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We will show time lower bounds for the SAT problem, on

random-access machines using no(1) space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover,

etc. [Raz and Van Melkebeek]

Previous time lower bounds for SAT (assuming no(1) space):

• ω(n) [Kannan 84]

• Ω(n1+ε) for some ε > 0 [Fortnow 97]

• Ω(n
√

2−ε) for all ε > 0 [Lipton and Viglas 99]

• Ω(nφ−ε) where φ = 1.618... [Fortnow and Van Melkebeek 00]
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Our Main Result
√

2 and φ are nice constants...

The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires nΥk time (infinitely often) on a

random-access machine using no(1) workspace, where Υk is the

positive solution in (1, 2) to

Υk
3(Υk − 1) = k2−k+3 · (32−1 · 42−2 · 52−3 · · · (k − 1)2−k+3

).

Define Υ := limk→∞ Υk. Then: nΥ−ε lower bound.

(Note: the Υ stands for ‘Ugly’)

However, Υ ≈
√

3 + 6
10000

, so we’ll present the result with
√

3.
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Points About The Method We Use

• The theorem says for any sufficiently restricted machine, there is an

infinite set of SAT instances it cannot solve correctly

We will not construct such a set of instances for every machine!

Proof is by contradiction: it would be absurd, if such a machine could

solve SAT almost everywhere

• Ours and the above cited methods use artificial computational

models (alternating machines) to prove lower bounds for explicit

problems in a realistic model
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Outline

• Preliminaries and Proof Strategy

• A Speed-Up Theorem

(small-space computations can be accelerated using alternation)

• A Slow-Down Lemma

(NTIME can be efficiently simulated implies ΣkTIME can be efficiently

simulated with some slow-down)

• Lipton and Viglas’ n
√

2 Lower Bound

(the starting point for our approach)

• Our Inductive Argument

(how to derive a better bound from Lipton-Viglas)

• From n1.66 to n1.732

(a subtle argument that squeezes more from the induction)
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Preliminaries: Two possibly obscure complexity classes

• DTISP[t, s] is deterministic time t and space s, simultaneously

(Note DTISP[t, s] 6= DTIME[t] ∩ SPACE[s] in general)

We will be looking at DTISP[nk, no(1)] for k ≥ 1.

• NQL :=
⋃

c≥0 NTIME[n(log n)c] = NTIME[n · poly(log n)]

The NQL stands for “nondeterministic quasi-linear time”
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Preliminaries: SAT Facts

Satisfiability (SAT) is not only NP-complete, but also:

Theorem: [Cook 85, Gurevich and Shelah 89, Tourlakis 00]

SAT is NQL-complete, under reductions doable in O(n · poly(log n)) time

and O(log n) space (simultaneously). Moreover the ith bit of the

reduction can be computed in O(poly(log n)) time.

LetD be closed under quasi-linear time, logspace reductions.
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Preliminaries: SAT Facts

Satisfiability (SAT) is not only NP-complete, but also:

Theorem: [Cook 85, Gurevich and Shelah 89, Tourlakis 00]

SAT is NQL-complete, under reductions doable in O(n · poly(log n)) time

and O(log n) space (simultaneously). Moreover the ith bit of the

reduction can be computed in O(poly(log n)) time.

LetD be closed under quasi-linear time, logspace reductions.

Corollary: If NTIME[n] * D, then SAT /∈ D.

If one can show NTIME[n] is not contained in some D, then one can

name an explicit problem (SAT) not in D (modulo polylog factors)
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Preliminaries: Some Hierarchy Theorems

For reasonable t(n) ≥ n,

NTIME[t] * coNTIME[o(t)].

Furthermore, for integers k ≥ 1,

ΣkTIME[t] * ΠkTIME[o(t)].

So, there’s a tight time hierarchy within levels of the polyn omial

hierarchy.
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Proof Strategy

Show if SAT has a sufficiently good algorithm, then one contradicts a

hierarchy theorem.
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3. Contradict a hierarchy theorem for small c
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Show if SAT has a sufficiently good algorithm, then one contradicts a

hierarchy theorem.

Strategy of Prior work:

1. Show that DTISP[nc, no(1)] can be “sped-up” when simulated on an

alternating machine

2. Show that NTIME[n] ⊆ DTISP[nc, no(1)] allows those alternations

to be “removed” without much “slow-down”

3. Contradict a hierarchy theorem for small c

Our proof will use the Σk time versus Πk time hierarchy, for all k
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A Speed-Up Theorem
(Trading Time for Alternations)

Let:

• t(n) = nc for rational c ≥ 1,

• s(n) be no(1), and

• k ≥ 2 be an integer.

Theorem: [Fortnow and Van Melkebeek 00] [Kannan 83]

DTISP[t, s] ⊆ ΣkTIME[t1/k+o(1)] ∩ ΠkTIME[t1/k+o(1)].
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A Speed-Up Theorem
(Trading Time for Alternations)

Let:

• t(n) = nc for rational c ≥ 1,

• s(n) be no(1), and

• k ≥ 2 be an integer.

Theorem: [Fortnow and Van Melkebeek 00] [Kannan 83]

DTISP[t, s] ⊆ ΣkTIME[t1/k+o(1)] ∩ ΠkTIME[t1/k+o(1)].

That is, for any machine M running in time t and using small workspace,

there is an alternating machine M ′ that makes k alternations and takes

roughly k
√

t time.

Moreover, M ′ can start in either an existential or a universal state
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Proof of the speed-up theorem

Let x be input, M be the small space machine to simulate

Goal: Write a clever sentence in first-order logic with k (alternating)

quantifiers that is equivalent to M(x) accepting
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Proof of the speed-up theorem

Let x be input, M be the small space machine to simulate

Goal: Write a clever sentence in first-order logic with k (alternating)

quantifiers that is equivalent to M(x) accepting

Let Cj denote configuration of M(x) after jth step: bit string encoding

head positions, workspace contents, finite control

By space assumption on M , |Cj| ∈ no(1)

M(x) accepts iff there is a sequence C1, C2, . . . , Ct where

• C1 is the “initial” configuration,

• Ct is in “accept” state

• For all i, Ci leads to Ci+1 in one step of M on input x.
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Proof of speed-up theorem: The case k = 2

M(x) accepts iff

(∃C0, C√
t, C2

√
t, . . . , Ct)

(∀i ∈ {1, . . . ,
√

t})
[Ci·

√
t leads to C(i+1)·

√
t in
√

t steps, C0 is initial, Ct is accepting]
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Proof of speed-up theorem: The case k = 2

M(x) accepts iff

(∃C0, C√
t, C2

√
t, . . . , Ct)

(∀i ∈ {1, . . . ,
√

t})
[Ci·

√
t leads to C(i+1)·

√
t in
√

t steps, C0 is initial, Ct is accepting]

Runtime on an alternating machine:

• ∃ takes O(
√

t · s) = t1/2+o(1) time to write down the Cj ’s

• ∀ takes O(log t) time to write down i

• [· · · ] takes O(
√

t · s) deterministic time to check

Two alternations, square root speedup
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Proof of speed-up theorem: The k = 3 case, first attempt

For k = 2, we had

(∃C0, C√
t, C2

√
t, . . . , Ct)

(∀i ∈ {0, 1, . . . ,
√

t})
[Ci·

√
t leads to C(i+1)·

√
t in
√

t steps, C0 initial, Ct accepting]
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Proof of speed-up theorem: The k = 3 case, first attempt

For k = 2, we had

(∃C0, C√
t, C2

√
t, . . . , Ct)

(∀i ∈ {0, 1, . . . ,
√

t})
[Ci·

√
t leads to C(i+1)·

√
t in
√

t steps, C0 initial, Ct accepting]

Observation: The [· · · ] is an O(
√

t) time and small-space

computation, thus we can speed it up by a square root as well

Straightforward way of doing this leads to:

(∃C0, Ct2/3 , C2·t2/3 , . . . , Ct)(∀i ∈ {0, 1, . . . , t1/3})
(∃Ci·t2/3+t1/3 , Ci·t2/3+2·t1/3 , . . . , C(i+1)·t2/3)(∀j ∈ {1, . . . ,

√
t})

[Ci·t2/3+j·t1/3 leads to Ci·t2/3+(j+1)·t1/3 in t1/3 steps, C0 initial, Ct

accepting]
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k = 2 has one “stage”

t1/2

t 1/2

.

.

.

.

C

C

C

Ct

0

2



k = 2 has one “stage”

t1/2

t 1/2

.

.

.

.

C

C

C

Ct

0

2

2 t
2/3

C0

2/3t

2/3t

t1/3

2 t
2/3

2/3t

2/3t t1/32

.

.

.

.

C

.

.

.

.

C t

C

C

C

C

C +

+
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Proof of speed-up theorem: Not quite enough for k = 3

The k = 3 sentence we gave uses four quantifiers, for only t1/3 time

(we want only three quantifier blocks)
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Proof of speed-up theorem: Not quite enough for k = 3

The k = 3 sentence we gave uses four quantifiers, for only t1/3 time

(we want only three quantifier blocks)

Idea: Take advantage of the computation’s determinism – only one

possible configuration at any step

The acceptance condition for M(x) can be complemented:

M(x) accepts iff

(∀C0, C√
t, C2

√
t, . . . , Ct rejecting)

(∃i ∈ {1, . . . ,
√

t})
[Ci·

√
t does not lead to Ci·

√
t+

√
t in
√

t steps]

“For all configuration sequences C1, . . . , Ct where Ct is rejecting, there

exists a configuration Ci that does not lead to Ci+1”

15-b



The k = 3 case

We can therefore rewrite the k = 3 case, from

(∃C0, Ct2/3 , C2·t2/3 , . . . , Ct accepting)(∀i ∈ {0, 1, . . . , t1/3})
(∃Ci·t2/3+t1/3 , Ci·t2/3+2·t1/3 , . . . , C(i+1)·t2/3)(∀j ∈ {1, . . . ,

√
t})

[Ci·t2/3+j·t1/3 leads to Ci·t2/3+(j+1)·t1/3 in t1/3 steps]

to:
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(∃C0, Ct2/3 , C2·t2/3 , . . . , Ct accepting)(∀i ∈ {0, 1, . . . , t1/3})
(∃Ci·t2/3+t1/3 , Ci·t2/3+2·t1/3 , . . . , C(i+1)·t2/3)(∀j ∈ {1, . . . ,

√
t})

[Ci·t2/3+j·t1/3 leads to Ci·t2/3+(j+1)·t1/3 in t1/3 steps]

to:

(∃C0, Ct2/3 , C2·t2/3 , . . . , Ct accepting)(∀i ∈ {0, 1, . . . , t1/3})
(∀Ci·t2/3+t1/3 , . . . , C(i+1)·t2/3−t1/3 , C ′

(i+1)·t2/3 6= C(i+1)·t2/3)

(∃j ∈ {1, . . . ,
√

t})
[Ci·t2/3+j·t1/3 does not lead to Ci·t2/3+(j+1)·t1/3 in t1/3 steps]
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The k = 3 case

We can therefore rewrite the k = 3 case, from

(∃C0, Ct2/3 , C2·t2/3 , . . . , Ct accepting)(∀i ∈ {0, 1, . . . , t1/3})
(∃Ci·t2/3+t1/3 , Ci·t2/3+2·t1/3 , . . . , C(i+1)·t2/3)(∀j ∈ {1, . . . ,

√
t})

[Ci·t2/3+j·t1/3 leads to Ci·t2/3+(j+1)·t1/3 in t1/3 steps]

to:

(∃C0, Ct2/3 , C2·t2/3 , . . . , Ct accepting)(∀i ∈ {0, 1, . . . , t1/3})
(∀Ci·t2/3+t1/3 , . . . , C(i+1)·t2/3−t1/3 , C ′

(i+1)·t2/3 6= C(i+1)·t2/3)

(∃j ∈ {1, . . . ,
√

t})
[Ci·t2/3+j·t1/3 does not lead to Ci·t2/3+(j+1)·t1/3 in t1/3 steps]

Voila! Three quantifier blocks. This is in Σ3TIME[t1/3+o(1)]

(and similarly one can show it’s in Π3TIME[t1/3+o(1)])
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This can be generalized...

For arbitrary k ≥ 3, one simply guesses (existentially or universally) t1/k

configurations at each stage
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This can be generalized...

For arbitrary k ≥ 3, one simply guesses (existentially or universally) t1/k

configurations at each stage

• Inverting quantifiers means the number of alternations only increases

by one for every stage

(∃ ∀) (∀ ∃) (∃ ∀) · · ·

• There are k − 1 stages of guessing t1/k configurations, then t1/k time

to deterministically verify configurations

17-b



Outline

• Preliminaries

• A Speed-Up Theorem

• A Slow-Down Lemma
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A Slow-Down Lemma

(Trading Alternations For Time)

Main Idea: The assumption NTIME[n] ⊆ DTIME[nc] allows one to

remove alternations from a computation, with a small time increase
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remove alternations from a computation, with a small time increase

Let t(n) ≥ n be a polynomial, c ≥ 1.

Lemma: If NTIME[n] ⊆ DTIME[nc] then for all k ≥ 1,

ΣkTIME[t] ⊆ Σk−1TIME[tc].

We prove the following, which will be very useful in our final proof.
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A Slow-Down Lemma

(Trading Alternations For Time)

Main Idea: The assumption NTIME[n] ⊆ DTIME[nc] allows one to

remove alternations from a computation, with a small time increase

Let t(n) ≥ n be a polynomial, c ≥ 1.

Lemma: If NTIME[n] ⊆ DTIME[nc] then for all k ≥ 1,

ΣkTIME[t] ⊆ Σk−1TIME[tc].

We prove the following, which will be very useful in our final proof.

Theorem: If ΣkTIME[n] ⊆ ΠkTIME[nc] then

Σk+1TIME[t] ⊆ ΣkTIME[tc].
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A Slow-Down Lemma: Proof

Assume ΣkTIME[n] ⊆ ΠkTIME[nc]

Let M be a Σk+1 machine running in time t
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Let M be a Σk+1 machine running in time t

Recall M(x) can be characterized by a first-order sentence:

(∃x1, |x1| ≤ t(|x|))(∀x2, |x2| ≤ t(|x|)) · · ·
(Qz, |xk+1| ≤ t(|x|))[P (x, x1, x2, . . . , xk+1)]

where P “runs” in time t(|x|)
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A Slow-Down Lemma: Proof

Assume ΣkTIME[n] ⊆ ΠkTIME[nc]

Let M be a Σk+1 machine running in time t

Recall M(x) can be characterized by a first-order sentence:

(∃x1, |x1| ≤ t(|x|))(∀x2, |x2| ≤ t(|x|)) · · ·
(Qz, |xk+1| ≤ t(|x|))[P (x, x1, x2, . . . , xk+1)]

where P “runs” in time t(|x|)
Important Point: input to P is of O(t(|x|)) length, so P actually runs in

linear time with respect to the length of its input
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A Slow-Down Lemma: Proof

Assume ΣkTIME[n] ⊆ ΠkTIME[nc]

Define R(x, x1) := (∀x2, |x2| ≤ t(|x|)) · · ·
(Qz, |xk+1| ≤ t(|x|))
[P (x, x1, x2, . . . , xk+1)]
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A Slow-Down Lemma: Proof

Assume ΣkTIME[n] ⊆ ΠkTIME[nc]

Define R(x, x1) := (∀x2, |x2| ≤ t(|x|)) · · ·
(Qz, |xk+1| ≤ t(|x|))
[P (x, x1, x2, . . . , xk+1)]

So M(x) accepts iff (∃x1, |x1| ≤ t(|x|))R(x, x1)

• By definition, R recognized by a Πk machine in time t(|x|),

i.e. linear time (|x1| = t(|x|)).

• By assumption, there is R′ equivalent to R that starts with an ∃, has k

quantifier blocks, is in t(|x|)c time

M(x) accepts iff [(∃x1, |x1| ≤ t(|x|))R′(x, x1)]←− ΣkTIME[tc]

21-d
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Lipton and Viglas’ n
√

2 Lower Bound (Rephrased)

Lemma: If NTIME[n] ⊆ DTISP[nc, no(1)] for some c ≥ 1, then for all

polynomials t(n) ≥ n, NTIME[t] ⊆ DTISP[tc, to(1)]

Theorem: NTIME[n] * DTISP[n
√

2−ε, no(1)]
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Lipton and Viglas’ n
√

2 Lower Bound (Rephrased)

Lemma: If NTIME[n] ⊆ DTISP[nc, no(1)] for some c ≥ 1, then for all

polynomials t(n) ≥ n, NTIME[t] ⊆ DTISP[tc, to(1)]

Theorem: NTIME[n] * DTISP[n
√

2−ε, no(1)]

Proof: Assume NTIME[n] ⊆ DTISP[nc, no(1)]

(We will find a c that implies a contradiction)
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polynomials t(n) ≥ n, NTIME[t] ⊆ DTISP[tc, to(1)]

Theorem: NTIME[n] * DTISP[n
√

2−ε, no(1)]

Proof: Assume NTIME[n] ⊆ DTISP[nc, no(1)]

(We will find a c that implies a contradiction)

• Σ2TIME[n] ⊆ NTIME[nc], by slow-down theorem
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Lemma: If NTIME[n] ⊆ DTISP[nc, no(1)] for some c ≥ 1, then for all

polynomials t(n) ≥ n, NTIME[t] ⊆ DTISP[tc, to(1)]

Theorem: NTIME[n] * DTISP[n
√

2−ε, no(1)]

Proof: Assume NTIME[n] ⊆ DTISP[nc, no(1)]

(We will find a c that implies a contradiction)

• Σ2TIME[n] ⊆ NTIME[nc], by slow-down theorem

• NTIME[nc] ⊆ DTISP[nc2 , no(1)], by assumption and padding
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Lipton and Viglas’ n
√

2 Lower Bound (Rephrased)

Lemma: If NTIME[n] ⊆ DTISP[nc, no(1)] for some c ≥ 1, then for all

polynomials t(n) ≥ n, NTIME[t] ⊆ DTISP[tc, to(1)]

Theorem: NTIME[n] * DTISP[n
√

2−ε, no(1)]

Proof: Assume NTIME[n] ⊆ DTISP[nc, no(1)]

(We will find a c that implies a contradiction)

• Σ2TIME[n] ⊆ NTIME[nc], by slow-down theorem

• NTIME[nc] ⊆ DTISP[nc2 , no(1)], by assumption and padding

• DTISP[nc2 , no(1)] ⊆ Π2TIME[nc2/2], by speed-up theorem, so

c <
√

2 contradicts the hierarchy theorem �
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Viewing Lipton-Viglas as a Lemma

(The Base Case for Our Induction)

We deliberately presented Lipton-Viglas’s result differently from the

original argument. In this way, we get

Lemma: NTIME[n] ⊆ DTISP[nc, no(1)] implies

Σ2TIME[n] ⊆ Π2TIME[nc2/2].

Note if c < 2 then c2/2 < c.
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(The Base Case for Our Induction)

We deliberately presented Lipton-Viglas’s result differently from the

original argument. In this way, we get

Lemma: NTIME[n] ⊆ DTISP[nc, no(1)] implies

Σ2TIME[n] ⊆ Π2TIME[nc2/2].

Note if c < 2 then c2/2 < c.

• Thus, we may not necessarily have a contradiction for larger c, but we

can remove one alternation from Σ3 with only nc2/2 cost
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Viewing Lipton-Viglas as a Lemma

(The Base Case for Our Induction)

We deliberately presented Lipton-Viglas’s result differently from the

original argument. In this way, we get

Lemma: NTIME[n] ⊆ DTISP[nc, no(1)] implies

Σ2TIME[n] ⊆ Π2TIME[nc2/2].

Note if c < 2 then c2/2 < c.

• Thus, we may not necessarily have a contradiction for larger c, but we

can remove one alternation from Σ3 with only nc2/2 cost

• Slow-down theorem implies Σ3TIME[n] ⊆ Σ2TIME[nc2/2]
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The Start of the Induction: Σ3

Assume NTIME[n] ⊆ DTISP[nc, no(1)] and the lemma
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The Start of the Induction: Σ3

Assume NTIME[n] ⊆ DTISP[nc, no(1)] and the lemma

• Σ3TIME[n] ⊆ Σ2TIME[nc2/2], by slow-down and lemma
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The Start of the Induction: Σ3

Assume NTIME[n] ⊆ DTISP[nc, no(1)] and the lemma

• Σ3TIME[n] ⊆ Σ2TIME[nc2/2], by slow-down and lemma

• Σ2TIME[nc2/2] ⊆ NTIME[nc3/2], by slow-down
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The Start of the Induction: Σ3

Assume NTIME[n] ⊆ DTISP[nc, no(1)] and the lemma

• Σ3TIME[n] ⊆ Σ2TIME[nc2/2], by slow-down and lemma

• Σ2TIME[nc2/2] ⊆ NTIME[nc3/2], by slow-down

• NTIME[nc3/2] ⊆ DTISP[nc4/2, no(1)], by assumption and padding
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• Σ3TIME[n] ⊆ Σ2TIME[nc2/2], by slow-down and lemma

• Σ2TIME[nc2/2] ⊆ NTIME[nc3/2], by slow-down

• NTIME[nc3/2] ⊆ DTISP[nc4/2, no(1)], by assumption and padding

• DTISP[nc4/2, no(1)] ⊆ Π3TIME[nc4/6], by speed-up
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The Start of the Induction: Σ3

Assume NTIME[n] ⊆ DTISP[nc, no(1)] and the lemma

• Σ3TIME[n] ⊆ Σ2TIME[nc2/2], by slow-down and lemma

• Σ2TIME[nc2/2] ⊆ NTIME[nc3/2], by slow-down

• NTIME[nc3/2] ⊆ DTISP[nc4/2, no(1)], by assumption and padding

• DTISP[nc4/2, no(1)] ⊆ Π3TIME[nc4/6], by speed-up

Observe:

• Now c < 4
√

6 ≈ 1.565 contradicts time hierarchy for Σ3 and Π3

• But if c ≥ 4
√

6, then we obtain a new “lemma”:

Σ3TIME[n] ⊆ Π3TIME[nc4/6]
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Σ4 , Σ5 , . . .

Assume NTIME[n] ⊆ DTISP[nc, no(1)] and lemmas
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Σ4 , Σ5 , . . .

Assume NTIME[n] ⊆ DTISP[nc, no(1)] and lemmas

(Here we drop the TIME from ΣkTIME for tidiness)

Σ4 [n] ⊆ Σ3 [n
c4

6 ] ⊆ Σ2 [n
c4

6
· c2

2 ] ⊆ NTIME[n
c4

6
· c2

2
·c], but
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Assume NTIME[n] ⊆ DTISP[nc, no(1)] and lemmas

(Here we drop the TIME from ΣkTIME for tidiness)

Σ4 [n] ⊆ Σ3 [n
c4

6 ] ⊆ Σ2 [n
c4

6
· c2

2 ] ⊆ NTIME[n
c4

6
· c2

2
·c], but

NTIME[n
c4

6
· c2

2
·c] ⊆ DTISP[n

c4

6
· c2

2
·c2 , no(1)] ⊆ Π4 [nc8/48]

(c < 8
√

48 ≈ 1.622 implies contradiction)
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Assume NTIME[n] ⊆ DTISP[nc, no(1)] and lemmas

(Here we drop the TIME from ΣkTIME for tidiness)

Σ4 [n] ⊆ Σ3 [n
c4

6 ] ⊆ Σ2 [n
c4

6
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2 ] ⊆ NTIME[n
c4

6
· c2

2
·c], but

NTIME[n
c4

6
· c2

2
·c] ⊆ DTISP[n

c4

6
· c2

2
·c2 , no(1)] ⊆ Π4 [nc8/48]

(c < 8
√

48 ≈ 1.622 implies contradiction)

Σ5 [n] ⊆ Σ4 [n
c8

48 ] ⊆ Σ3 [n
c12

48·6 ] ⊆ Σ2 [n
c14

48·6·2 ], and this is in
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Σ4 , Σ5 , . . .

Assume NTIME[n] ⊆ DTISP[nc, no(1)] and lemmas

(Here we drop the TIME from ΣkTIME for tidiness)

Σ4 [n] ⊆ Σ3 [n
c4

6 ] ⊆ Σ2 [n
c4

6
· c2

2 ] ⊆ NTIME[n
c4

6
· c2

2
·c], but

NTIME[n
c4

6
· c2

2
·c] ⊆ DTISP[n

c4

6
· c2

2
·c2 , no(1)] ⊆ Π4 [nc8/48]

(c < 8
√

48 ≈ 1.622 implies contradiction)

Σ5 [n] ⊆ Σ4 [n
c8

48 ] ⊆ Σ3 [n
c12

48·6 ] ⊆ Σ2 [n
c14

48·6·2 ], and this is in

NTIME[n
c15

48·12 ] ⊆ DTISP[n
c16

48·12 , no(1)] ⊆ Π5 [n
c16

48·60 ]

(c < 16
√

2880 ≈ 1.645 implies contradiction)
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An intermediate lower bound, nΥ
′

Assume NTIME[n] ⊆ DTISP[nc, no(1)]

Claim: The inductive process of the previous slide converges.

The constant derived is

Υ′ := lim
k→∞

f(k),

where f(k) :=
∏k−1

j=1(1 + 1/j)1/2j
.

Note Υ′ ≈ 1.66.
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A Time-Space Tradeoff

Corollary: For every c < 1.66 there is d > 0 such that SAT

is not in DTISP[nc, nd].
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From n1.66 to n1.732

DTISP[t, to(1)] ⊆ ΠkTISP[t1/k+o(1)] is an unconditional result
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From n1.66 to n1.732

DTISP[t, to(1)] ⊆ ΠkTISP[t1/k+o(1)] is an unconditional result

All other derived class inclusions in the above proof actually depend on the

assumption that NTIME[n] ⊆ DTISP[nc, no(1)].
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From n1.66 to n1.732

DTISP[t, to(1)] ⊆ ΠkTISP[t1/k+o(1)] is an unconditional result

All other derived class inclusions in the above proof actually depend on the

assumption that NTIME[n] ⊆ DTISP[nc, no(1)].

We’ll now show how such an assumption can get

DTISP[nc, no(1)] ⊆ ΠkTISP[nc/(k+ε)+o(1)]

for some ε > 0. This will push the lower bound higher.
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All other derived class inclusions in the above proof actually depend on the

assumption that NTIME[n] ⊆ DTISP[nc, no(1)].

We’ll now show how such an assumption can get

DTISP[nc, no(1)] ⊆ ΠkTISP[nc/(k+ε)+o(1)]

for some ε > 0. This will push the lower bound higher.

Lemma: Let c ≤ 2. Define d1 := 2, dk := 1 + dk−1

c
.

If NTIME[n2/c] ⊆ DTISP[n2, no(1)], then

for all k, DTISP[ndk , no(1)] ⊆ Π2TIME[n1+o(1)].
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From n1.66 to n1.732

DTISP[t, to(1)] ⊆ ΠkTISP[t1/k+o(1)] is an unconditional result

All other derived class inclusions in the above proof actually depend on the

assumption that NTIME[n] ⊆ DTISP[nc, no(1)].

We’ll now show how such an assumption can get

DTISP[nc, no(1)] ⊆ ΠkTISP[nc/(k+ε)+o(1)]

for some ε > 0. This will push the lower bound higher.

Lemma: Let c ≤ 2. Define d1 := 2, dk := 1 + dk−1

c
.

If NTIME[n2/c] ⊆ DTISP[n2, no(1)], then

for all k, DTISP[ndk , no(1)] ⊆ Π2TIME[n1+o(1)].

For c < 2, {dk} is increasing – for each k, a bit more of

DTISP[nO(1), no(1)] is shown to be contained in Π2TIME[n1+o(1)]
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Proof of Lemma

Lemma: Let c < 2. Define d1 := 2, dk := 1 + dk−1

c
.

If NTIME[n2/c] ⊆ DTISP[n2, no(1)], then

for all k ∈ N, DTISP[ndk , no(1)] ⊆ Π2TIME[n1+o(1)].

Induction on k. k = 1 case is trivial (speedup theorem).

Suppose NTIME[n2/c] ⊆ DTISP[n2, no(1)] and

DTISP[ndk , no(1)] ⊆ Π2TIME[n1+o(1)].
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Lemma: Let c < 2. Define d1 := 2, dk := 1 + dk−1
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.

If NTIME[n2/c] ⊆ DTISP[n2, no(1)], then

for all k ∈ N, DTISP[ndk , no(1)] ⊆ Π2TIME[n1+o(1)].

Induction on k. k = 1 case is trivial (speedup theorem).

Suppose NTIME[n2/c] ⊆ DTISP[n2, no(1)] and

DTISP[ndk , no(1)] ⊆ Π2TIME[n1+o(1)].

Want: DTISP[n1+dk/c, no(1)] ⊆ Π2TIME[n1+o(1)].
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Proof of Lemma

Lemma: Let c < 2. Define d1 := 2, dk := 1 + dk−1

c
.

If NTIME[n2/c] ⊆ DTISP[n2, no(1)], then

for all k ∈ N, DTISP[ndk , no(1)] ⊆ Π2TIME[n1+o(1)].

Induction on k. k = 1 case is trivial (speedup theorem).

Suppose NTIME[n2/c] ⊆ DTISP[n2, no(1)] and

DTISP[ndk , no(1)] ⊆ Π2TIME[n1+o(1)].

Want: DTISP[n1+dk/c, no(1)] ⊆ Π2TIME[n1+o(1)].

By padding, the purple assumptions imply

NTIME[ndk/c] ⊆ DTISP[ndk , no(1)] ⊆ Π2TIME[n1+o(1)]. (∗)
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Goal: DTISP[n1+dk/c, no(1)] ⊆ Π2TIME[n1+o(1)]

Consider a Π2 simulation of DTISP[n1+dk/c, no(1)] with only O(n) bits

(n1−o(1) configurations) in the universal quantifier:
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Consider a Π2 simulation of DTISP[n1+dk/c, no(1)] with only O(n) bits

(n1−o(1) configurations) in the universal quantifier:

(∀ configurations C1, . . . , Cn1−o(1) of M on x s.t. Cn1−o(1) is rejecting)

(∃i ∈ {1, . . . , n1−o(1) − 1})[Ci does not lead to Ci+1 in ndk/c+o(1) time]
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Green part is an NTIME computation, input of length O(n), takes

ndk/c+o(1) time
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(∃i ∈ {1, . . . , n1−o(1) − 1})[Ci does not lead to Ci+1 in ndk/c+o(1) time]

Green part is an NTIME computation, input of length O(n), takes

ndk/c+o(1) time

(∗) =⇒ Green can be replaced with Π2TIME[n1+o(1)] computation, i.e.

(∀ configurations C1, . . . , Cn1−o(1) of M on x s.t. Cn1−o(1) is rejecting)

(∀y, |y| = c|x|1+o(1)) (∃z, |z| = c|z|1+o(1))[R(C1, . . . , Cn1−o(1) , x, y, z)],

for some deterministic linear time relation R and constant c > 0.
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Goal: DTISP[n1+dk/c, no(1)] ⊆ Π2TIME[n1+o(1)]

Consider a Π2 simulation of DTISP[n1+dk/c, no(1)] with only O(n) bits

(n1−o(1) configurations) in the universal quantifier:

(∀ configurations C1, . . . , Cn1−o(1) of M on x s.t. Cn1−o(1) is rejecting)

(∃i ∈ {1, . . . , n1−o(1) − 1})[Ci does not lead to Ci+1 in ndk/c+o(1) time]

Green part is an NTIME computation, input of length O(n), takes

ndk/c+o(1) time

(∗) =⇒ Green can be replaced with Π2TIME[n1+o(1)] computation, i.e.

(∀ configurations C1, . . . , Cn1−o(1) of M on x s.t. Cn1−o(1) is rejecting)

(∀y, |y| = c|x|1+o(1)) (∃z, |z| = c|z|1+o(1))[R(C1, . . . , Cn1−o(1) , x, y, z)],

for some deterministic linear time relation R and constant c > 0.

Therefore, DTISP[ndk+1 , no(1)] ⊆ Π2TIME[n1+o(1)]. �
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New Lemma Gives Better Bound

Corollary 1

Let c ∈ (1, 2). If NTIME[n2/c] ⊆ DTISP[n2, no(1)] then

for all ε > 0 such that c
c−1
− ε ≥ 1,

DTISP[n
c

c−1
−ε, no(1)] ⊆ Π2TIME[n1+o(1)].
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New Lemma Gives Better Bound

Corollary 1

Let c ∈ (1, 2). If NTIME[n2/c] ⊆ DTISP[n2, no(1)] then

for all ε > 0 such that c
c−1
− ε ≥ 1,

DTISP[n
c

c−1
−ε, no(1)] ⊆ Π2TIME[n1+o(1)].

Proof. Recall d2 = 2, dk = 1 + dk−1/c.

{dk} is monotone non-decreasing for c < 2; converges to d∞ = 1 + d∞
c

=⇒ d∞ = c/(c− 1). (Note c = 2 implies d∞ = 2)

It follows that for all ε, there’s a K such that dK ≥ c
c−1
− ε. �
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Now: Apply inductive method from n1.66 lower bound–

the “base case” now resembles Fortnow-Van Melkebeek’s nφ lower bound

If NTIME[n] ⊆ DTISP[nc, no(1)], Corollary 1 implies

Σ2TIME[n] ⊆ DTISP[nc2 , no(1)] ⊆ DTISP[
(

nc2· c−1
c

)c/(c−1)+o(1)

, no(1)]

⊆ Π2TIME[nc·(c−1)+o(1)]. φ(φ− 1) = 1
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Σ2TIME[n] ⊆ DTISP[nc2 , no(1)] ⊆ DTISP[
(

nc2· c−1
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)c/(c−1)+o(1)

, no(1)]

⊆ Π2TIME[nc·(c−1)+o(1)]. φ(φ− 1) = 1

Inducting as before, we get
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, no(1)]

⊆ Π2TIME[nc·(c−1)+o(1)]. φ(φ− 1) = 1

Inducting as before, we get

Σ3 [n] ⊆ Σ2 [nc·(c−1)] ⊆ DTISP[nc3·(c−1), no(1)] ⊆ Π3 [n
c3·(c−1)

3 ], then
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Now: Apply inductive method from n1.66 lower bound–

the “base case” now resembles Fortnow-Van Melkebeek’s nφ lower bound

If NTIME[n] ⊆ DTISP[nc, no(1)], Corollary 1 implies

Σ2TIME[n] ⊆ DTISP[nc2 , no(1)] ⊆ DTISP[
(

nc2· c−1
c

)c/(c−1)+o(1)

, no(1)]

⊆ Π2TIME[nc·(c−1)+o(1)]. φ(φ− 1) = 1

Inducting as before, we get

Σ3 [n] ⊆ Σ2 [nc·(c−1)] ⊆ DTISP[nc3·(c−1), no(1)] ⊆ Π3 [n
c3·(c−1)

3 ], then

Σ4 [n] ⊆ Σ3 [n
c3·(c−1)

3 ] ⊆ Σ2 [n
c4·(c−1)2

3 ] ⊆ DTISP[n
c6·(c−1)2

3 , no(1)]

⊆ Π4 [n
c6·(c−1)2

12 ], etc.
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Claim: The exponent ek derived for ΣkTIME[n] ⊆ ΠkTIME[nek ] is

ek = c3·2
k−3

(c−1)2
k−3

k·(32k−4 ·42k−5 ·52k−6 ···(k−1))
.
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Finishing up

Simplifying, ek =

c3·2
k−3

(c−1)2
k−3

k·(32k−4 ·42k−5 ·52k−6 ···(k−1))
=

(

c3(c−1)

k2−k+3 ·(32−1 ·42−2 ·52−3 ···(k−1)2
−k+3

)

)2k−3

thus

ek < 1 ⇐⇒ c3(c−1)

k2−k+3 ·(32−1 ·42−2 ·52−3 ···(k−1)2
−k+3

)
< 1
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k−3
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k−3
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thus

ek < 1 ⇐⇒ c3(c−1)

k2−k+3 ·(32−1 ·42−2 ·52−3 ···(k−1)2
−k+3

)
< 1

• Define f(k) = k2−k+3 · (32−1 · 42−2 · 52−3 · · · (k − 1)2−k+3
)

37-a



Finishing up

Simplifying, ek =

c3·2
k−3

(c−1)2
k−3

k·(32k−4 ·42k−5 ·52k−6 ···(k−1))
=

(

c3(c−1)

k2−k+3 ·(32−1 ·42−2 ·52−3 ···(k−1)2
−k+3

)

)2k−3

thus

ek < 1 ⇐⇒ c3(c−1)

k2−k+3 ·(32−1 ·42−2 ·52−3 ···(k−1)2
−k+3

)
< 1

• Define f(k) = k2−k+3 · (32−1 · 42−2 · 52−3 · · · (k − 1)2−k+3
)

• f(k)→ 3.81213 · · · as k →∞
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Simplifying, ek =

c3·2
k−3

(c−1)2
k−3

k·(32k−4 ·42k−5 ·52k−6 ···(k−1))
=

(

c3(c−1)

k2−k+3 ·(32−1 ·42−2 ·52−3 ···(k−1)2
−k+3

)

)2k−3

thus

ek < 1 ⇐⇒ c3(c−1)

k2−k+3 ·(32−1 ·42−2 ·52−3 ···(k−1)2
−k+3

)
< 1

• Define f(k) = k2−k+3 · (32−1 · 42−2 · 52−3 · · · (k − 1)2−k+3
)

• f(k)→ 3.81213 · · · as k →∞

• Above task reduces to finding positive root of

c3 · (c− 1) = 3.81213
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Finishing up

Simplifying, ek =

c3·2
k−3

(c−1)2
k−3

k·(32k−4 ·42k−5 ·52k−6 ···(k−1))
=

(

c3(c−1)

k2−k+3 ·(32−1 ·42−2 ·52−3 ···(k−1)2
−k+3

)

)2k−3

thus

ek < 1 ⇐⇒ c3(c−1)

k2−k+3 ·(32−1 ·42−2 ·52−3 ···(k−1)2
−k+3

)
< 1

• Define f(k) = k2−k+3 · (32−1 · 42−2 · 52−3 · · · (k − 1)2−k+3
)

• f(k)→ 3.81213 · · · as k →∞

• Above task reduces to finding positive root of

c3 · (c− 1) = 3.81213

=⇒ c ≈ 1.7327 >
√

3 + 6
10000

yields a contradiction.
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The above inductive method can be applied to improve
several existing lower bound arguments.

• Time lower bounds for SAT on off-line one-tape machines

• Time-space tradeoffs for

nondeterminism/co-nondeterminism in RAM model

• Etc. See the paper!
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