubseteq$ DTISP $\left[n^{\sqrt{2}-\varepsilon}, n^{o(1)}\right]$
Proof: Assume NTIME $[n] \subseteq$ DTISP $\left[n^{c}, n^{o(1)}\right]$
(We will find a c that implies a contradiction)

- $\Sigma_{2} \operatorname{TIME}[n] \subseteq \operatorname{NTIME}\left[n^{c}\right]$, by slow-down theorem
- $\operatorname{NTIME}\left[n^{c}\right] \subseteq \operatorname{DTISP}\left[n^{c^{2}}, n^{o(1)}\right]$, by assumption and padding

Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound (Rephrased)

Lemma: If NTIME $[n] \subseteq \operatorname{DTISP}\left[n^{c}, n^{o(1)}\right]$ for some $c \geq 1$, then for all polynomials $t(n) \geq n$, $\mathrm{NTIME}[t] \subseteq \operatorname{DTISP}\left[t^{c}, t^{o(1)}\right]$
Theorem: NTIME $[n] \nsubseteq$ DTISP $\left[n^{\sqrt{2}-\varepsilon}, n^{o(1)}\right]$
Proof: Assume NTIME $[n] \subseteq$ DTISP $\left[n^{c}, n^{o(1)}\right]$
(We will find a c that implies a contradiction)

- $\Sigma_{2} \operatorname{TIME}[n] \subseteq \operatorname{NTIME}\left[n^{c}\right]$, by slow-down theorem
- $\operatorname{NTIME}\left[n^{c}\right] \subseteq \operatorname{DTISP}\left[n^{c^{2}}, n^{o(1)}\right]$, by assumption and padding
- DTISP $\left[n^{c^{2}}, n^{o(1)}\right] \subseteq \Pi_{2}$ TIME $\left[n^{c^{2} / 2}\right]$, by speed-up theorem, so $c<\sqrt{2}$ contradicts the hierarchy theorem

Outline

- Preliminaries
- A Speed-Up Theorem
- A Slow-Down Lemma
- Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound
- Our Inductive Argument
- $\operatorname{From} n^{1.66}$ to $n^{1.732}$

Viewing Lipton-Viglas as a Lemma

(The Base Case for Our Induction)

We deliberately presented Lipton-Viglas's result differently from the original argument. In this way, we get

Lemma: NTIME $[n] \subseteq$ DTISP $\left[n^{c}, n^{o(1)}\right]$ implies

$$
\Sigma_{2} \operatorname{TIME}[n] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{c^{2} / 2}\right] .
$$

Note if $c<2$ then $c^{2} / 2<c$.

Viewing Lipton-Viglas as a Lemma

(The Base Case for Our Induction)

We deliberately presented Lipton-Viglas's result differently from the original argument. In this way, we get

Lemma: NTIME $[n] \subseteq$ DTISP $\left[n^{c}, n^{o(1)}\right]$ implies

$$
\Sigma_{2} \operatorname{TIME}[n] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{c^{2} / 2}\right] .
$$

Note if $c<2$ then $c^{2} / 2<c$.

- Thus, we may not necessarily have a contradiction for larger c, but we can remove one alternation from Σ_{3} with only $n^{c^{2} / 2}$ cost

Viewing Lipton-Viglas as a Lemma

(The Base Case for Our Induction)

We deliberately presented Lipton-Viglas's result differently from the original argument. In this way, we get
Lemma: NTIME $[n] \subseteq$ DTISP $\left[n^{c}, n^{o(1)}\right]$ implies

$$
\Sigma_{2} \operatorname{TIME}[n] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{c^{2} / 2}\right] .
$$

Note if $c<2$ then $c^{2} / 2<c$.

- Thus, we may not necessarily have a contradiction for larger c, but we can remove one alternation from Σ_{3} with only $n^{c^{2} / 2}$ cost
- Slow-down theorem implies $\Sigma_{3} \operatorname{TIME}[n] \subseteq \Sigma_{2} \operatorname{TIME}\left[n^{c^{2} / 2}\right]$

The Start of the Induction: Σ_{3}

Assume NTIME $[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$ and the lemma

The Start of the Induction: Σ_{3}

Assume NTIME $[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$ and the lemma

- $\Sigma_{3} \operatorname{TIME}[n] \subseteq \Sigma_{2} \operatorname{TIME}\left[n^{c^{2} / 2}\right]$, by slow-down and lemma

The Start of the Induction: Σ_{3}

Assume NTIME $[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$ and the lemma

- $\Sigma_{3} \operatorname{TIME}[n] \subseteq \Sigma_{2} \operatorname{TIME}\left[n^{c^{2} / 2}\right]$, by slow-down and lemma
- Σ_{2} TIME $\left[n^{c^{2} / 2}\right] \subseteq$ NTIME $\left[n^{c^{3} / 2}\right]$, by slow-down

The Start of the Induction: Σ_{3}

Assume $\mathrm{NTIME}[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$ and the lemma

- $\Sigma_{3} \operatorname{TIME}[n] \subseteq \Sigma_{2} \operatorname{TIME}\left[n^{c^{2} / 2}\right]$, by slow-down and lemma
- Σ_{2} TIME $\left[n^{c^{2} / 2}\right] \subseteq$ NTIME $\left[n^{c^{3} / 2}\right]$, by slow-down
- NTIME $\left[n^{c^{3} / 2}\right] \subseteq \operatorname{DTISP}\left[n^{c^{4} / 2}, n^{o(1)}\right]$, by assumption and padding

The Start of the Induction: Σ_{3}

Assume $\mathrm{NTIME}[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$ and the lemma

- $\Sigma_{3} \operatorname{TIME}[n] \subseteq \Sigma_{2} \operatorname{TIME}\left[n^{c^{2} / 2}\right]$, by slow-down and lemma
- Σ_{2} TIME $\left[n^{c^{2} / 2}\right] \subseteq$ NTIME $\left[n^{c^{3} / 2}\right]$, by slow-down
- NTIME $\left[n^{c^{3} / 2}\right] \subseteq \operatorname{DTISP}\left[n^{c^{4} / 2}, n^{o(1)}\right]$, by assumption and padding
- DTISP $\left[n^{c^{4} / 2}, n^{o(1)}\right] \subseteq \Pi_{3}$ TIME $\left[n^{c^{4} / 6}\right]$, by speed-up

The Start of the Induction: Σ_{3}

Assume NTIME $[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$ and the lemma

- $\Sigma_{3} \operatorname{TIME}[n] \subseteq \Sigma_{2} \operatorname{TIME}\left[n^{c^{2} / 2}\right]$, by slow-down and lemma
- $\Sigma_{2} \operatorname{TIME}\left[n^{c^{2} / 2}\right] \subseteq$ NTIME $\left[n^{c^{3} / 2}\right]$, by slow-down
- NTIME $\left[n^{c^{3} / 2}\right] \subseteq \operatorname{DTISP}\left[n^{c^{4} / 2}, n^{o(1)}\right]$, by assumption and padding
- DTISP $\left[n^{c^{4} / 2}, n^{o(1)}\right] \subseteq \Pi_{3}$ TIME $\left[n^{c^{4} / 6}\right]$, by speed-up

Observe:

- Now $c<\sqrt[4]{6} \approx 1.565$ contradicts time hierarchy for Σ_{3} and Π_{3}
- But if $c \geq \sqrt[4]{6}$, then we obtain a new "lemma":

$$
\Sigma_{3} \operatorname{TIME}[n] \subseteq \Pi_{3} \operatorname{TIME}\left[n^{c^{4} / 6}\right]
$$

$$
\Sigma_{4}, \Sigma_{5}, \ldots
$$

Assume NTIME $[n] \subseteq$ DTISP $\left[n^{c}, n^{o(1)}\right]$ and lemmas

$$
\Sigma_{4}, \Sigma_{5}, \ldots
$$

Assume NTIME $[n] \subseteq$ DTISP $\left[n^{c}, n^{o(1)}\right]$ and lemmas

(Here we drop the TIME from Σ_{k} TIME for tidiness)

$$
\Sigma_{4}[n] \subseteq \Sigma_{3}\left[n^{\frac{c^{4}}{6}}\right] \subseteq \Sigma_{2}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2}}\right] \subseteq \operatorname{NTIME}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}\right], \text { but }
$$

$\Sigma_{4}, \Sigma_{5}, \ldots$

Assume NTIME $[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$ and lemmas
(Here we drop the TIME from Σ_{k} TIME for tidiness)

$$
\Sigma_{4}[n] \subseteq \Sigma_{3}\left[n^{\frac{c^{4}}{6}}\right] \subseteq \Sigma_{2}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2}}\right] \subseteq \operatorname{NTIME}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}\right], \text { but }
$$

$$
\mathrm{NTIME}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}\right] \subseteq \mathrm{DTISP}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c^{2}}, n^{o(1)}\right] \subseteq \Pi_{4}\left[n^{c^{8} / 48}\right]
$$

$$
(c<\sqrt[8]{48} \approx 1.622 \text { implies contradiction })
$$

$\Sigma_{4}, \Sigma_{5}, \ldots$

Assume NTIME $[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$ and lemmas

(Here we drop the TIME from Σ_{k} TIME for tidiness)

$$
\Sigma_{4}[n] \subseteq \Sigma_{3}\left[n^{\frac{c^{4}}{6}}\right] \subseteq \Sigma_{2}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2}}\right] \subseteq \operatorname{NTIME}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}\right], \text { but }
$$

$$
\mathrm{NTIME}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}\right] \subseteq \mathrm{DTISP}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c^{2}}, n^{o(1)}\right] \subseteq \Pi_{4}\left[n^{c^{8} / 48}\right]
$$

$$
(c<\sqrt[8]{48} \approx 1.622 \text { implies contradiction })
$$

$$
\Sigma_{5}[n] \subseteq \Sigma_{4}\left[n^{\frac{c^{8}}{48}}\right] \subseteq \Sigma_{3}\left[n^{\frac{c^{12}}{48 \cdot 6}}\right] \subseteq \Sigma_{2}\left[n^{\frac{c^{14}}{48 \cdot 6 \cdot 2}}\right], \text { and this is in }
$$

$\Sigma_{4}, \Sigma_{5}, \ldots$

Assume NTIME $[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$ and lemmas

(Here we drop the TIME from Σ_{k} TIME for tidiness)

$$
\Sigma_{4}[n] \subseteq \Sigma_{3}\left[n^{\frac{c^{4}}{6}}\right] \subseteq \Sigma_{2}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2}}\right] \subseteq \operatorname{NTIME}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}\right], \text { but }
$$

$\operatorname{NTIME}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}\right] \subseteq \operatorname{DTISP}\left[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c^{2}}, n^{o(1)}\right] \subseteq \Pi_{4}\left[n^{c^{8} / 48}\right]$
($c<\sqrt[8]{48} \approx 1.622$ implies contradiction)
$\Sigma_{5}[n] \subseteq \Sigma_{4}\left[n^{\frac{c^{8}}{48}}\right] \subseteq \Sigma_{3}\left[n^{\frac{c^{12}}{48 \cdot 6}}\right] \subseteq \Sigma_{2}\left[n^{\frac{c^{14}}{48 \cdot 6 \cdot 2}}\right]$, and this is in
$\operatorname{NTIME}\left[n^{\frac{c^{15}}{48 \cdot 12}}\right] \subseteq \operatorname{DTISP}\left[n^{\frac{c^{16}}{48 \cdot 12}}, n^{o(1)}\right] \subseteq \Pi_{5}\left[n^{\frac{c^{16}}{48 \cdot 60}}\right]$

$$
(c<\sqrt[16]{2880} \approx 1.645 \text { implies contradiction })
$$

An intermediate lower bound, $n^{\Upsilon^{\prime}}$

Assume NTIME $[n] \subseteq$ DTISP $\left[n^{c}, n^{o(1)}\right]$
Claim: The inductive process of the previous slide converges.
The constant derived is

$$
\Upsilon^{\prime}:=\lim _{k \rightarrow \infty} f(k)
$$

where $f(k):=\prod_{j=1}^{k-1}(1+1 / j)^{1 / 2^{j}}$.
Note $\Upsilon^{\prime} \approx 1.66$.

A Time-Space Tradeoff

Corollary: For every $c<1.66$ there is $d>0$ such that SAT is not in DTISP $\left[n^{c}, n^{d}\right]$.

Outline

- Preliminaries
- A Speed-Up Theorem
- A Slow-Down Lemma
- Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound
- Our Inductive Argument
- From $n^{1.66}$ to $n^{1.732}$

From $n^{1.66}$ to $n^{1.732}$
$\mathrm{DTISP}\left[t, t^{o(1)}\right] \subseteq \Pi_{k} \operatorname{TISP}\left[t^{1 / k+o(1)}\right]$ is an unconditional result

From $n^{1.66}$ to $n^{1.732}$

$\mathrm{DTISP}\left[t, t^{o(1)}\right] \subseteq \Pi_{k} \operatorname{TISP}\left[t^{1 / k+o(1)}\right]$ is an unconditional result

All other derived class inclusions in the above proof actually depend on the assumption that $\mathrm{NTIME}[n] \subseteq \operatorname{DTISP}\left[n^{c}, n^{o(1)}\right]$.

From $n^{1.66}$ to $n^{1.732}$

$\mathrm{DTISP}\left[t, t^{o(1)}\right] \subseteq \Pi_{k} \operatorname{TISP}\left[t^{1 / k+o(1)}\right]$ is an unconditional result

All other derived class inclusions in the above proof actually depend on the assumption that $\operatorname{NTIME}[n] \subseteq \operatorname{DTISP}\left[n^{c}, n^{o(1)}\right]$.

We'll now show how such an assumption can get

$$
\mathrm{DTISP}\left[n^{c}, n^{o(1)}\right] \subseteq \Pi_{k} \operatorname{TISP}\left[n^{c /(k+\varepsilon)+o(1)}\right]
$$

for some $\varepsilon>0$. This will push the lower bound higher.

From $n^{1.66}$ to $n^{1.732}$

$\mathrm{DTISP}\left[t, t^{o(1)}\right] \subseteq \Pi_{k} \operatorname{TISP}\left[t^{1 / k+o(1)}\right]$ is an unconditional result

All other derived class inclusions in the above proof actually depend on the assumption that $\mathrm{NTIME}[n] \subseteq \operatorname{DTISP}\left[n^{c}, n^{o(1)}\right]$.

We'll now show how such an assumption can get

$$
\mathrm{DTISP}\left[n^{c}, n^{o(1)}\right] \subseteq \Pi_{k} \operatorname{TISP}\left[n^{c /(k+\varepsilon)+o(1)}\right]
$$

for some $\varepsilon>0$. This will push the lower bound higher.
Lemma: Let $c \leq 2$. Define $d_{1}:=2, d_{k}:=1+\frac{d_{k-1}}{c}$.
If NTIME $\left[n^{2 / c}\right] \subseteq \operatorname{DTISP}\left[n^{2}, n^{o(1)}\right]$, then
for all k, $\operatorname{DTISP}\left[n^{d_{k}}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$.

From $n^{1.66}$ to $n^{1.732}$

$\mathrm{DTISP}\left[t, t^{o(1)}\right] \subseteq \Pi_{k} \operatorname{TISP}\left[t^{1 / k+o(1)}\right]$ is an unconditional result

All other derived class inclusions in the above proof actually depend on the assumption that $\operatorname{NTIME}[n] \subseteq \operatorname{DTISP}\left[n^{c}, n^{o(1)}\right]$.

We'll now show how such an assumption can get

$$
\mathrm{DTISP}\left[n^{c}, n^{o(1)}\right] \subseteq \Pi_{k} \operatorname{TISP}\left[n^{c /(k+\varepsilon)+o(1)}\right]
$$

for some $\varepsilon>0$. This will push the lower bound higher.
Lemma: Let $c \leq 2$. Define $d_{1}:=2, d_{k}:=1+\frac{d_{k-1}}{c}$.
If NTIME $\left[n^{2 / c}\right] \subseteq \operatorname{DTISP}\left[n^{2}, n^{o(1)}\right]$, then
for all k, $\operatorname{DTISP}\left[n^{d_{k}}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$.
For $c<2,\left\{d_{k}\right\}$ is increasing - for each k, a bit more of
DTISP $\left[n^{O(1)}, n^{o(1)}\right]$ is shown to be contained in $\Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$

Proof of Lemma

Lemma: Let $c<2$. Define $d_{1}:=2, d_{k}:=1+\frac{d_{k-1}}{c}$.
If $\mathrm{NTIME}\left[n^{2 / c}\right] \subseteq \operatorname{DTISP}\left[n^{2}, n^{o(1)}\right]$, then
for all $k \in \mathbb{N}, \mathrm{DTISP}\left[n^{d_{k}}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$.

Induction on $k . k=1$ case is trivial (speedup theorem).
Suppose NTIME $\left[n^{2 / c}\right] \subseteq \operatorname{DTISP}\left[n^{2}, n^{o(1)}\right]$ and

$$
\operatorname{DTISP}\left[n^{d_{k}}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right] .
$$

Proof of Lemma

Lemma: Let $c<2$. Define $d_{1}:=2, d_{k}:=1+\frac{d_{k-1}}{c}$.
If $\mathrm{NTIME}\left[n^{2 / c}\right] \subseteq \operatorname{DTISP}\left[n^{2}, n^{o(1)}\right]$, then
for all $k \in \mathbb{N}$, DTISP $\left[n^{d_{k}}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$.

Induction on k. $k=1$ case is trivial (speedup theorem).
Suppose NTIME $\left[n^{2 / c}\right] \subseteq \operatorname{DTISP}\left[n^{2}, n^{o(1)}\right]$ and

$$
\operatorname{DTISP}\left[n^{d_{k}}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]
$$

Want: DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$.

Proof of Lemma

Lemma: Let $c<2$. Define $d_{1}:=2, d_{k}:=1+\frac{d_{k-1}}{c}$.
If $\operatorname{NTIME}\left[n^{2 / c}\right] \subseteq \operatorname{DTISP}\left[n^{2}, n^{o(1)}\right]$, then
for all $k \in \mathbb{N}, \operatorname{DTISP}\left[n^{d_{k}}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$.

Induction on $k . k=1$ case is trivial (speedup theorem).
Suppose NTIME $\left[n^{2 / c}\right] \subseteq \operatorname{DTISP}\left[n^{2}, n^{o(1)}\right]$ and

$$
\operatorname{DTISP}\left[n^{d_{k}}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right] .
$$

Want: DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$.
By padding, the purple assumptions imply

$$
\mathrm{NTIME}\left[n^{d_{k} / c}\right] \subseteq \mathrm{DTISP}\left[n^{d_{k}}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right] .(*)
$$

Goal: DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$

Consider a Π_{2} simulation of DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right]$ with only $O(n)$ bits ($n^{1-o(1)}$ configurations) in the universal quantifier:

Goal: DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$

Consider a Π_{2} simulation of DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right]$ with only $O(n)$ bits ($n^{1-o(1)}$ configurations) in the universal quantifier:
(\forall configurations $C_{1}, \ldots, C_{n^{1-o(1)}}$ of M on x s.t. $C_{n^{1-o(1) ~}}$ is rejecting) $\left(\exists i \in\left\{1, \ldots, n^{1-o(1)}-1\right\}\right)\left[C_{i}\right.$ does not lead to C_{i+1} in $n^{d_{k} / c+o(1)}$ time $]$

Goal: DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$

Consider a Π_{2} simulation of DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right]$ with only $O(n)$ bits ($n^{1-o(1)}$ configurations) in the universal quantifier:
(\forall configurations $C_{1}, \ldots, C_{n^{1-o(1)}}$ of M on x s.t. $C_{n^{1-o(1)}}$ is rejecting) $\left(\exists i \in\left\{1, \ldots, n^{1-o(1)}-1\right\}\right)\left[C_{i}\right.$ does not lead to C_{i+1} in $n^{d_{k} / c+o(1)}$ time $]$

Green part is an NTIME computation, input of length $O(n)$, takes $n^{d_{k} / c+o(1)}$ time

Goal: DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$

Consider a Π_{2} simulation of DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right]$ with only $O(n)$ bits ($n^{1-o(1)}$ configurations) in the universal quantifier:
(\forall configurations $C_{1}, \ldots, C_{n^{1-o(1)}}$ of M on x s.t. $C_{n^{1-o(1) ~}}$ is rejecting) $\left(\exists i \in\left\{1, \ldots, n^{1-o(1)}-1\right\}\right)\left[C_{i}\right.$ does not lead to C_{i+1} in $n^{d_{k} / c+o(1)}$ time $]$

Green part is an NTIME computation, input of length $O(n)$, takes $n^{d_{k} / c+o(1)}$ time
$(*) \Longrightarrow$ Green can be replaced with $\Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$ computation, i.e.

Goal: DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$

Consider a Π_{2} simulation of DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right]$ with only $O(n)$ bits ($n^{1-o(1)}$ configurations) in the universal quantifier:
(\forall configurations $C_{1}, \ldots, C_{n^{1-o(1)}}$ of M on x s.t. $C_{n^{1-o(1)}}$ is rejecting) $\left(\exists i \in\left\{1, \ldots, n^{1-o(1)}-1\right\}\right)\left[C_{i}\right.$ does not lead to C_{i+1} in $n^{d_{k} / c+o(1)}$ time $]$

Green part is an NTIME computation, input of length $O(n)$, takes $n^{d_{k} / c+o(1)}$ time
$(*) \Longrightarrow$ Green can be replaced with $\Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$ computation, i.e.
(\forall configurations $C_{1}, \ldots, C_{n^{1-o(1)}}$ of M on x s.t. $C_{n^{1-o(1) ~}}$ is rejecting)
$\left(\forall y,|y|=c|x|^{1+o(1)}\right)\left(\exists z,|z|=c|z|^{1+o(1)}\right)\left[R\left(C_{1}, \ldots, C_{n^{1-o(1)}}, x, y, z\right)\right]$,
for some deterministic linear time relation R and constant $c>0$.

Goal: DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$

Consider a Π_{2} simulation of DTISP $\left[n^{1+d_{k} / c}, n^{o(1)}\right]$ with only $O(n)$ bits ($n^{1-o(1)}$ configurations) in the universal quantifier:
(\forall configurations $C_{1}, \ldots, C_{n^{1-o(1)}}$ of M on x s.t. $C_{n^{1-o(1)}}$ is rejecting) $\left(\exists i \in\left\{1, \ldots, n^{1-o(1)}-1\right\}\right)\left[C_{i}\right.$ does not lead to C_{i+1} in $n^{d_{k} / c+o(1)}$ time $]$

Green part is an NTIME computation, input of length $O(n)$, takes $n^{d_{k} / c+o(1)}$ time
$(*) \Longrightarrow$ Green can be replaced with $\Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$ computation, i.e.
(\forall configurations $C_{1}, \ldots, C_{n^{1-o(1)}}$ of M on x s.t. $C_{n^{1-o(1)}}$ is rejecting)
$\left(\forall y,|y|=c|x|^{1+o(1)}\right)\left(\exists z,|z|=c|z|^{1+o(1)}\right)\left[R\left(C_{1}, \ldots, C_{n^{1-o(1)}}, x, y, z\right)\right]$,
for some deterministic linear time relation R and constant $c>0$.
Therefore, $\mathrm{DTISP}\left[n^{d_{k+1}}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$.

New Lemma Gives Better Bound

Corollary 1

Let $c \in(1,2)$. If $\mathrm{NTIME}\left[n^{2 / c}\right] \subseteq \mathrm{DTISP}\left[n^{2}, n^{o(1)}\right]$ then for all $\varepsilon>0$ such that $\frac{c}{c-1}-\varepsilon \geq 1$, $\operatorname{DTISP}\left[n^{\frac{c}{c-1}-\varepsilon}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$.

New Lemma Gives Better Bound

Corollary 1
Let $c \in(1,2)$. If $\mathrm{NTIME}\left[n^{2 / c}\right] \subseteq \mathrm{DTISP}\left[n^{2}, n^{o(1)}\right]$ then
for all $\varepsilon>0$ such that $\frac{c}{c-1}-\varepsilon \geq 1$,
DTISP $\left[n^{\frac{c}{c-1}-\varepsilon}, n^{o(1)}\right] \subseteq \Pi_{2} \operatorname{TIME}\left[n^{1+o(1)}\right]$.
Proof. Recall $d_{2}=2, d_{k}=1+d_{k-1} / c$.
$\left\{d_{k}\right\}$ is monotone non-decreasing for $c<2$; converges to $d_{\infty}=1+\frac{d_{\infty}}{c}$
$\Longrightarrow d_{\infty}=c /(c-1)$. (Note $c=2$ implies $\left.d_{\infty}=2\right)$
It follows that for all ε, there's a K such that $d_{K} \geq \frac{c}{c-1}-\varepsilon$.

Now: Apply inductive method from $n^{1.66}$ lower boundthe "base case" now resembles Fortnow-Van Melkebeek's n^{ϕ} lower bound If $\mathrm{NTIME}[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$, Corollary 1 implies $\Sigma_{2} \operatorname{TIME}[n] \subseteq \operatorname{DTISP}\left[n^{c^{2}}, n^{o(1)}\right] \subseteq \operatorname{DTISP}\left[\left(n^{c^{2} \cdot \frac{c-1}{c}}\right)^{c /(c-1)+o(1)}, n^{o(1)}\right]$

$$
\subseteq \Pi_{2} \operatorname{TIME}\left[n^{c \cdot(c-1)+o(1)}\right] . \quad \phi(\phi-1)=1
$$

Now: Apply inductive method from $n^{1.66}$ lower boundthe "base case" now resembles Fortnow-Van Melkebeek's n^{ϕ} lower bound If $\mathrm{NTIME}[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$, Corollary 1 implies $\Sigma_{2} \operatorname{TIME}[n] \subseteq \operatorname{DTISP}\left[n^{c^{2}}, n^{o(1)}\right] \subseteq \operatorname{DTISP}\left[\left(n^{c^{2} \cdot \frac{c-1}{c}}\right)^{c /(c-1)+o(1)}, n^{o(1)}\right]$

$$
\subseteq \Pi_{2} \operatorname{TIME}\left[n^{c \cdot(c-1)+o(1)}\right] . \quad \phi(\phi-1)=1
$$

Inducting as before, we get

Now: Apply inductive method from $n^{1.66}$ lower boundthe "base case" now resembles Fortnow-Van Melkebeek's n^{ϕ} lower bound If NTIME $[n] \subseteq$ DTISP $\left[n^{c}, n^{o(1)}\right]$, Corollary 1 implies $\Sigma_{2} \mathrm{TIME}[n] \subseteq \mathrm{DTISP}\left[n^{c^{2}}, n^{o(1)}\right] \subseteq \mathrm{DTISP}\left[\left(n^{c^{2} \cdot \frac{c-1}{c}}\right)^{c /(c-1)+o(1)}, n^{o(1)}\right]$

$$
\subseteq \Pi_{2} \operatorname{TIME}\left[n^{c \cdot(c-1)+o(1)}\right] . \quad \phi(\phi-1)=1
$$

Inducting as before, we get

$$
\Sigma_{3}[n] \subseteq \Sigma_{2}\left[n^{c \cdot(c-1)}\right] \subseteq \mathrm{DTISP}\left[n^{c^{3} \cdot(c-1)}, n^{o(1)}\right] \subseteq \Pi_{3}\left[n^{\frac{c^{3} \cdot(c-1)}{3}}\right], \text { then }
$$

Now: Apply inductive method from $n^{1.66}$ lower boundthe "base case" now resembles Fortnow-Van Melkebeek's n^{ϕ} lower bound If $\mathrm{NTIME}[n] \subseteq \mathrm{DTISP}\left[n^{c}, n^{o(1)}\right]$, Corollary 1 implies

$$
\begin{aligned}
\Sigma_{2} \operatorname{TIME}[n] & \subseteq \mathrm{DTISP}\left[n^{c^{2}}, n^{o(1)}\right] \subseteq \mathrm{DTISP}\left[\left(n^{c^{2} \cdot \frac{c-1}{c}}\right)^{c /(c-1)+o(1)}, n^{o(1)}\right] \\
& \subseteq \Pi_{2} \operatorname{TIME}\left[n^{c \cdot(c-1)+o(1)}\right] . \phi(\phi-1)=1
\end{aligned}
$$

Inducting as before, we get

$$
\begin{aligned}
& \Sigma_{3}[n] \subseteq \Sigma_{2}\left[n^{c \cdot(c-1)}\right] \subseteq \mathrm{DTISP}\left[n^{c^{3} \cdot(c-1)}, n^{o(1)}\right] \subseteq \Pi_{3}\left[n^{\frac{c^{3} \cdot(c-1)}{3}}\right], \text { then } \\
& \Sigma_{4}[n] \subseteq \Sigma_{3}\left[n^{\frac{c^{3} \cdot(c-1)}{3}}\right] \subseteq \Sigma_{2}\left[n^{\frac{c^{4} \cdot(c-1)^{2}}{3}}\right] \subseteq \mathrm{DTISP}\left[n^{\frac{c^{6} \cdot(c-1)^{2}}{3}}, n^{o(1)}\right] \\
& \subseteq \Pi_{4}\left[n^{\frac{c^{6} \cdot(c-1)^{2}}{12}}\right], \text { etc. }
\end{aligned}
$$

Claim: The exponent e_{k} derived for $\Sigma_{k} \operatorname{TIME}[n] \subseteq \Pi_{k} \operatorname{TIME}\left[n^{e_{k}}\right]$ is

$$
e_{k}=\frac{c^{3 \cdot 2^{k-3}}(c-1)^{2^{k-3}}}{k \cdot\left(3^{2^{k-4}} \cdot 4^{2^{k-5}} \cdot 5^{2^{k-6}} \cdots(k-1)\right)}
$$

Finishing up

Simplifying, $e_{k}=$

thus

$$
e_{k}<1 \Longleftrightarrow \frac{c^{3}(c-1)}{k^{2-k+3} \cdot\left(3^{2-1} \cdot 4^{2-2} \cdot 5^{2-3} \cdots(k-1)^{2-k+3}\right)}<1
$$

Finishing up

Simplifying, $e_{k}=$
$\frac{c^{3 \cdot 2^{k-3}}(c-1)^{2^{k-3}}}{k \cdot\left(3^{2^{k-4}} \cdot 4^{2^{k-5}} \cdot 5^{2^{k-6}} \cdots(k-1)\right)}=\left(\frac{c^{3}(c-1)}{k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots(k-1)^{2^{-k+3}}\right)}\right)^{2^{k-3}}$
thus

$$
e_{k}<1 \Longleftrightarrow \frac{c^{3}(c-1)}{k^{2-k+3} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2-3} \cdots(k-1)^{2-k+3}\right)}<1
$$

- Define $f(k)=k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots(k-1)^{2^{-k+3}}\right)$

Finishing up

Simplifying, $e_{k}=$
$\frac{c^{3 \cdot 2^{k-3}}(c-1)^{2^{k-3}}}{k \cdot\left(3^{2^{k-4}} \cdot 4^{2^{k-5}} \cdot 5^{2^{k-6}} \cdots(k-1)\right)}=\left(\frac{c^{3}(c-1)}{k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots(k-1)^{2^{-k+3}}\right)}\right)^{2^{k-3}}$
thus

$$
e_{k}<1 \Longleftrightarrow \frac{c^{3}(c-1)}{k^{2-k+3} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2-3} \cdots(k-1)^{2-k+3}\right)}<1
$$

- Define $f(k)=k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots(k-1)^{2^{-k+3}}\right)$
- $f(k) \rightarrow 3.81213 \cdots$ as $k \rightarrow \infty$

Finishing up

Simplifying, $e_{k}=$
$\frac{c^{3 \cdot 2^{k-3}}(c-1)^{2^{k-3}}}{k \cdot\left(3^{2 k-4} \cdot 4^{2 k-5} \cdot 5^{k-6} \cdots(k-1)\right)}=\left(\frac{c^{3}(c-1)}{k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2-2} \cdot 5^{2-3} \cdots(k-1)^{2-k+3}\right)}\right)^{2^{k-3}}$
thus

$$
e_{k}<1 \Longleftrightarrow \frac{c^{3}(c-1)}{k^{2-k+3} \cdot\left(3^{2-1} \cdot 4^{2-2} \cdot 5^{2-3} \cdots(k-1)^{2-k+3}\right)}<1
$$

- Define $f(k)=k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots(k-1)^{2^{-k+3}}\right)$
- $f(k) \rightarrow 3.81213 \cdots$ as $k \rightarrow \infty$
- Above task reduces to finding positive root of

$$
c^{3} \cdot(c-1)=3.81213
$$

Finishing up

Simplifying, $e_{k}=$
$\frac{c^{c^{3} 2^{k-3}}(c-1)^{2^{k-3}}}{k \cdot\left(3^{2^{k-4}} \cdot 4^{2^{k-5}} \cdot 5^{k-6} \cdots(k-1)\right)}=\left(\frac{c^{3}(c-1)}{k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2-3} \cdots(k-1)^{2^{-k+3}}\right)}\right)^{2^{k-3}}$
thus

$$
e_{k}<1 \Longleftrightarrow \frac{c^{3}(c-1)}{k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2-3} \cdots \cdot(k-1)^{2^{-k+3}}\right)}<1
$$

- Define $f(k)=k^{2^{-k+3}} \cdot\left(3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots(k-1)^{2^{-k+3}}\right)$
- $f(k) \rightarrow 3.81213 \cdots$ as $k \rightarrow \infty$
- Above task reduces to finding positive root of

$$
c^{3} \cdot(c-1)=3.81213
$$

$\Longrightarrow c \approx 1.7327>\sqrt{3}+\frac{6}{10000}$ yields a contradiction.

The above inductive method can be applied to improve several existing lower bound arguments.

- Time lower bounds for SAT on off-line one-tape machines
- Time-space tradeoffs for
nondeterminism/co-nondeterminism in RAM model
- Etc. See the paper!

