Better Time-Space Lower Bounds for SAT and Related Problems

Ryan Williams Carnegie Mellon University

June 12, 2005

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on random-access machines using $n^{o\left(1\right)}$ space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover, *etc.* [Raz and Van Melkebeek]

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on random-access machines using $n^{o\left(1\right)}$ space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover, *etc.* [Raz and Van Melkebeek]

Previous time lower bounds for SAT (assuming $n^{o(1)}$ space):

• $\omega(n)$ [Kannan 84]

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on random-access machines using $n^{o\left(1\right)}$ space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover, *etc.* [Raz and Van Melkebeek]

Previous time lower bounds for SAT (assuming $n^{o(1)}$ space):

- $\omega(n)$ [Kannan 84]
- $\Omega(n^{1+\varepsilon})$ for some $\varepsilon > 0$ [Fortnow 97]

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on random-access machines using $n^{o\left(1\right)}$ space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover, *etc.* [Raz and Van Melkebeek]

Previous time lower bounds for SAT (assuming $n^{o(1)}$ space):

- $\omega(n)$ [Kannan 84]
- $\Omega(n^{1+\varepsilon})$ for some $\varepsilon > 0$ [Fortnow 97]
- $\Omega(n^{\sqrt{2}-\varepsilon})$ for all $\varepsilon > 0$ [Lipton and Viglas 99]

Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted computational model)

We will show time lower bounds for the SAT problem, on random-access machines using $n^{o\left(1\right)}$ space

These lower bounds carry over to MAX-SAT, Hamilton Path, Vertex Cover, *etc.* [Raz and Van Melkebeek]

Previous time lower bounds for SAT (assuming $n^{o(1)}$ space):

- $\omega(n)$ [Kannan 84]
- $\Omega(n^{1+\varepsilon})$ for some $\varepsilon > 0$ [Fortnow 97]
- $\Omega(n^{\sqrt{2}-\varepsilon})$ for all $\varepsilon > 0$ [Lipton and Viglas 99]
- $\Omega(n^{\phi-\varepsilon})$ where $\phi = 1.618...$ [Fortnow and Van Melkebeek 00]

$\sqrt{2}$ and ϕ are nice constants...

The constant of our work will be (larger, but) not-so-nice.

$\sqrt{2}$ and ϕ are nice constants...

The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires n^{Υ_k} time (infinitely often) on a random-access machine using $n^{o(1)}$ workspace, where Υ_k is the positive solution in (1, 2) to

 $\Upsilon_k^{3}(\Upsilon_k - 1) = k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}}).$

$\sqrt{2}$ and ϕ are nice constants...

The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires n^{Υ_k} time (infinitely often) on a random-access machine using $n^{o(1)}$ workspace, where Υ_k is the positive solution in (1, 2) to

 $\Upsilon_k^{3}(\Upsilon_k - 1) = k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}}).$

Define $\Upsilon := \lim_{k \to \infty} \Upsilon_k$. Then: $n^{\Upsilon - \varepsilon}$ lower bound.

$\sqrt{2}$ and ϕ are nice constants...

The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires n^{Υ_k} time (infinitely often) on a random-access machine using $n^{o(1)}$ workspace, where Υ_k is the positive solution in (1, 2) to

 $\Upsilon_k^{3}(\Upsilon_k - 1) = k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}}).$

Define $\Upsilon := \lim_{k \to \infty} \Upsilon_k$. Then: $n^{\Upsilon - \varepsilon}$ lower bound. (Note: the Υ stands for 'Ugly')

$\sqrt{2}$ and ϕ are nice constants...

The constant of our work will be (larger, but) not-so-nice.

Theorem: For all k, SAT requires n^{Υ_k} time (infinitely often) on a random-access machine using $n^{o(1)}$ workspace, where Υ_k is the positive solution in (1, 2) to

 $\Upsilon_k^{3}(\Upsilon_k - 1) = k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}}).$

Define $\Upsilon := \lim_{k \to \infty} \Upsilon_k$. Then: $n^{\Upsilon - \varepsilon}$ lower bound. (Note: the Υ stands for 'Ugly')

However, $\Upsilon \approx \sqrt{3} + \frac{6}{10000}$, so we'll present the result with $\sqrt{3}$.

Points About The Method We Use

- The theorem says for any sufficiently restricted machine, there is an infinite set of SAT instances it cannot solve correctly
 We will not construct such a set of instances for every machine!
 Proof is by contradiction: it would be absurd, if such a machine could solve SAT almost everywhere
- Ours and the above cited methods use artificial computational models (alternating machines) to prove lower bounds for explicit problems in a realistic model

Outline

- Preliminaries and Proof Strategy
- A Speed-Up Theorem

(small-space computations can be accelerated using alternation)

• A Slow-Down Lemma

(NTIME can be efficiently simulated implies Σ_k TIME can be efficiently simulated with some slow-down)

- Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound *(the starting point for our approach)*
- Our Inductive Argument

(how to derive a better bound from Lipton-Viglas)

 \bullet From $n^{1.66}$ to $n^{1.732}$

(a subtle argument that squeezes more from the induction)

Preliminaries: Two possibly obscure complexity classes

- DTISP[t, s] is deterministic time t and space s, simultaneously (Note DTISP[t, s] \neq DTIME[t] \cap SPACE[s] in general) We will be looking at DTISP[$n^k, n^{o(1)}$] for $k \ge 1$.
- NQL := $\bigcup_{c \ge 0} \mathsf{NTIME}[n(\log n)^c] = \mathsf{NTIME}[n \cdot poly(\log n)]$ The NQL stands for "nondeterministic quasi-linear time"

Preliminaries: SAT Facts

Satisfiability (SAT) is not only NP-complete, but also:

Theorem: [Cook 85, Gurevich and Shelah 89, Tourlakis 00]

SAT is NQL-complete, under reductions doable in $O(n \cdot poly(\log n))$ time and $O(\log n)$ space (simultaneously). Moreover the *i*th bit of the reduction can be computed in $O(poly(\log n))$ time.

Let \mathcal{D} be closed under quasi-linear time, logspace reductions.

Preliminaries: SAT Facts

Satisfiability (SAT) is not only NP-complete, but also:

Theorem: [Cook 85, Gurevich and Shelah 89, Tourlakis 00]

SAT is NQL-complete, under reductions doable in $O(n \cdot poly(\log n))$ time and $O(\log n)$ space (simultaneously). Moreover the *i*th bit of the reduction can be computed in $O(poly(\log n))$ time.

Let \mathcal{D} be closed under quasi-linear time, logspace reductions.

Corollary: If $NTIME[n] \nsubseteq D$, then $SAT \notin D$.

If one can show NTIME[n] is not contained in some \mathcal{D} , then one can name an *explicit problem* (SAT) not in \mathcal{D} (modulo polylog factors)

Preliminaries: Some Hierarchy Theorems

For reasonable $t(n) \ge n$,

 $\mathsf{NTIME}[t] \not\subseteq \mathsf{coNTIME}[o(t)].$

Furthermore, for integers $k \geq 1$,

 $\Sigma_k \mathsf{TIME}[t] \nsubseteq \Pi_k \mathsf{TIME}[o(t)].$

So, there's a tight time hierarchy within levels of the polynomial hierarchy.

Proof Strategy

Show if SAT has a sufficiently good algorithm, then one contradicts a hierarchy theorem.

Proof Strategy

Show if SAT has a sufficiently good algorithm, then one contradicts a hierarchy theorem.

Strategy of Prior work:

- 1. Show that $DTISP[n^c, n^{o(1)}]$ can be "sped-up" when simulated on an alternating machine
- 2. Show that $NTIME[n] \subseteq DTISP[n^c, n^{o(1)}]$ allows those alternations to be "removed" without much "slow-down"
- 3. Contradict a hierarchy theorem for small c

Proof Strategy

Show if SAT has a sufficiently good algorithm, then one contradicts a hierarchy theorem.

Strategy of Prior work:

- 1. Show that $DTISP[n^c, n^{o(1)}]$ can be "sped-up" when simulated on an alternating machine
- 2. Show that $NTIME[n] \subseteq DTISP[n^c, n^{o(1)}]$ allows those alternations to be "removed" without much "slow-down"
- 3. Contradict a hierarchy theorem for small c

Our proof will use the Σ_k time versus Π_k time hierarchy, for all k

Outline

- Preliminaries
- A Speed-Up Theorem
- A Slow-Down Lemma
- Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound
- Our Inductive Argument
- From $n^{1.66}$ to $n^{1.732}$

A Speed-Up Theorem (Trading Time for Alternations)

Let:

- $t(n) = n^c$ for rational $c \ge 1$,
- s(n) be $n^{o(1)}$, and
- $k \geq 2$ be an integer.

Theorem: [Fortnow and Van Melkebeek 00] [Kannan 83] $\mathsf{DTISP}[t,s] \subseteq \Sigma_k \mathsf{TIME}[t^{1/k+o(1)}] \cap \Pi_k \mathsf{TIME}[t^{1/k+o(1)}].$

A Speed-Up Theorem (Trading Time for Alternations)

Let:

- $t(n) = n^c$ for rational $c \ge 1$,
- s(n) be $n^{o(1)}$, and
- $k \geq 2$ be an integer.

Theorem: [Fortnow and Van Melkebeek 00] [Kannan 83] $\mathsf{DTISP}[t,s] \subseteq \Sigma_k \mathsf{TIME}[t^{1/k+o(1)}] \cap \Pi_k \mathsf{TIME}[t^{1/k+o(1)}].$

That is, for any machine M running in time t and using small workspace, there is an *alternating* machine M' that makes k alternations and takes roughly $\sqrt[k]{t}$ time.

Moreover, M' can start in either an existential or a universal state

Proof of the speed-up theorem

Let \boldsymbol{x} be input, \boldsymbol{M} be the small space machine to simulate

Goal: Write a clever sentence in first-order logic with k (alternating) quantifiers that is equivalent to M(x) accepting

Proof of the speed-up theorem

Let \boldsymbol{x} be input, \boldsymbol{M} be the small space machine to simulate

Goal: Write a clever sentence in first-order logic with k (alternating) quantifiers that is equivalent to M(x) accepting

Let C_j denote **configuration** of M(x) after *j* th step: bit string encoding *head positions, workspace contents, finite control*

By space assumption on M, $|C_j| \in n^{o(1)}$

Proof of the speed-up theorem

Let \boldsymbol{x} be input, \boldsymbol{M} be the small space machine to simulate

Goal: Write a clever sentence in first-order logic with k (alternating) quantifiers that is equivalent to M(x) accepting

Let C_j denote **configuration** of M(x) after *j* th step: bit string encoding *head positions, workspace contents, finite control*

By space assumption on M, $|C_j| \in n^{o(1)}$

M(x) accepts iff there is a sequence C_1, C_2, \ldots, C_t where

- C_1 is the "initial" configuration,
- C_t is in "accept" state
- For all i, C_i leads to C_{i+1} in one step of M on input x.

Proof of speed-up theorem: The case k = 2

M(x) accepts iff

$$\begin{split} &(\exists C_0, C_{\sqrt{t}}, C_{2\sqrt{t}}, \dots, C_t) \\ &(\forall i \in \{1, \dots, \sqrt{t}\}) \\ &[C_{i \cdot \sqrt{t}} \text{ leads to } C_{(i+1) \cdot \sqrt{t}} \text{ in } \sqrt{t} \text{ steps, } C_0 \text{ is initial, } C_t \text{ is accepting]} \end{split}$$

Proof of speed-up theorem: The case k = 2

 ${\cal M}(x)$ accepts iff

 $\begin{aligned} &(\exists C_0, C_{\sqrt{t}}, C_{2\sqrt{t}}, \dots, C_t) \\ &(\forall i \in \{1, \dots, \sqrt{t}\}) \\ &[C_{i \cdot \sqrt{t}} \text{ leads to } C_{(i+1) \cdot \sqrt{t}} \text{ in } \sqrt{t} \text{ steps, } C_0 \text{ is initial, } C_t \text{ is accepting]} \end{aligned}$

Runtime on an alternating machine:

- \exists takes $O(\sqrt{t} \cdot s) = t^{1/2 + o(1)}$ time to write down the C_j 's
- \forall takes $O(\log t)$ time to write down i
- $[\cdots]$ takes $O(\sqrt{t} \cdot s)$ deterministic time to check

Two alternations, square root speedup

Proof of speed-up theorem: The k = 3 **case, first attempt**

For k=2, we had

 $\begin{aligned} &(\exists C_0, C_{\sqrt{t}}, C_{2\sqrt{t}}, \dots, C_t) \\ &(\forall i \in \{0, 1, \dots, \sqrt{t}\}) \\ &[C_{i \cdot \sqrt{t}} \text{ leads to } C_{(i+1) \cdot \sqrt{t}} \text{ in } \sqrt{t} \text{ steps, } C_0 \text{ initial, } C_t \text{ accepting]} \end{aligned}$

Proof of speed-up theorem: The k = 3 **case, first attempt**

For k=2, we had

 $(\exists C_0, C_{\sqrt{t}}, C_{2\sqrt{t}}, \dots, C_t)$ $(\forall i \in \{0, 1, \dots, \sqrt{t}\})$ $[C_{i \cdot \sqrt{t}} \text{ leads to } C_{(i+1) \cdot \sqrt{t}} \text{ in } \sqrt{t} \text{ steps, } C_0 \text{ initial, } C_t \text{ accepting}]$ **Observation: The** $[\cdots]$ **is an** $O(\sqrt{t})$ **time and small-space computation, thus we can speed it up by a square root as well**

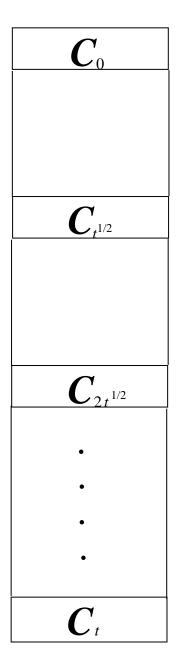
Proof of speed-up theorem: The k = 3 case, first attempt

For k=2, we had

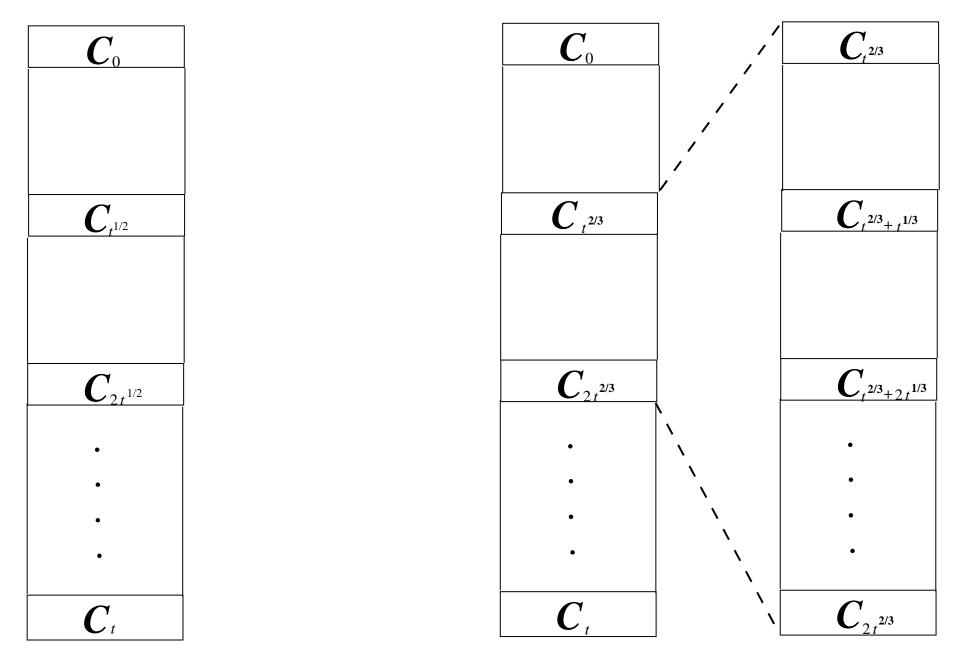
 $\begin{array}{l} (\exists C_0, C_{\sqrt{t}}, C_{2\sqrt{t}}, \dots, C_t) \\ (\forall i \in \{0, 1, \dots, \sqrt{t}\}) \\ [C_{i \cdot \sqrt{t}} \text{ leads to } C_{(i+1) \cdot \sqrt{t}} \text{ in } \sqrt{t} \text{ steps, } C_0 \text{ initial, } C_t \text{ accepting}] \\ \end{array}$ $\begin{array}{l} \textbf{Observation: The } [\cdots] \text{ is an } O(\sqrt{t}) \text{ time and small-space} \\ \textbf{computation, thus we can speed it up by a square root as well} \end{array}$

Straightforward way of doing this leads to:

 $(\exists C_0, C_{t^{2/3}}, C_{2 \cdot t^{2/3}}, \dots, C_t) (\forall i \in \{0, 1, \dots, t^{1/3}\})$ $(\exists C_{i \cdot t^{2/3} + t^{1/3}}, C_{i \cdot t^{2/3} + 2 \cdot t^{1/3}}, \dots, C_{(i+1) \cdot t^{2/3}}) (\forall j \in \{1, \dots, \sqrt{t}\})$ $[C_{i \cdot t^{2/3} + j \cdot t^{1/3}} \text{ leads to } C_{i \cdot t^{2/3} + (j+1) \cdot t^{1/3}} \text{ in } t^{1/3} \text{ steps, } C_0 \text{ initial, } C_t \text{ accepting]}$ k=2 has one "stage"



k=3 has two "stages"



Proof of speed-up theorem: Not quite enough for k = 3

The k = 3 sentence we gave uses **four** quantifiers, for only $t^{1/3}$ time (we want only three quantifier blocks)

Proof of speed-up theorem: Not quite enough for k = 3

The k = 3 sentence we gave uses **four** quantifiers, for only $t^{1/3}$ time (we want only three quantifier blocks)

Idea: Take advantage of the computation's determinism – only one possible configuration at any step

Proof of speed-up theorem: Not quite enough for k = 3

The k = 3 sentence we gave uses **four** quantifiers, for only $t^{1/3}$ time (we want only three quantifier blocks)

Idea: Take advantage of the computation's determinism – only one possible configuration at any step

The acceptance condition for M(x) can be *complemented*:

M(x) accepts iff

 $(\forall C_0, C_{\sqrt{t}}, C_{2\sqrt{t}}, \dots, C_t \text{ rejecting})$ $(\exists i \in \{1, \dots, \sqrt{t}\})$

 $[C_{i\cdot\sqrt{t}} \text{ does not lead to } C_{i\cdot\sqrt{t}+\sqrt{t}} \text{ in } \sqrt{t} \text{ steps}]$

"For all configuration sequences C_1, \ldots, C_t where C_t is rejecting, there exists a configuration C_i that does not lead to C_{i+1} "

The k = 3 case

We can therefore rewrite the k = 3 case, from

 $(\exists C_0, C_{t^{2/3}}, C_{2 \cdot t^{2/3}}, \dots, C_t \text{ accepting}) (\forall i \in \{0, 1, \dots, t^{1/3}\}) \\ (\exists C_{i \cdot t^{2/3} + t^{1/3}}, C_{i \cdot t^{2/3} + 2 \cdot t^{1/3}}, \dots, C_{(i+1) \cdot t^{2/3}}) (\forall j \in \{1, \dots, \sqrt{t}\}) \\ [C_{i \cdot t^{2/3} + j \cdot t^{1/3}} \text{ leads to } C_{i \cdot t^{2/3} + (j+1) \cdot t^{1/3}} \text{ in } t^{1/3} \text{ steps}]$

to:

The k = 3 case

We can therefore rewrite the k = 3 case, from

 $(\exists C_0, C_{t^{2/3}}, C_{2 \cdot t^{2/3}}, \dots, C_t \text{ accepting}) (\forall i \in \{0, 1, \dots, t^{1/3}\}) \\ (\exists C_{i \cdot t^{2/3} + t^{1/3}}, C_{i \cdot t^{2/3} + 2 \cdot t^{1/3}}, \dots, C_{(i+1) \cdot t^{2/3}}) (\forall j \in \{1, \dots, \sqrt{t}\}) \\ [C_{i \cdot t^{2/3} + j \cdot t^{1/3}} \text{ leads to } C_{i \cdot t^{2/3} + (j+1) \cdot t^{1/3}} \text{ in } t^{1/3} \text{ steps}] \\ \text{to:}$

 $\begin{aligned} (\exists C_0, C_{t^{2/3}}, C_{2 \cdot t^{2/3}}, \dots, C_t \text{ accepting}) (\forall i \in \{0, 1, \dots, t^{1/3}\}) \\ (\forall C_{i \cdot t^{2/3} + t^{1/3}}, \dots, C_{(i+1) \cdot t^{2/3} - t^{1/3}}, C'_{(i+1) \cdot t^{2/3}} \neq C_{(i+1) \cdot t^{2/3}}) \\ (\exists j \in \{1, \dots, \sqrt{t}\}) \\ [C_{i \cdot t^{2/3} + j \cdot t^{1/3}} \text{ does not lead to } C_{i \cdot t^{2/3} + (j+1) \cdot t^{1/3}} \text{ in } t^{1/3} \text{ steps}] \end{aligned}$

The k = 3 case

We can therefore rewrite the k = 3 case, from

 $\begin{aligned} (\exists C_0, C_{t^{2/3}}, C_{2 \cdot t^{2/3}}, \dots, C_t \text{ accepting}) (\forall i \in \{0, 1, \dots, t^{1/3}\}) \\ (\exists C_{i \cdot t^{2/3} + t^{1/3}}, C_{i \cdot t^{2/3} + 2 \cdot t^{1/3}}, \dots, C_{(i+1) \cdot t^{2/3}}) (\forall j \in \{1, \dots, \sqrt{t}\}) \\ [C_{i \cdot t^{2/3} + j \cdot t^{1/3}} \text{ leads to } C_{i \cdot t^{2/3} + (j+1) \cdot t^{1/3}} \text{ in } t^{1/3} \text{ steps}] \\ \text{to:} \end{aligned}$

 $(\exists C_0, C_{t^{2/3}}, C_{2 \cdot t^{2/3}}, \dots, C_t \text{ accepting}) (\forall i \in \{0, 1, \dots, t^{1/3}\})$ $(\forall C_{i \cdot t^{2/3} + t^{1/3}}, \dots, C_{(i+1) \cdot t^{2/3} - t^{1/3}}, C'_{(i+1) \cdot t^{2/3}} \neq C_{(i+1) \cdot t^{2/3}})$ $(\exists j \in \{1, \dots, \sqrt{t}\})$ $[C_{i \cdot t^{2/3} + j \cdot t^{1/3}} \text{ does not lead to } C_{i \cdot t^{2/3} + (j+1) \cdot t^{1/3}} \text{ in } t^{1/3} \text{ steps}]$ $Voila! Three quantifier blocks. This is in <math>\Sigma_3 \text{TIME}[t^{1/3+o(1)}]$ (and similarly one can show it's in $\Pi_3 \text{TIME}[t^{1/3+o(1)}]$)

This can be generalized...

For arbitrary $k \ge 3$, one simply guesses (existentially or universally) $t^{1/k}$ configurations at each stage

This can be generalized...

For arbitrary $k \ge 3$, one simply guesses (existentially or universally) $t^{1/k}$ configurations at each stage

 Inverting quantifiers means the number of alternations only increases by one for every stage

 $(\exists \forall) (\forall \exists) (\exists \forall) \cdots$

This can be generalized...

For arbitrary $k \ge 3$, one simply guesses (existentially or universally) $t^{1/k}$ configurations at each stage

 Inverting quantifiers means the number of alternations only increases by one for every stage

$$\cdots (\forall \mathsf{E}) (\mathsf{E} \forall) (\forall \mathsf{E})$$

• There are k-1 stages of guessing $t^{1/k}$ configurations, then $t^{1/k}$ time to deterministically verify configurations

Outline

- Preliminaries
- A Speed-Up Theorem
- A Slow-Down Lemma
- \bullet Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound
- Our Inductive Argument
- From $n^{1.66}$ to $n^{1.732}$

A Slow-Down Lemma

(Trading Alternations For Time)

Main Idea: The assumption $NTIME[n] \subseteq DTIME[n^c]$ allows one to remove alternations from a computation, with a small time increase

A Slow-Down Lemma

(Trading Alternations For Time)

Main Idea: The assumption $NTIME[n] \subseteq DTIME[n^c]$ allows one to remove alternations from a computation, with a small time increase

Let $t(n) \ge n$ be a polynomial, $c \ge 1$. Lemma: If $\mathsf{NTIME}[n] \subseteq \mathsf{DTIME}[n^c]$ then for all $k \ge 1$, $\Sigma_k \mathsf{TIME}[t] \subseteq \Sigma_{k-1} \mathsf{TIME}[t^c]$.

We prove the following, which will be very useful in our final proof.

A Slow-Down Lemma

(Trading Alternations For Time)

Main Idea: The assumption $NTIME[n] \subseteq DTIME[n^c]$ allows one to remove alternations from a computation, with a small time increase

Let
$$t(n) \ge n$$
 be a polynomial, $c \ge 1$.
Lemma: If $\mathsf{NTIME}[n] \subseteq \mathsf{DTIME}[n^c]$ then for all $k \ge 1$,
 $\Sigma_k \mathsf{TIME}[t] \subseteq \Sigma_{k-1} \mathsf{TIME}[t^c]$.

We prove the following, which will be very useful in our final proof.

Theorem: If $\Sigma_k \text{TIME}[n] \subseteq \Pi_k \text{TIME}[n^c]$ then $\Sigma_{k+1} \text{TIME}[t] \subseteq \Sigma_k \text{TIME}[t^c].$

Assume $\Sigma_k \mathsf{TIME}[n] \subseteq \Pi_k \mathsf{TIME}[n^c]$

Let M be a \sum_{k+1} machine running in time t

Assume $\Sigma_k \text{TIME}[n] \subseteq \Pi_k \text{TIME}[n^c]$

Let M be a \sum_{k+1} machine running in time t

Recall M(x) can be characterized by a first-order sentence:

$$(\exists x_1, |x_1| \le t(|x|)) (\forall x_2, |x_2| \le t(|x|)) \cdots (Qz, |x_{k+1}| \le t(|x|)) [P(x, x_1, x_2, \dots, x_{k+1})]$$

where P "runs" in time t(|x|)

Assume $\Sigma_k \text{TIME}[n] \subseteq \Pi_k \text{TIME}[n^c]$

Let M be a \sum_{k+1} machine running in time t

Recall M(x) can be characterized by a first-order sentence:

$$(\exists x_1, |x_1| \le t(|x|)) (\forall x_2, |x_2| \le t(|x|)) \cdots (Qz, |x_{k+1}| \le t(|x|)) [P(x, x_1, x_2, \dots, x_{k+1})]$$

where P "runs" in time t(|x|)

Important Point: *input* to *P* is of O(t(|x|)) length, so *P* actually runs in *linear time* with respect to the length of its input

Assume $\Sigma_k \mathsf{TIME}[n] \subseteq \Pi_k \mathsf{TIME}[n^c]$ Define $R(x, x_1) := (\forall x_2, |x_2| \leq t(|x|)) \cdots$ $(Qz, |x_{k+1}| \leq t(|x|))$ $[P(x, x_1, x_2, \dots, x_{k+1})]$

Assume $\Sigma_k \mathsf{TIME}[n] \subseteq \Pi_k \mathsf{TIME}[n^c]$ Define $R(x, x_1) := (\forall x_2, |x_2| \le t(|x|)) \cdots$ $(Qz, |x_{k+1}| \le t(|x|))$ $[P(x, x_1, x_2, \dots, x_{k+1})]$

So M(x) accepts iff $(\exists x_1, |x_1| \leq t(|x|))R(x, x_1)$

Assume $\Sigma_k \text{TIME}[n] \subseteq \Pi_k \text{TIME}[n^c]$ Define $R(x, x_1) := (\forall x_2, |x_2| \le t(|x|)) \cdots$ $(Qz, |x_{k+1}| \le t(|x|))$ $[P(x, x_1, x_2, \dots, x_{k+1})]$

So M(x) accepts iff $(\exists x_1, |x_1| \leq t(|x|))R(x, x_1)$

• By definition, R recognized by a Π_k machine in time t(|x|), *i.e. linear time* $(|x_1| = t(|x|))$.

Assume $\Sigma_k \text{TIME}[n] \subseteq \Pi_k \text{TIME}[n^c]$ Define $R(x, x_1) := (\forall x_2, |x_2| \le t(|x|)) \cdots$ $(Qz, |x_{k+1}| \le t(|x|))$ $[P(x, x_1, x_2, \dots, x_{k+1})]$

So M(x) accepts iff $(\exists x_1, |x_1| \leq t(|x|))R(x, x_1)$

- By definition, R recognized by a Π_k machine in time t(|x|), *i.e. linear time* $(|x_1| = t(|x|))$.
- By assumption, there is R' equivalent to R that starts with an \exists , has k quantifier blocks, is in $t(|x|)^c$ time

Assume $\Sigma_k \text{TIME}[n] \subseteq \Pi_k \text{TIME}[n^c]$ Define $R(x, x_1) := (\forall x_2, |x_2| \le t(|x|)) \cdots$ $(Qz, |x_{k+1}| \le t(|x|))$ $[P(x, x_1, x_2, \dots, x_{k+1})]$

So M(x) accepts iff $(\exists x_1, |x_1| \leq t(|x|))R(x, x_1)$

- By definition, R recognized by a Π_k machine in time t(|x|), *i.e. linear time* $(|x_1| = t(|x|))$.
- By assumption, there is R' equivalent to R that starts with an \exists , has k quantifier blocks, is in $t(|x|)^c$ time

M(x) accepts iff $[(\exists x_1, |x_1| \le t(|x|))R'(x, x_1)] \longleftarrow \Sigma_k \mathsf{TIME}[t^c]$

Outline

- Preliminaries
- A Speed-Up Theorem
- A Slow-Down Lemma
- Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound
- Our Inductive Argument
- From $n^{1.66}$ to $n^{1.732}$

Lemma: If $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$ for some $c \ge 1$, then for all polynomials $t(n) \ge n$, $\mathsf{NTIME}[t] \subseteq \mathsf{DTISP}[t^c, t^{o(1)}]$

Theorem: NTIME[n] \nsubseteq DTISP[$n^{\sqrt{2}-\varepsilon}, n^{o(1)}$]

Lemma: If $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$ for some $c \ge 1$, then for all polynomials $t(n) \ge n$, $\mathsf{NTIME}[t] \subseteq \mathsf{DTISP}[t^c, t^{o(1)}]$

Theorem: NTIME[n] $\not\subseteq$ DTISP[$n^{\sqrt{2}-\varepsilon}, n^{o(1)}$]

Proof: Assume NTIME[n] \subseteq DTISP[$n^c, n^{o(1)}$]

(We will find a *c* that implies a contradiction)

Lemma: If $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$ for some $c \ge 1$, then for all polynomials $t(n) \ge n$, $\mathsf{NTIME}[t] \subseteq \mathsf{DTISP}[t^c, t^{o(1)}]$

Theorem: NTIME[n] $\not\subseteq$ DTISP[$n^{\sqrt{2}-\varepsilon}, n^{o(1)}$]

Proof: Assume NTIME[n] \subseteq DTISP[$n^c, n^{o(1)}$]

(We will find a *c* that implies a contradiction)

• $\Sigma_2 \mathsf{TIME}[n] \subseteq \mathsf{NTIME}[n^c]$, by slow-down theorem

Lemma: If $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$ for some $c \ge 1$, then for all polynomials $t(n) \ge n$, $\mathsf{NTIME}[t] \subseteq \mathsf{DTISP}[t^c, t^{o(1)}]$

Theorem: NTIME[n] $\not\subseteq$ DTISP[$n^{\sqrt{2}-\varepsilon}, n^{o(1)}$]

Proof: Assume NTIME[n] \subseteq DTISP[$n^c, n^{o(1)}$]

(We will find a *c* that implies a contradiction)

- $\Sigma_{\mathscr{Z}} \mathsf{TIME}[n] \subseteq \mathsf{NTIME}[n^c]$, by slow-down theorem
- $\mathsf{NTIME}[n^c] \subseteq \mathsf{DTISP}[n^{c^2}, n^{o(1)}]$, by assumption and padding

Lemma: If $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$ for some $c \ge 1$, then for all polynomials $t(n) \ge n$, $\mathsf{NTIME}[t] \subseteq \mathsf{DTISP}[t^c, t^{o(1)}]$

Theorem: NTIME[n] $\not\subseteq$ DTISP[$n^{\sqrt{2}-\varepsilon}, n^{o(1)}$]

Proof: Assume NTIME[n] \subseteq DTISP[$n^c, n^{o(1)}$]

(We will find a *c* that implies a contradiction)

- $\Sigma_2 \mathsf{TIME}[n] \subseteq \mathsf{NTIME}[n^c]$, by slow-down theorem
- $\mathsf{NTIME}[n^c] \subseteq \mathsf{DTISP}[n^{c^2}, n^{o(1)}]$, by assumption and padding
- $\mathsf{DTISP}[n^{c^2}, n^{o(1)}] \subseteq \Pi_2 \mathsf{TIME}[n^{c^2/2}]$, by speed-up theorem, so $c < \sqrt{2}$ contradicts the hierarchy theorem

Outline

- Preliminaries
- A Speed-Up Theorem
- A Slow-Down Lemma
- \bullet Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound
- Our Inductive Argument
- \bullet From $n^{1.66}$ to $n^{1.732}$

Viewing Lipton-Viglas as a Lemma (The Base Case for Our Induction)

We deliberately presented Lipton-Viglas's result differently from the original argument. In this way, we get

Lemma: NTIME[n] \subseteq DTISP[n^c , $n^{o(1)}$] implies Σ_2 TIME[n] $\subseteq \Pi_2$ TIME[$n^{c^2/2}$].

Note if c < 2 then $c^2/2 < c$.

Viewing Lipton-Viglas as a Lemma (The Base Case for Our Induction)

We deliberately presented Lipton-Viglas's result differently from the original argument. In this way, we get

Lemma: $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$ implies $\Sigma_2 \mathsf{TIME}[n] \subseteq \Pi_2 \mathsf{TIME}[n^{c^2/2}].$

Note if c < 2 then $c^2/2 < c$.

• Thus, we may not necessarily have a contradiction for larger c, but we can remove one alternation from Σ_3 with only $n^{c^2/2}$ cost

Viewing Lipton-Viglas as a Lemma (The Base Case for Our Induction)

We deliberately presented Lipton-Viglas's result differently from the original argument. In this way, we get

Lemma: $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$ implies $\Sigma_2 \mathsf{TIME}[n] \subseteq \Pi_2 \mathsf{TIME}[n^{c^2/2}].$

Note if c < 2 then $c^2/2 < c$.

- Thus, we may not necessarily have a contradiction for larger c, but we can remove one alternation from Σ_3 with only $n^{c^2/2}$ cost
- Slow-down theorem implies $\Sigma_3 \mathsf{TIME}[n] \subseteq \Sigma_2 \mathsf{TIME}[n^{c^2/2}]$

The Start of the Induction: $\Sigma_{\mathcal{J}}$

Assume $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$ and the lemma

• $\Sigma_3 \text{TIME}[n] \subseteq \Sigma_2 \text{TIME}[n^{c^2/2}]$, by slow-down and lemma

- $\Sigma_3 \text{TIME}[n] \subseteq \Sigma_2 \text{TIME}[n^{c^2/2}]$, by slow-down and lemma
- $\Sigma_2 \text{TIME}[n^{c^2/2}] \subseteq \text{NTIME}[n^{c^3/2}]$, by slow-down

- $\Sigma_{\mathscr{Z}} \mathsf{TIME}[n] \subseteq \Sigma_{\mathscr{Z}} \mathsf{TIME}[n^{c^2/2}]$, by slow-down and lemma
- $\Sigma_2 \mathsf{TIME}[n^{c^2/2}] \subseteq \mathsf{NTIME}[n^{c^3/2}]$, by slow-down
- $\mathsf{NTIME}[n^{c^3/2}] \subseteq \mathsf{DTISP}[n^{c^4/2}, n^{o(1)}]$, by assumption and padding

- $\Sigma_3 \text{TIME}[n] \subseteq \Sigma_2 \text{TIME}[n^{c^2/2}]$, by slow-down and lemma
- $\Sigma_2 \mathsf{TIME}[n^{c^2/2}] \subseteq \mathsf{NTIME}[n^{c^3/2}]$, by slow-down
- $\mathsf{NTIME}[n^{c^3/2}] \subseteq \mathsf{DTISP}[n^{c^4/2}, n^{o(1)}]$, by assumption and padding
- $\mathsf{DTISP}[n^{c^4/2}, n^{o(1)}] \subseteq \Pi_3 \mathsf{TIME}[n^{c^4/6}]$, by speed-up

Assume NTIME $[n] \subseteq \text{DTISP}[n^c, n^{o(1)}]$ and the lemma

- $\Sigma_{\mathscr{Z}} \mathsf{TIME}[n] \subseteq \Sigma_{\mathscr{Z}} \mathsf{TIME}[n^{c^2/2}]$, by slow-down and lemma
- $\Sigma_2 \text{TIME}[n^{c^2/2}] \subseteq \text{NTIME}[n^{c^3/2}]$, by slow-down
- $\mathsf{NTIME}[n^{c^3/2}] \subseteq \mathsf{DTISP}[n^{c^4/2}, n^{o(1)}]$, by assumption and padding
- $\mathsf{DTISP}[n^{c^4/2}, n^{o(1)}] \subseteq \Pi_3 \mathsf{TIME}[n^{c^4/6}]$, by speed-up

Observe:

- Now $c < \sqrt[4]{6} \approx 1.565$ contradicts time hierarchy for Σ_{β} and Π_{β}
- But if $c \ge \sqrt[4]{6}$, then we obtain a new "lemma": $\Sigma_3 \text{TIME}[n] \subseteq \Pi_3 \text{TIME}[n^{c^4/6}]$

$$\Sigma_4, \Sigma_5, \ldots$$

(Here we drop the TIME from $\Sigma_k TIME$ for tidiness)

$$\mathbf{\Sigma}_{4}[n] \subseteq \mathbf{\Sigma}_{3}[n^{\frac{c^{4}}{6}}] \subseteq \mathbf{\Sigma}_{2}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2}}] \subseteq \mathsf{NTIME}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}], \text{ but}$$

$$\Sigma_4, \Sigma_5, \ldots$$

(Here we drop the TIME from $\Sigma_k TIME$ for tidiness)

$$\begin{split} \mathbf{\Sigma}_{4}[n] &\subseteq \mathbf{\Sigma}_{3}[n^{\frac{c^{4}}{6}}] \subseteq \mathbf{\Sigma}_{2}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2}}] \subseteq \mathsf{NTIME}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}], \text{ but} \\ \mathsf{NTIME}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}] &\subseteq \mathsf{DTISP}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c^{2}}, n^{o(1)}] \subseteq \Pi_{4}[n^{c^{8}/48}] \\ (c < \sqrt[8]{48} \approx 1.622 \text{ implies contradiction}) \end{split}$$

$$\Sigma_4, \Sigma_5, \ldots$$

(Here we drop the TIME from $\Sigma_k TIME$ for tidiness)

$$\begin{split} \mathbf{\Sigma}_{4}[n] &\subseteq \mathbf{\Sigma}_{3}[n^{\frac{c^{4}}{6}}] \subseteq \mathbf{\Sigma}_{2}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2}}] \subseteq \mathsf{NTIME}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}], \text{ but} \\ \mathsf{NTIME}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}] &\subseteq \mathsf{DTISP}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c^{2}}, n^{o(1)}] \subseteq \Pi_{4}[n^{c^{8}/48}] \\ (c < \sqrt[8]{48} \approx 1.622 \text{ implies contradiction}) \end{split}$$

 $\boldsymbol{\Sigma}_{5}[n] \subseteq \boldsymbol{\Sigma}_{4}[n^{\frac{c^{8}}{48}}] \subseteq \boldsymbol{\Sigma}_{3}[n^{\frac{c^{12}}{48\cdot 6}}] \subseteq \boldsymbol{\Sigma}_{2}[n^{\frac{c^{14}}{48\cdot 6\cdot 2}}], \text{ and this is in}$

$$\Sigma_4, \Sigma_5, \ldots$$

(Here we drop the TIME from Σ_k TIME for tidiness)

$$\begin{split} \mathbf{\Sigma}_{4}[n] &\subseteq \mathbf{\Sigma}_{3}[n^{\frac{c^{4}}{6}}] \subseteq \mathbf{\Sigma}_{2}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2}}] \subseteq \mathsf{NTIME}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}], \text{ but} \\ \mathsf{NTIME}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c}] &\subseteq \mathsf{DTISP}[n^{\frac{c^{4}}{6} \cdot \frac{c^{2}}{2} \cdot c^{2}}, n^{o(1)}] \subseteq \Pi_{4}[n^{c^{8}/48}] \\ (c < \sqrt[8]{48} \approx 1.622 \text{ implies contradiction}) \end{split}$$

$$\begin{split} \Sigma_{5}[n] &\subseteq \Sigma_{4}[n^{\frac{c^{8}}{48}}] \subseteq \Sigma_{3}[n^{\frac{c^{12}}{48\cdot6}}] \subseteq \Sigma_{2}[n^{\frac{c^{14}}{48\cdot6\cdot2}}], \text{ and this is in} \\ \mathsf{NTIME}[n^{\frac{c^{15}}{48\cdot12}}] &\subseteq \mathsf{DTISP}[n^{\frac{c^{16}}{48\cdot12}}, n^{o(1)}] \subseteq \Pi_{5}[n^{\frac{c^{16}}{48\cdot60}}] \\ (c < \sqrt[16]{2880} \approx 1.645 \text{ implies contradiction}) \end{split}$$

An intermediate lower bound, $n^{\Upsilon^{\prime}}$

Assume
$$\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$$

Claim: The inductive process of the previous slide converges.

The constant derived is

$$\Upsilon' := \lim_{k \to \infty} f(k),$$

where $f(k) := \prod_{j=1}^{k-1} (1 + 1/j)^{1/2^j}$.

Note $\Upsilon' \approx 1.66$.

A Time-Space Tradeoff

Corollary: For every c < 1.66 there is d > 0 such that SAT is not in $\text{DTISP}[n^c, n^d]$.

Outline

- Preliminaries
- A Speed-Up Theorem
- A Slow-Down Lemma
- \bullet Lipton and Viglas' $n^{\sqrt{2}}$ Lower Bound
- Our Inductive Argument
- From $n^{1.66}$ to $n^{1.732}$

From $n^{1.66}$ to $n^{1.732}$

 $\mathsf{DTISP}[t, t^{o(1)}] \subseteq \Pi_k \mathsf{TISP}[t^{1/k+o(1)}]$ is an **unconditional** result

From $n^{1.66}$ to $n^{1.732}$

 $\mathsf{DTISP}[t, t^{o(1)}] \subseteq \Pi_k \mathsf{TISP}[t^{1/k+o(1)}]$ is an **unconditional** result

All other derived class inclusions in the above proof actually depend on the assumption that $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$.

From $n^{1.66}$ to $n^{1.732}$

 $\mathsf{DTISP}[t, t^{o(1)}] \subseteq \Pi_k \mathsf{TISP}[t^{1/k+o(1)}]$ is an **unconditional** result

All other derived class inclusions in the above proof actually depend on the assumption that $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}].$

We'll now show how such an assumption can get

 $\mathsf{DTISP}[n^c, n^{o(1)}] \subseteq \mathsf{\Pi}_k \mathsf{TISP}[n^{c/(k+\varepsilon)+o(1)}]$

for some $\varepsilon > 0$. This will push the lower bound higher.

From $n^{1.66}$ to $n^{1.732}\,$

 $\mathsf{DTISP}[t, t^{o(1)}] \subseteq \Pi_k \mathsf{TISP}[t^{1/k+o(1)}]$ is an **unconditional** result

All other derived class inclusions in the above proof actually depend on the assumption that $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$.

We'll now show how such an assumption can get

 $\mathsf{DTISP}[n^c, n^{o(1)}] \subseteq \mathsf{\Pi}_k \mathsf{TISP}[n^{c/(k+\varepsilon)+o(1)}]$

for some $\varepsilon > 0$. This will push the lower bound higher.

Lemma: Let $c \leq 2$. Define $d_1 := 2$, $d_k := 1 + \frac{d_{k-1}}{c}$. If $\mathsf{NTIME}[n^{2/c}] \subseteq \mathsf{DTISP}[n^2, n^{o(1)}]$, then for all k, $\mathsf{DTISP}[n^{d_k}, n^{o(1)}] \subseteq \Pi_2 \mathsf{TIME}[n^{1+o(1)}]$.

From $n^{1.66}$ to $n^{1.732}\,$

 $\mathsf{DTISP}[t, t^{o(1)}] \subseteq \Pi_k \mathsf{TISP}[t^{1/k+o(1)}]$ is an **unconditional** result

All other derived class inclusions in the above proof actually depend on the assumption that $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$.

We'll now show how such an assumption can get

 $\mathsf{DTISP}[n^c, n^{o(1)}] \subseteq \mathsf{\Pi}_k \mathsf{TISP}[n^{c/(k+\varepsilon)+o(1)}]$

for some $\varepsilon > 0$. This will push the lower bound higher.

Lemma: Let $c \leq 2$. Define $d_1 := 2$, $d_k := 1 + \frac{d_{k-1}}{c}$. If $\mathsf{NTIME}[n^{2/c}] \subset \mathsf{DTISP}[n^2, n^{o(1)}]$, then

for all k, $\mathsf{DTISP}[n^{d_k}, n^{o(1)}] \subseteq \Pi_2 \mathsf{TIME}[n^{1+o(1)}]$.

For c < 2, $\{d_k\}$ is increasing – for each k, a bit more of DTISP $[n^{O(1)}, n^{o(1)}]$ is shown to be contained in $\prod_2 \text{TIME}[n^{1+o(1)}]$

Proof of Lemma

Lemma: Let c < 2. Define $d_1 := 2$, $d_k := 1 + \frac{d_{k-1}}{c}$. If $\mathsf{NTIME}[n^{2/c}] \subseteq \mathsf{DTISP}[n^2, n^{o(1)}]$, then for all $k \in \mathbb{N}$, $\mathsf{DTISP}[n^{d_k}, n^{o(1)}] \subseteq \Pi_2 \mathsf{TIME}[n^{1+o(1)}]$.

Induction on k. k = 1 case is trivial (speedup theorem). Suppose NTIME $[n^{2/c}] \subseteq \text{DTISP}[n^2, n^{o(1)}]$ and $\text{DTISP}[n^{d_k}, n^{o(1)}] \subseteq \Pi_2 \text{TIME}[n^{1+o(1)}].$

Proof of Lemma

Lemma: Let c < 2. Define $d_1 := 2$, $d_k := 1 + \frac{d_{k-1}}{c}$. If $\mathsf{NTIME}[n^{2/c}] \subseteq \mathsf{DTISP}[n^2, n^{o(1)}]$, then for all $k \in \mathbb{N}$, $\mathsf{DTISP}[n^{d_k}, n^{o(1)}] \subseteq \Pi_2 \mathsf{TIME}[n^{1+o(1)}]$.

Induction on k. k = 1 case is trivial (speedup theorem). Suppose NTIME $[n^{2/c}] \subseteq DTISP[n^2, n^{o(1)}]$ and $DTISP[n^{d_k}, n^{o(1)}] \subseteq \Pi_2 TIME[n^{1+o(1)}].$ Want: $DTISP[n^{1+d_k/c}, n^{o(1)}] \subseteq \Pi_2 TIME[n^{1+o(1)}].$

Proof of Lemma

Lemma: Let c < 2. Define $d_1 := 2$, $d_k := 1 + \frac{d_{k-1}}{c}$. If $\mathsf{NTIME}[n^{2/c}] \subseteq \mathsf{DTISP}[n^2, n^{o(1)}]$, then for all $k \in \mathbb{N}$, $\mathsf{DTISP}[n^{d_k}, n^{o(1)}] \subseteq \Pi_2 \mathsf{TIME}[n^{1+o(1)}]$.

Induction on k. k = 1 case is trivial (speedup theorem). Suppose NTIME $[n^{2/c}] \subseteq \text{DTISP}[n^2, n^{o(1)}]$ and $\text{DTISP}[n^{d_k}, n^{o(1)}] \subseteq \Pi_2 \text{TIME}[n^{1+o(1)}].$

Want: $\mathsf{DTISP}[n^{1+d_k/c}, n^{o(1)}] \subseteq \Pi_2 \mathsf{TIME}[n^{1+o(1)}].$

By padding, the purple assumptions imply

 $\mathsf{NTIME}[n^{d_k/c}] \subseteq \mathsf{DTISP}[n^{d_k}, n^{o(1)}] \subseteq \mathsf{\Pi}_2\mathsf{TIME}[n^{1+o(1)}]. \ (*)$

Goal: DTISP $[n^{1+d_k/c}, n^{o(1)}] \subseteq \prod_2 \text{TIME}[n^{1+o(1)}]$ Consider a \prod_2 simulation of DTISP $[n^{1+d_k/c}, n^{o(1)}]$ with only O(n) bits $(n^{1-o(1)} \text{ configurations})$ in the universal quantifier: **Goal:** DTISP $[n^{1+d_k/c}, n^{o(1)}] \subseteq \prod_2 \mathsf{TIME}[n^{1+o(1)}]$

Consider a Π_2 simulation of $\text{DTISP}[n^{1+d_k/c}, n^{o(1)}]$ with only O(n) bits $(n^{1-o(1)} \text{ configurations})$ in the universal quantifier:

 $(\forall \text{ configurations } C_1, \dots, C_{n^{1-o(1)}} \text{ of } M \text{ on } x \text{ s.t. } C_{n^{1-o(1)}} \text{ is rejecting})$ $(\exists i \in \{1, \dots, n^{1-o(1)} - 1\})[C_i \text{ does not lead to } C_{i+1} \text{ in } n^{d_k/c+o(1)} \text{ time}]$

Goal: DTISP $[n^{1+d_k/c}, n^{o(1)}] \subseteq \prod_{\mathscr{Z}} \mathsf{TIME}[n^{1+o(1)}]$

Consider a Π_2 simulation of $\text{DTISP}[n^{1+d_k/c}, n^{o(1)}]$ with only O(n) bits $(n^{1-o(1)} \text{ configurations})$ in the universal quantifier:

 $(\forall \text{ configurations } C_1, \ldots, C_{n^{1-o(1)}} \text{ of } M \text{ on } x \text{ s.t. } C_{n^{1-o(1)}} \text{ is rejecting})$ $(\exists i \in \{1, \ldots, n^{1-o(1)} - 1\})[C_i \text{ does not lead to } C_{i+1} \text{ in } n^{d_k/c+o(1)} \text{ time}]$ Green part is an NTIME computation, input of length O(n), takes

 $n^{d_k/c+o(1)}$ time

Goal: DTISP $[n^{1+d_k/c}, n^{o(1)}] \subseteq \prod_2 \mathsf{TIME}[n^{1+o(1)}]$

Consider a Π_2 simulation of $\text{DTISP}[n^{1+d_k/c}, n^{o(1)}]$ with only O(n) bits $(n^{1-o(1)} \text{ configurations})$ in the universal quantifier:

 $(\forall \text{ configurations } C_1, \ldots, C_{n^{1-o(1)}} \text{ of } M \text{ on } x \text{ s.t. } C_{n^{1-o(1)}} \text{ is rejecting})$ $(\exists i \in \{1, \ldots, n^{1-o(1)} - 1\})[C_i \text{ does not lead to } C_{i+1} \text{ in } n^{d_k/c+o(1)} \text{ time}]$ Green part is an NTIME computation, input of length O(n), takes $n^{d_k/c+o(1)}$ time

 $(*) \implies$ Green can be replaced with $\prod_{2} \text{TIME}[n^{1+o(1)}]$ computation, *i.e.*

Goal: DTISP $[n^{1+d_k/c}, n^{o(1)}] \subseteq \prod_2 \mathsf{TIME}[n^{1+o(1)}]$

Consider a Π_2 simulation of $\text{DTISP}[n^{1+d_k/c}, n^{o(1)}]$ with only O(n) bits $(n^{1-o(1)} \text{ configurations})$ in the universal quantifier:

 $(\forall \text{ configurations } C_1, \ldots, C_{n^{1-o(1)}} \text{ of } M \text{ on } x \text{ s.t. } C_{n^{1-o(1)}} \text{ is rejecting})$ $(\exists i \in \{1, \ldots, n^{1-o(1)} - 1\})[C_i \text{ does not lead to } C_{i+1} \text{ in } n^{d_k/c+o(1)} \text{ time}]$ Green part is an NTIME computation, input of length O(n), takes $n^{d_k/c+o(1)}$ time

 $(*) \implies$ Green can be replaced with $\prod_{2} \text{TIME}[n^{1+o(1)}]$ computation, *i.e.*

 $(\forall \text{ configurations } C_1, \dots, C_{n^{1-o(1)}} \text{ of } M \text{ on } x \text{ s.t. } C_{n^{1-o(1)}} \text{ is rejecting})$ $(\forall y, |y| = c|x|^{1+o(1)}) (\exists z, |z| = c|z|^{1+o(1)})[R(C_1, \dots, C_{n^{1-o(1)}}, x, y, z)],$

for some deterministic linear time relation R and constant c > 0.

Goal: DTISP $[n^{1+d_k/c}, n^{o(1)}] \subseteq \prod_{\mathcal{Z}} \mathsf{TIME}[n^{1+o(1)}]$

Consider a Π_2 simulation of $\text{DTISP}[n^{1+d_k/c}, n^{o(1)}]$ with only O(n) bits $(n^{1-o(1)} \text{ configurations})$ in the universal quantifier:

 $(\forall \text{ configurations } C_1, \ldots, C_{n^{1-o(1)}} \text{ of } M \text{ on } x \text{ s.t. } C_{n^{1-o(1)}} \text{ is rejecting})$ $(\exists i \in \{1, \ldots, n^{1-o(1)} - 1\})[C_i \text{ does not lead to } C_{i+1} \text{ in } n^{d_k/c+o(1)} \text{ time}]$ Green part is an NTIME computation, input of length O(n), takes $n^{d_k/c+o(1)}$ time

 $(*) \implies$ Green can be replaced with $\prod_{2} \text{TIME}[n^{1+o(1)}]$ computation, *i.e.*

 $(\forall \text{ configurations } C_1, \dots, C_{n^{1-o(1)}} \text{ of } M \text{ on } x \text{ s.t. } C_{n^{1-o(1)}} \text{ is rejecting})$ $(\forall y, |y| = c|x|^{1+o(1)}) (\exists z, |z| = c|z|^{1+o(1)}) [R(C_1, \dots, C_{n^{1-o(1)}}, x, y, z)],$

for some deterministic linear time relation R and constant c > 0.

Therefore, $\mathsf{DTISP}[n^{d_{k+1}}, n^{o(1)}] \subseteq \Pi_2 \mathsf{TIME}[n^{1+o(1)}].$

New Lemma Gives Better Bound

Corollary 1

Let $c \in (1, 2)$. If $\mathsf{NTIME}[n^{2/c}] \subseteq \mathsf{DTISP}[n^2, n^{o(1)}]$ then for all $\varepsilon > 0$ such that $\frac{c}{c-1} - \varepsilon \ge 1$, $\mathsf{DTISP}[n^{\frac{c}{c-1}-\varepsilon}, n^{o(1)}] \subseteq \mathsf{\Pi}_2\mathsf{TIME}[n^{1+o(1)}].$

New Lemma Gives Better Bound

Corollary 1

Let $c \in (1, 2)$. If $\mathsf{NTIME}[n^{2/c}] \subseteq \mathsf{DTISP}[n^2, n^{o(1)}]$ then

for all $\varepsilon > 0$ such that $\frac{c}{c-1} - \varepsilon \ge 1$, $\mathsf{DTISP}[n^{\frac{c}{c-1}-\varepsilon}, n^{o(1)}] \subseteq \mathsf{\Pi}_2\mathsf{TIME}[n^{1+o(1)}].$

Proof. Recall $d_2 = 2$, $d_k = 1 + d_{k-1}/c$.

 $\{d_k\}$ is monotone non-decreasing for c < 2; converges to $d_{\infty} = 1 + \frac{d_{\infty}}{c}$ $\implies d_{\infty} = c/(c-1)$. (Note c = 2 implies $d_{\infty} = 2$)

It follows that for all ε , there's a K such that $d_K \geq \frac{c}{c-1} - \varepsilon$.

Now: Apply inductive method from $n^{1.66}$ lower bound–

the "base case" now resembles Fortnow-Van Melkebeek's n^{ϕ} lower bound If $NTIME[n] \subseteq DTISP[n^c, n^{o(1)}]$, **Corollary 1** implies

 $\Sigma_{\mathscr{Z}} \mathsf{TIME}[n] \subseteq \mathsf{DTISP}[n^{c^2}, n^{o(1)}] \subseteq \mathsf{DTISP}[\left(n^{c^2 \cdot \frac{c-1}{c}}\right)^{c/(c-1)+o(1)}, n^{o(1)}]$ $\subseteq \Pi_{\mathscr{Z}} \mathsf{TIME}[n^{c \cdot (c-1)+o(1)}]. \quad \phi(\phi-1) = 1$

Now: Apply inductive method from $n^{1.66}$ lower bound-

the "base case" now resembles Fortnow-Van Melkebeek's n^{ϕ} lower bound If $NTIME[n] \subseteq DTISP[n^c, n^{o(1)}]$, **Corollary 1** implies

 $\Sigma_{\mathscr{Z}} \mathsf{TIME}[n] \subseteq \mathsf{DTISP}[n^{c^2}, n^{o(1)}] \subseteq \mathsf{DTISP}[\left(n^{c^2 \cdot \frac{c-1}{c}}\right)^{c/(c-1)+o(1)}, n^{o(1)}]$ $\subseteq \Pi_{\mathscr{Z}} \mathsf{TIME}[n^{c \cdot (c-1)+o(1)}]. \quad \phi(\phi-1) = 1$

Inducting as before, we get

Now: Apply inductive method from $n^{1.66}$ lower bound-

the "base case" now resembles Fortnow-Van Melkebeek's n^{ϕ} lower bound If $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$, **Corollary 1** implies

 $\Sigma_{\mathscr{Z}}\mathsf{TIME}[n] \subseteq \mathsf{DTISP}[n^{c^2}, n^{o(1)}] \subseteq \mathsf{DTISP}[\left(n^{c^2 \cdot \frac{c-1}{c}}\right)^{c/(c-1)+o(1)}, n^{o(1)}]$ $\subseteq \Pi_{\mathscr{Z}}\mathsf{TIME}[n^{c \cdot (c-1)+o(1)}]. \quad \phi(\phi-1) = 1$

Inducting as before, we get

$$\Sigma_{\mathscr{J}}[n] \subseteq \Sigma_{\mathscr{J}}[n^{c \cdot (c-1)}] \subseteq \mathsf{DTISP}[n^{c^3 \cdot (c-1)}, n^{o(1)}] \subseteq \Pi_{\mathscr{J}}[n^{\frac{c^3 \cdot (c-1)}{3}}], \text{then}$$

Now: Apply inductive method from $n^{1.66}$ lower bound–

the "base case" now resembles Fortnow-Van Melkebeek's n^{ϕ} lower bound If $\mathsf{NTIME}[n] \subseteq \mathsf{DTISP}[n^c, n^{o(1)}]$, **Corollary 1** implies

 $\Sigma_{\mathscr{Z}} \mathsf{TIME}[n] \subseteq \mathsf{DTISP}[n^{c^2}, n^{o(1)}] \subseteq \mathsf{DTISP}[\left(n^{c^2 \cdot \frac{c-1}{c}}\right)^{c/(c-1)+o(1)}, n^{o(1)}]$ $\subseteq \Pi_{\mathscr{Z}} \mathsf{TIME}[n^{c \cdot (c-1)+o(1)}]. \quad \phi(\phi-1) = 1$

Inducting as before, we get

$$\begin{split} \boldsymbol{\Sigma}_{\mathcal{J}}[n] &\subseteq \boldsymbol{\Sigma}_{\mathcal{J}}[n^{c \cdot (c-1)}] \subseteq \mathsf{DTISP}[n^{c^3 \cdot (c-1)}, n^{o(1)}] \subseteq \boldsymbol{\Pi}_{\mathcal{J}}[n^{\frac{c^3 \cdot (c-1)}{3}}], \text{then} \\ \boldsymbol{\Sigma}_{\mathcal{J}}[n] &\subseteq \boldsymbol{\Sigma}_{\mathcal{J}}[n^{\frac{c^3 \cdot (c-1)}{3}}] \subseteq \boldsymbol{\Sigma}_{\mathcal{J}}[n^{\frac{c^4 \cdot (c-1)^2}{3}}] \subseteq \mathsf{DTISP}[n^{\frac{c^6 \cdot (c-1)^2}{3}}, n^{o(1)}] \\ &\subseteq \boldsymbol{\Pi}_{\mathcal{J}}[n^{\frac{c^6 \cdot (c-1)^2}{12}}], \text{etc.} \end{split}$$

Claim: The exponent e_k derived for $\sum_k \text{TIME}[n] \subseteq \prod_k \text{TIME}[n^{e_k}]$ is $e_k = \frac{c^{3 \cdot 2^{k-3}}(c-1)^{2^{k-3}}}{k \cdot (3^{2^{k-4}} \cdot 4^{2^{k-5}} \cdot 5^{2^{k-6}} \cdots (k-1))}.$

Simplifying, $e_k =$

$$\frac{c^{3\cdot 2^{k-3}}(c-1)^{2^{k-3}}}{k\cdot(3^{2^{k-4}}\cdot 4^{2^{k-5}}\cdot 5^{2^{k-6}}\cdots(k-1))} = \left(\frac{c^3(c-1)}{k^{2^{-k+3}}\cdot(3^{2^{-1}}\cdot 4^{2^{-2}}\cdot 5^{2^{-3}}\cdots(k-1)^{2^{-k+3}})}\right)^{2^{k-3}}$$

thus

$$e_k < 1 \iff \frac{c^3(c-1)}{k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}})} < 1$$

Simplifying, $e_k =$

$$\frac{c^{3\cdot 2^{k-3}}(c-1)^{2^{k-3}}}{k\cdot (3^{2^{k-4}}\cdot 4^{2^{k-5}}\cdot 5^{2^{k-6}}\cdots (k-1))} = \left(\frac{c^3(c-1)}{k^{2^{-k+3}}\cdot (3^{2^{-1}}\cdot 4^{2^{-2}}\cdot 5^{2^{-3}}\cdots (k-1)^{2^{-k+3}})}\right)^{2^{k-3}}$$

thus

$$e_k < 1 \iff \frac{c^3(c-1)}{k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}})} < 1$$

• Define $f(k) = k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}})$

Simplifying, $e_k =$

$$\frac{c^{3\cdot 2^{k-3}}(c-1)^{2^{k-3}}}{k\cdot (3^{2^{k-4}}\cdot 4^{2^{k-5}}\cdot 5^{2^{k-6}}\cdots (k-1))} = \left(\frac{c^3(c-1)}{k^{2^{-k+3}}\cdot (3^{2^{-1}}\cdot 4^{2^{-2}}\cdot 5^{2^{-3}}\cdots (k-1)^{2^{-k+3}})}\right)^{2^{k-3}}$$

thus

$$e_k < 1 \iff \frac{c^3(c-1)}{k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}})} < 1$$

• Define
$$f(k) = k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}})$$

•
$$f(k) \rightarrow 3.81213 \cdots$$
 as $k \rightarrow \infty$

Simplifying, $e_k =$

$$\frac{c^{3\cdot 2^{k-3}}(c-1)^{2^{k-3}}}{k\cdot (3^{2^{k-4}}\cdot 4^{2^{k-5}}\cdot 5^{2^{k-6}}\cdots (k-1))} = \left(\frac{c^3(c-1)}{k^{2^{-k+3}}\cdot (3^{2^{-1}}\cdot 4^{2^{-2}}\cdot 5^{2^{-3}}\cdots (k-1)^{2^{-k+3}})}\right)^{2^{k-3}}$$

thus

$$e_k < 1 \iff \frac{c^3(c-1)}{k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}})} < 1$$

• Define
$$f(k) = k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}})$$

•
$$f(k) \rightarrow 3.81213 \cdots$$
 as $k \rightarrow \infty$

• Above task reduces to finding positive root of

$$c^3 \cdot (c-1) = 3.81213$$

Simplifying, $e_k =$

$$\frac{c^{3\cdot 2^{k-3}}(c-1)^{2^{k-3}}}{k\cdot (3^{2^{k-4}}\cdot 4^{2^{k-5}}\cdot 5^{2^{k-6}}\cdots (k-1))} = \left(\frac{c^3(c-1)}{k^{2^{-k+3}}\cdot (3^{2^{-1}}\cdot 4^{2^{-2}}\cdot 5^{2^{-3}}\cdots (k-1)^{2^{-k+3}})}\right)^{2^{k-3}}$$

thus

$$e_k < 1 \iff \frac{c^3(c-1)}{k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}})} < 1$$

• Define
$$f(k) = k^{2^{-k+3}} \cdot (3^{2^{-1}} \cdot 4^{2^{-2}} \cdot 5^{2^{-3}} \cdots (k-1)^{2^{-k+3}})$$

- $f(k) \rightarrow 3.81213 \cdots$ as $k \rightarrow \infty$
- Above task reduces to finding positive root of

$$c^3 \cdot (c-1) = 3.81213$$

 $\implies c \approx 1.7327 > \sqrt{3} + \frac{6}{10000}$ yields a contradiction.

The above inductive method can be applied to improve several existing lower bound arguments.

- Time lower bounds for SAT on off-line one-tape machines
- Time-space tradeoffs for

nondeterminism/co-nondeterminism in RAM model

• *Etc.* See the paper!