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Abstract

Therehasbeensignificantrecentprogressin rea-
soningandconstraintprocessingmethods.In areas
suchas planningand finite model-checking,cur-
rent solution techniquescanhandlecombinatorial
problemswith up to a million variablesand five
million constraints.The goodscalingbehavior of
thesemethodsappearsto defy whatonewould ex-
pectbasedon a worst-casecomplexity analysis.In
order to bridgethis gapbetweentheoryandprac-
tice,we proposea new framework for studyingthe
complexity of thesetechniqueson practicalprob-
lem instances.In particular, our approachincorpo-
ratesgeneralstructuralpropertiesobservedin prac-
tical probleminstancesinto theformal complexity
analysis. We introducea notion of “backdoors”,
which are small setsof variablesthat capturethe
overall combinatoricsof theprobleminstance.We
provide empiricalresultsshowing the existenceof
suchbackdoorsin real-world problems. We then
presenta seriesof complexity resultsthat explain
thegoodscalingbehavior of currentreasoningand
constraintmethodsobserved on practicalproblem
instances.

1 Intr oduction

Most interestingAI formalismsfor reasoning,planning,and
learninghave beenshown to be worst-caseintractable. In
the eightiesandearly nineties,suchnegative complexity re-
sults led to an extensive searchfor tractablesubclassesof
the generalformalisms. Unfortunately, thesetractablesub-
classeswereoftentoo restrictive for real-world applications.
In themid-nineties,wesaw theemergenceof amorepractical
approachto computationallyhardproblemsin AI, with the
introductionof fast satisfiability solvers and fast constraint
basedreasoningmethods[17]. For example,in planningwe
saw thesuccessof constraint-basedplanners,suchasGraph-
plan[2] andSatPlan[13], andmostrecently, heuristicsearch
�
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basedplanners,e.g., [11; 8; 1]. Somewhat surprisingly, on
practicalprobleminstancesthesemethodsscalewell beyond
what onemight expectbasedon a formal complexity anal-
ysis. In fact, currentstate-of-the-artSAT solvers can han-
dle probleminstances,asthey arisein finite model-checking
andplanning,with up to a million variablesandfive million
clauses[15]. Thesuccessof thesemethodsappearsto hinge
on a combinationof two factors: (1) practical combinato-
rial probleminstancesgenerallyhave a substantialamount
of (hidden)tractablesub-structure,and(2) new algorithmic
techniquesexploit suchtractablestructure,through,e.g., ran-
domizationandconstraintlearning.

Thesedevelopmentssuggestthat a standardworst-case
complexity analysisdoesnot capturewell the truecomplex-
ity of typical probleminstancesencounteredin practicalap-
plications. Theoreticalcomputerscientistshave beenwell-
awareof thelimitationsof worst-casecomplexity resultsand
have exploredalternatives,suchasaverage-casecomplexity
and smoothedanalysis[20]. In average-caseanalysis,one
studiesthe computationalcostof solving probleminstances
drawn from a predefinedproblemdistribution. Suchananal-
ysis can provide valuableinsights,as demonstratedby the
work on uniform randominstancedistributions (e.g. ran-
dom � -SAT). However, the relatively basicdistributionsfor
which one can obtain average-complexity resultsappearto
be quite far removedfrom the instancedistributionsoneen-
countersin practice.In fact,formally definingthedistribution
of real-world probleminstancesis generallyan openprob-
lem in itself. Smoothedanalysisattemptsto unify worst-case
and average-case,but suffers from limited applicability: it
works well on algorithmsfor problemsdefinedover dense
fieldssuchasthe simplex algorithm,but the applicabilityof
smoothedanalysison discreteproblemdomainsis unclear.

An alternative approach,which we will pursuein this pa-
per, is to identify specialstructuralpropertiescommonto
known problem instancesand rigorously show how clever
algorithmscan exploit such properties. Informal insights
aboutwhat suchspecialstructuremight be arecurrentlyal-
readyusedin thedesignof, for example,branchingandvari-
able choiceheuristicsin combinatorialsearchmethods. A
commonfeatureof thesetechniquesis anunderstandingthat
different groupsof variablesin a problem encodingoften
play quite distinct roles. For example,at the highestlevel,



onecandistinguishbetweendependentandindependentvari-
ables.� Thedependentor auxiliaryvariablesareneededto ob-
tain compactproblemencodingsbut the true combinatorics
arisesfrom the independentvariables;e.g., the independent
variablesin an encodingof a planningdomainrepresentthe
variousoperatorsapplicablein a given stateof the world,
whereasthedependentvariablesencodetheconsequencesof
selectinga particularoperator. A plansearchtechniquethat
branchespurelyon theindependentvariablescanobtainsub-
stantialspeedupsoversearchmethodsthatdonotexploit vari-
abledependencies[4].

Anotherpowerful intuition in thedesignof searchmethods
is that one wantsto selectvariablesthat simplify the prob-
lem instanceas much as possiblewhen thesevariablesare
assignedvalues.This intuition leadsto thecommonheuristic
of branchingon themostconstrainedvariablefirst. In terms
of Booleansatisfiability, this amountsto, in effect, focusing
in on the tractablesubstructureof the problem,namelythe
unit clauses(1-SAT structure)andthebinaryclauses(2-SAT
structure).Thetrueeffectivenessof thisapproacharisesfrom
the fact that settingmostconstraintvariablesalsosimplifies
higherarity clauses,which eitherbecomesatisfiedor in turn
shrinkthemselveseventuallyto binaryor unaryclauses.

Thesegeneralinsightshave beenincorporatedin state-of-
the-art SAT and constraintsolvers, and their effectiveness
hasbeendemonstratedempirically on a significantnumber
of benchmarkproblems[18]. However, a more formal un-
derpinningexplaining the practicalsuccessof thesestrate-
gieshasbeenlacking. In this paper, we introducea formal
framework directly inspiredby thesetechniquesandpresent
rigorouscomplexity resultsthatsupporttheir effectiveness.

Preview of results.Wefirst introducethenotionof “back-
door” variables.This is a setof variablesfor which thereis
a valueassignmentsuchthat the simplified problemcanbe
solvedby apoly-timealgorithm,calledthe“sub-solver”. The
sub-solvercapturesany form of poly-timesimplificationpro-
cedureas usedin currentSAT/CSPsolvers. We also con-
sider the notion of a “strong backdoor”whereany setting
of the backdoorvariablesleadsto a poly-time solvablesub-
problem.Thesetof all problemvariablesformsatrivial back-
door set, but many interestingpractical problem instances
possessmuchsmallerbackdoorsandstrongbackdoors.We
will studybackdoorsin several practicalprobleminstances,
andidentify backdoorsthatcontainonly a fractionof theto-
tal numberof variables.For example,theSAT encodingof a
logisticsplanningproblem(logistics.d.cnf) contains
a backdoorwith only 12 variablesout of a total of nearly
7,000variables.Whengiven a setof backdoorvariablesof
a probleminstance,onecanrestrictthecombinatorialsearch
by branchingonly on thebackdoorvariablesandthussearch
a drasticallyreducedspace.

In general,finding a small setof backdoorvariablesfor a
probleminstanceis, however, itself a computationallyhard
problem. Onecontribution of this paperis thatwe formally
show how thepresenceof asmallbackdoorin aproblempro-
videsa concretecomputationaladvantagein solving it. We
analyzethreescenarios.First, we considera deterministic
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Table 1: Time boundsfor solving CSPsin the variousscenarios
consideredin this work. 243
576 is an upperboundon the size of
the smallestbackdoor, where 5 is the numberof variablesin the
problem. 8 is afixedconstant.Empiricalresults(Section3) suggest
that for practicalinstancesthe backdooris often a relatively small
fractionof 5 , e.g., 5:9<;>=?= , or evenof size@1A?BC5 .

scenariowith anexhaustivesearchof backdoorsets.Weshow
thatoneobtainsprovably bettersearchcomplexity whenthe
backdoorcontainsupto acertainfractionof all variables.We
thenshow that a randomizedsearchtechnique,which in ef-
fect repeatedlyguessesbackdoorsets,provably outperforms
a deterministicsearch.Finally, in our third scenariowe con-
siderthe availability of a variableselectionheuristic,which
providesguidancetowardsthe backdoorset. This strategy
canyet furtherreducethesearchspace.Table1 givesa high-
level summaryof theresults.By exploiting restartstrategies,
we canidentify a polynomiallysolvablecasewhentheback-
door containsat most

�D�/�(��	��
variables.We believe that this

final scenariois closestto the behavior of currenteffective
SAT and constraintsolvers. Our formal analysisalso sug-
gestsseveralnovel algorithmicstrategiesthatwarrantfurther
empiricalexploration.

2 Hidden structure: Backbonesand
Backdoors

Our approachand analysisappliesboth to SAT and CSP
problems[17]. SAT is the abbreviation for the well-studied
Booleansatisfiabilityproblem. CSPis the abbreviation for
themoregeneralproblemof constraintsatisfaction.

A CSP problem, E , is characterizedby a set F GH ��IKJ>�(LMJONON<NPJQ� �SR of variables,with respective domains TUI ,
T L , N<NON , T � (which list the possiblevaluesfor eachvari-
able)anda setof constraints.A constraintis definedon a
subsetof variablesVXWZY[F denotingthe variables’simulta-
neouslegalassignments.Thatis, if V(W�G H �SW]\^JQ�_Wa`/JON<NONPJ>�SWcb R ,
thenthe constraintdefinesa subsetof the Cartesianproduct
TdWe\gfhN<NON7fhTdWib . To simplify notation,we will assumethat
all variableshave the samedomain T . We use j to denote
thesizeof T . An assignmentk is a function from variables
to T . A solutionto a CSPis a completevariableassignment
thatsatisfiesall constraints.A partialassignmentdefinesthe
valuesof asubsetof thevariablesin F . SAT is aspecialcase
of CSPwith only Booleanvariables( TlG H^mon%p �%JOqZkr)cs%� R )
andconstraintsgiven in the form of clauses.A clauseis a
disjunctionof literalsanda literal is a Booleanvariableor its
negation.

We usethe notation Eut v 
 �(w to denotethe simplified CSP
obtainedfrom a CSP, E , by settingthevalueof variable� to
value v . (A constraintinvolving � is simplified by keeping
only the allowed tuplesthathave � assignedto v .) Let kyx{z



V}|~F���T beapartialassignment.WeuseEutakyx�w to denote
the simplified� CSPobtainedby settingthe variablesdefined
in k x . In a SAT problem,this correspondsto simplifying the
formulaby fixing thetruth valuesof someof thevariables.

Our goal is to capturestructuralpropertiesof real world
probleminstances.We start by reviewing the conceptof a
backbonein a SAT/CSPproblem,as introducedin [14]. A
variableis calledabackbonevariableif in all solutionsto the
CSPthe variableis assignedthesamevalue. Suchvariables
arealsocalledfrozenvariables[6]. Backbonevariablesare
useful in studyingthe propertiesof the solution spaceof a
constraintsatisfactionproblem.

Definition 2.1 [backbone] V is a backboneif there is a
uniquepartial assignmentk x z#V���T such that Eut1k x w is
satisfiable.

We contrastthis variabletypewith thekind we introduce,
backdoors.Backdoorsarevariablesubsetsdefinedwith re-
spectto a particularalgorithm;oncethe backdoorvariables
areassigneda value, the problembecomeseasyunderthat
algorithm.(Notethatcontrarilyto thebackbonetherecanbe
differentsetsof backdoorvariables.)

To begin ourexpositionof backdoors,wedefinethesortof
algorithmswe have in mind. We will call themsub-solvers,
asthey solve tractablesubcasesof thegeneralconstraintsat-
isfactionproblem.

Definition 2.2 A sub-solver� givenas input a CSP, E , sat-
isfiesthefollowing:
� (Trichotomy) � either rejectsthe input E , or “deter-

mines” E correctly (asunsatisfiableor satisfiable, returning
a solutionif satisfiable),
� (Efficiency)� runsin polynomialtime,
� (Trivial solvability) � candetermineif E is trivially true

(has no constraints) or trivially false (has a contradictory
constraint),
� (Self-reducibility) if � determinesE , thenfor any vari-

able � andvaluev , then � determinesEut v 
 �0w .
For instance,� couldbeanalgorithmthatsolves2-SAT in-

stancesbut rejectsall otherinstances.It is importantto note
thattheresultswe will show in this paperareindependentof
a particularsub-solver; our resultswill hold for any � satis-
fying theabovefour properties.

In whatfollows, let � beasub-solver, and E beaCSP.

Wefirst consideranotionof “backdoor”thatis suitablefor
satisfiableCSPs.

Definition 2.3 [backdoor] A nonemptysubsetV of thevari-
ablesis a backdoorin E for � if for somekyx{zCV���T , �
returnsa satisfyingassignmentof Eut1k x w .

Intuitively, thebackdoorcorrespondsto a setof variables,
suchthatwhensetcorrectly, thesub-solver cansolve there-
maining problem. In a sense,the backdooris a “witness”

to the satisfiabilityof the instance,given a sub-solver algo-
rithm.1 We alsointroducea strongernotionof thebackdoor
to dealwith both satisfiableandunsatisfiable(inconsistent)
probleminstances.

Definition 2.4 [strong backdoor] A nonemptysubsetV of
the variables is a strong backdoorin E for � if for all
k x zrV}�lT , � returnsa satisfyingassignmentor concludes
unsatisfiabilityof Eutak x w .

In contrastto backboneswhicharenecessarilysetto acer-
tain value, a (strong)backdoor V is sufficient for solving a
problem. For example,whengiven the backdoorfor a SAT
problem,the searchcost is of order �DT��
� x � . (Simply check
all possibleassignmentsof V .) This meansif V is relatively
small, one obtainsa large improvementover searchingthe
full spaceof variable/valueassignments.

Weobservethatindependentvariablesareaparticularkind
of backdoor. As statedin [12], they area set V of variables
for which all othervariablesmaybethoughtof asdefinedin
termsof V . For example,a maximalsubsetof independent
variablesin a SAT encodingof a hardwareverificationprob-
lemis abackdoorfor unit propagation,astheothervariables’
valuesmaybe directly determinedaftersettingthe indepen-
dentones[19].

Therearetwo key questionsconcerningbackdoors:

� What is the size of the backdoorin practicalproblem
instances?� When taking into accountthe cost of searchingfor a
backdoorset, can one still obtain an overall computa-
tionaladvantagein solvingtheCSP?

We addressthesetwo key questionsbelow. We will first
show that practicalprobleminstancescanhave surprisingly
small backdoors. In the subsequentsection,we show how
evenby taking into accountthecostof searchingfor a back-
door, onecanprovably obtainan overall computationalad-
vantageby usingthebackdoor. As wewill see,themagnitude
of this improvementis, of course,a functionof thesizeof the
backdoor.

3 Sizeof backdoors

We did an empirical studyof the sizeof backdoorsin sev-
eralpracticalSAT instances,usingtheSAT solverSatz-rand,
a randomizedversionof Satz[16]. Satzincorporatespower-
ful variableselectionheuristicsandanefficientsimplification
strategy (i.e., a goodsub-solver). We modifiedSatz-randto
tracethevariablesselectedfor branching,andto keeptrackof
the minimumnumberof variablesthatneedto be setbefore
Satz-rand’ssimplificationfounda satisfyingassignmenteffi-
ciently. (We arecurrentlymodifying this procedureto also
handleunsatisfiableinstancesandfind strongbackdoors.)

1Observe thatanysatisfiableCSPhasa backdoorof sizeat most5���; ; however, wewill seethatsignificantlysmallerbackdoorsarise
in practiceandgive a computationaladvantagein search.



instance # vars # clauses backdoor fract.
logistics.d 6783 437431 12 0.0018
3bitadd32 8704 32316 53 0.0061

pipe 01 7736 26087 23 0.0030
qg 30 1 1235 8523 14 0.0113
qg 35 1 1597 10658 15 0.0094

Table 2: Size of backdoorsfor several practical SAT in-
stances.

Table2 summarizesour results.Our instancesarefrom a
varietyof domains[18]. Theseinstancesarenow well within
the rangeof the fastestcurrentsolvers,suchasChaff [15].
However, they arenon-trivial andcannotbe solvedwith the
previousgenerationof SAT solvers,e.g. Tableau[3]. Clearly,
thenew solversarebetterableto discoverandexploit hidden
structure,suchassmallbackdoors.In fact,aswecanseefrom
thetable,theseinstanceshave fairly tiny backdoors.That is,
only a verysmallfractionof all variablescanbeusedto “un-
lock” a satisfyingassignment.We conjecturethatsuchsmall
backdoorsoccurin many otherreal-world probleminstances.

4 Exploiting backdoorsformally

We will analyzethree,increasinglypowerful strategies: de-
terministic, randomized, andheuristicbranchingvariablese-
lection. Thefirst two aremeantto work for any CSPwhere
the instancehasa small fractionof backdoorvariables,with
respectto the sub-solver. The randomizedstrategy gener-
ally outperformsthe deterministicone with high probabil-
ity (

-���-y
K	
, where

	
is the numberof variables). This

reflectsthe performancegain found in practicewhenback-
trackingSAT solversareaugmentedwith randomization[15;
9]. Thethird strategy yields tighter runtimeboundsthanthe
first two, but requiresus to assumethe existenceof a good
heuristicfor choosingbackdoorvariables(which we find to
bethecasein practice).

4.1 Deterministic strategy

The deterministicproceduremay be construedas a gener-
alization of iterative deepeningthat runs over all possible
searchtreesof eachdepth. We assumethe algorithm has
accessto a particularsub-solver � running in

m �
	��
(poly-

nomial)time,which definesthebackdoorvariables,and E is
anarbitraryCSPinstance.

Algorithm 4.1 Given a CSP E with
	

variables,

For ��G - J<NONON<J 	 ,

For all subsets V of the
	

variables with �aV#��G�� ,
Perform a standard backtrack search (just on the vari-

ables in V ) for an assignment that results in E being
solved by sub-solver � .

An analogousalgorithmworks for finding andexploiting
strong backdoors in a CSPto prove unsatisfiability: simply
keeptrack of whetherall assignmentsto the variablesin V
result in E beinga contradiction(asdeterminedby � ). All

of the following we will sayholdsfor strongbackdoorsand
unsatisfiableCSPsunderthis modifiedalgorithm.

Note the procedureusesonly polynomial time for CSPs
with a constantsizedbackdoor. We areinterestedin thecase
wherea backdoorof size

����	��
exists,for some

���
	�����	�
<�
almosteverywhere. The following gives a simple runtime
boundin termsof

	
and

���
	��
.

Theorem4.1 If E has a variable domainof size j and a
backdoor of sizeat most

���
	��
, then Algorithm 4.1 runs in� � � ��	������*� �� " �%$ \���` � � " �%$ � time, for somepolynomial� ��	�� .

Proof. Theruntimeis boundedby
m �
	�� � " �%$Wa�#I � W j W (re-

call
m �
	��

is a runtime boundon � ). Since
���
	�� �¡	�
<�

,� " �*$�¢ IW1�#I � W £¥¤ ��	�� �� " �*$ for somepolynomial ¤ �
	�� . This

and
� " �%$�¢ IW1��I j W £ j � " �*$ imply that the runtime is domi-

natedby the last term of the sum. Putting it together, the
bound is

m ��	�� � " �%$Wa�#I � W j W £ m �
	�� ¤ �
	�� �� " �*$ j � " �%$ £m �
	�� ¤ ��	��
" �*� �%$�¦�§,¨�©� " �%$�ª £ � �
	�� " �*� �%$&¦�§ ¨�©� " �%$ ¦�§ ¨�© ��` asymptotically, for

� �
	�� G m ��	��0« ¤ �
	�� . ¬
Thetheoremimpliesthatwhensmallbackdoors(or strong

backdoors)arepresent,a substantialspeedupalmostalways
results.For example:

Corollary 4.1 If E hasa backdoorof size
����	�� G � �������­	�� ,

then E is solvablein
� �" � �& �%$ \���` � !�" � �& �%$ time.

In our expositionof heuristicbranchingvariableselection,
we will seeanimprovementon this (apoly-timebound).For
avisualrepresentationof thedeterministicstrategy’sruntime,
when j�G �

andbackdoorsof size
	�
 � areconsidered,see

Figure1. This graphalsoindicatesthefollowing corollaryin
thecaseof SAT (proofomitted):

Corollary 4.2 For Booleanformulaswith a backdoorof size
at most

	�
O® N ®/¯�® , Algorithm4.1 solvesthe formula in
� �Q° � �

time, where
°±�²�

.

As we haveseenin theprevioussection,in practice,back-
doorscanbequite tiny ( ³ -*
<´�µ/µ G ¯ N -P¶(· of thevariables,
for logistics.d.cnf). Therefore,theseresultshavereal
bearingon theimprovedsolvability of real-world CSPs.

4.2 Randomizedstrategy

Betterperformanceresultsfrom addingrandomization.This
speed-upformally verifiesawell-knownfactaboutreal-world
solvers:augmentingasolverwith randomizationcandramat-
ically improveperformance[9; 10].

Again, we assumea sub-solver � is on tap,with runtimem �
	��
. Let

���
	��
be a poly-time computablefunction on ¸

that boundsthe backdoorsize, and ¹ be a parameterto be
later determined.The idea is to repeatedlychooserandom
subsetsof variablesthatarelargerthan

����	��
, searchingthese

subsetsfor a backdoor.



Algorithm 4.2 Given a CSP E with
	

variables,

Repeat
	�� " �yº � " �%$�¢ I $"1» ¢ I $ � � " �*$

times (and at least once):

Randomly choose a subset V of the
	

variables,
of size ¹ «�����	�� . Perform a standard backtrack
search on variables in V . If E is ever solvable by
� , return the satisfying assignment.

As before,ananalogousalgorithmworksfor general(sat-
isfiableor unsatisfiable)CSPswith strongbackdoors:if every
leaf in thesearchtreeendswith � reportingunsatisfiability,
thenthe E is unsatisfiable.

The algorithm as statedrequiresa priori knowledge of���
	��
. This maybecorrectedby choosinga constant¼}½ -

,
thenrunningthealgorithmassuminga backdoorof size1. If
thatfails,runit againassumingabackdoorof size ¼ , then ¼ L ,
¼(¾ , etc.,until a solutionto E is found.

Theorem4.2 If E hasa backdoor of size
����	��

, Algorithm
4.2 findsa satisfyingassignmentwith probability approach-
ing 1.

Proof. Given there is a
���
	��

-sizedbackdoorin E , the
probabilitythatarandomlychosenV of size¿UÀ ����	�� , ¿ �}	
containstheentirebackdooris at least

��¢ � " �%$Á ¢ � " �*$ 
 � Á G Á " Á ¢ I $ �,�,� " Á ¢ � " �*$iÂ I $� " ��¢ I $ �,�,� " ��¢ � " �%$iÂ I $ À
" Á ¢ � " �%$i$" ��¢ � " �%$i$

� " �%$
N

Setting¿ÃGÄ¹ «�����	�� , theprobability thatbacktrackingre-

sultsin � findingasolutionis at least
"1» � " �*$�¢ � " �%$i$" ��¢ � " �%$i$

� " �%$
G

� "1» ¢ I $" �yº � " �*$�¢ I $ � � " �%$ , dueto theself-reducibilitypropertyof � .

Repeatingthis experiment
	�� " �yº � " �*$�¢ I $"1» ¢ I $ � � " �%$

times,the al-
gorithmsucceedswith probabilityat least

-±�Å-*
P	
. ¬

One can show that the algorithm runs in� Æ�Ç�È H - J 	�� " �yº � " �*$�¢ I $"1» ¢ I $ � � " �%$ R j » � � " �%$ m ��	�� time. It

remains to choose ¹ to minimize this expression. As ¹
dependsdirectly on

����	��
, we evaluatetwo naturalcasesfor���
	��

.
� When

����	�� GÉ� �D�/�­	 for someconstant� , the runtime
is
	�� " �yº "1Ê � �& " �%$i$�¢ I $"1» ¢ I $ � Ê � �& � 	 » � ÊOË

for someconstant �yÌ . For
large �yÌ , the runtime is optimizedwhen ¹ is constant;it is�~�� �& � � !#" � �� �%$ , animprovementoverthedeterministicbound.

� When
����	�� G 	�
 � for someconstant� , we canshow

the runtime is minimizedwhen ¹ÍG � Î " � $ ÊI Â � Î " � $ , resultingin a� � j �yº Ê � " I Â � Î " � $i$�º � Î " � $ �i�DÏ:� j ��� � �Å-���� �yº Ê � time bound. For
example,when j}G �

(the caseof SAT), ¹�GÐ� 
<� N ®�®/Ñ and
thefollowing holds.

Corollary 4.3 For Booleanformulaswith at most
	�
O� N ®/®�Ñ

backdoor variables, Algorithm 4.2 solves the formula in� �Q° � �
time, where

°±�{�
.

In theCorollary,
°

is a functionof � . SeeFigure1.

Figure1: Impr oved exponential time. When Ò�Ó�Ô (SAT) and
thesizeof thebackboneis aconstantfractionof thenumberof vari-
ables(243
576ÕÓÖ5:9?8 ), the runtimeof Alg. 4.1 (deterministic)and
4.2 (randomized)is of the form ×<Ø . × (vertical axis) is a function
of 8 . The top curve gives × asa functionof 8 for thedeterministic
procedure.Thebottomcurve gives × for therandomizedprocedure.
Notethatfor 8uÙ{Ô%Ú Û?ÛrÜ , therandomizedalgorithmperformsexpo-
nentiallybetterthan ÔOØ , whereassuchanexponentialimprovement
for thedeterministicalgorithmdoesnotoccuruntil 8ÕÙ ÛÝÚ =<Û .

4.3 Heuristic strategy

So far, we have consideredgeneral systematicand ran-
domizedsearchstrategies for finding and exploiting back-
doors. However, practical combinatorialsolvers generally
use heuristicsto guide the variable selectionprocess. As
noted in the introduction, a common principle is to first
branchon variablesthat simplify an instancethe most. In
effect, this meanssuchheuristicssteerthe variablechoice
towardsvariablesin a backdoorset. We will now formally
analyzesuchheuristicguidance.

Restart Strategiesfor Heuristic Search. By incorporat-
ing the notion of a variablechoiceheuristicinto our frame-
work, our resultsarefurthersharpened.We considerthecase
wherea randomizeddepth-firstsearch(DFS) solver with a
sub-solver � is runningon aninstanceE having a backdoor
of size

�
. Thesolverchoosesvariablesto branchon accord-

ing to a heuristic Þ , which hasa successprobability of at
least

-y
�ß
of choosinga backdoorvariableat any point in

the search. We will usethe notation(DFS,Þ , � ) to denote
a solverwith theaboveproperties.

Informally, a restartstrategy is simplyapolicy thatrestarts
a solver after runningit for a specifiedamountof time, until
a solution is found. Our main resultheregivesa condition
underwhichapolynomialtimerestartstrategy existsfor DFS
solvingCSPswith smallbackdoors.

Theorem4.3 If the sizeof a backdoor of a CSP E is
� £



à � �& �� �� �á Â � �& � for someconstant
°
, then(DFS,Þ , � ) hasa restart

strateâ gy that solvesE in polynomialtime.

Proof. Sincetheprobabilityof choosinga backdoorvari-
able is at least

-*
/ß
, the probability that we consecutively

choosethemis
-*
/ß �

. The probability of choosingthe cor-
rectsolutionwith only a polynomialamountof backtracking
in theDFSis at least

-y
 j � ¢ Ê � �� � for someconstant� . Sup-
pose

-*
 j � ¢ Ê � �& � «y-y
�ß � À -*
P	Cã
, for someconstant� . Then

by restartingthesolverafterevery
m:ä ��	��

steps(where
m7ä �
	��

is theruntimeof � ), thereis
-y
K	Cã

probabilityin eachrunthat
thebackdoorwill be foundwithin a

� ��	 Ê �
amountof back-

tracking,andsetcorrectly. From this onecanshow that the
above inequality holds preciselywhen

� £ à � �� �� �& Xá Â � �& � for
someconstant

°
. ¬

An analogousresultholds for strongbackdoors.It turns
out thatthegivenboundon

�
is asymptoticallytight; wewill

notprovethathere.Whenthevariabledomainsizeisconstant
(e.g. SAT, 3-coloring,etc.),we have thefollowing. Let å be
any poly-timecomputablefunctionon thenaturalnumbers.

Corollary 4.4 GivenCSPswith a
� � � �& �� �� (æ " �%$ � backdoor for

which Þ hassuccessprobability
-y
 å ��	�� , (DFS,Þ , � ) hasa

polynomialtimerestartstrategy.

Whenthe successprobability is constant,thenCSPswith� ��������	��
backdoorscanbe solved usinga polynomial time

restartstrategy on (DFS,Þ , � ). Thisresultis thebestpossible
in termsof backdoorsize,asit would take super-polynomial
time to searchfor a solutionamongç �i�D�/��	�� backdoorvari-
ables. The heuristicsearchruntime when

���
	�� G 	�
 � is
still exponential,but this exponentialdropsdramaticallyas	�
 � decreases,evenwhencomparedto the previous two al-
gorithms.That is, theruntimeis on theorderof

° ��º Ê
, where° G[j «�-y
�ß (recall j is the domainsizeand

-y
�ß
is success

probability).

Formal Discovery of Heavy-Tails in Heuristic Search.
We briefly outline our theoretical results connectingthe
heuristic searchmodel describedearlier with heavy-tailed
runtime phenomenafound empirically [9]. It was conjec-
turedthat “critically constrained”variableswerea causeof
the heavy-tailed behavior. We canprove that small setsof
backdoorvariablesleadto runtimeprofilesthatarebounded
from below by heavy-tails.

The analysisthat achieves this result introducesa self-
similar binarytreestructure,which we call a variablechoice
tree. Suchtreesrecursively modela heuristic’s selectionof
backdoorvariables;asmorebackdoorvariablesarechosen,
theresultingsearchcostis muchlower. It turnsout thatback-
trackingsolverswith variablechoiceheuristicscanbe mod-
eledpreciselyby thesevariablechoicetrees,whenthesizeof
a backdoorin the instanceis small. Analysisof thesetrees
leadsto thefollowing:

Theorem4.4 (Heavy-taillower bound)If thebackdoorsize
of an CSP E is ' �
	�
_������	�� , thenthe runtimedistribution of
(DFS,� , Þ ) on E is lower-boundedby a Pareto-Levy distri-
bution,whenthesuccessprobabilityof Þ is constant.

5 Conclusions

We have formalized the idea of backdoor variables in
CSP/SAT instances.Backdoorvariablescanbe usedto sig-
nificantlyreducethesearchneededin solvingCSP/SAT prob-
lems. We showed that practicalinstancescanhave surpris-
ingly small backdoors.We alsoprovided a detailedformal
analysisdemonstratingthat onecanobtaina concretecom-
putationaladvantageby exploiting suchbackdoors.
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