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Abstract

Therehasbeensignificantrecentprogressin rea-
soningandconstrainfprocessingnethodsIn areas
suchas planningand finite model-checkingcur-

rent solutiontechniqguescan handlecombinatorial
problemswith up to a million variablesand five

million constraints.The good scalingbehaior of

thesemethodsappearso defy whatonewould ex-

pectbasedn aworst-caseompleity analysis.In

orderto bridgethis gap betweentheoryand prac-
tice, we proposea new framework for studyingthe
compleity of thesetechniqueon practical prob-
leminstancesln particulay our approachincorpo-
ratesgeneraktructuralpropertieobsenedin prac-
tical probleminstancesnto the formal complexity

analysis. We introducea notion of “backdoors”,
which are small setsof variablesthat capturethe
overall combinatoricf the probleminstance We

provide empiricalresultsshaving the existenceof

suchbackdoorsin real-world problems. We then
presenta seriesof compleity resultsthat explain

the goodscalingbehaior of currentreasoningand
constraintmethodsobsenred on practicalproblem
instances.

1 Intr oduction

Most interestingAl formalismsfor reasoningplanning,and
learning have beenshawvn to be worst-caseintractable. In
the eightiesand early nineties,suchnegative complexity re-
sults led to an extensive searchfor tractablesubclasse®f
the generalformalisms. Unfortunately thesetractablesub-
classesvereoftentoo restrictve for real-world applications.
In themid-ninetieswe sav theemepgenceof amorepractical
approachto computationallyhard problemsin Al, with the
introductionof fast satisfiability solvers and fast constraint
basedreasoningnethodg17]. For example,in planningwe
sav thesucces®f constraint-baseglannerssuchasGraph-
plan[2] andSatPlar{13], andmostrecently heuristicsearch
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basedplanners,e.g., [11; 8; 1]. Somavhat surprisingly on
practicalprobleminstanceghesemethodsscalewell beyond
what one might expectbasedon a formal compleity anal-
ysis. In fact, currentstate-of-the-arSAT solvers can han-
dle probleminstancesasthey arisein finite model-checking
andplanning,with up to a million variablesandfive million
clauseq15]. The succes®f thesemethodsappeargo hinge
on a combinationof two factors: (1) practical combinato-
rial probleminstancesgenerallyhave a substantialamount
of (hidden)tractablesub-structureand (2) new algorithmic
techniguesxploit suchtractablestructurethrough,e.g., ran-
domizationandconstraintearning.

Thesedevelopmentssuggestthat a standardworst-case
compleity analysisdoesnot capturewell the true complex-
ity of typical probleminstancesncounteredn practicalap-
plications. Theoreticalcomputerscientistshave beenwell-
awareof thelimitations of worst-caseompleity resultsand
have explored alternatves, suchas average-caseomplexity
and smoothedanalysis[20]. In average-cas@nalysis,one
studiesthe computationakostof solving probleminstances
drawn from a predefine¢problemdistribution. Suchananal-
ysis can provide valuableinsights, as demonstratedy the
work on uniform randominstancedistributions (e.g. ran-
dom k-SAT). However, the relatively basicdistributionsfor
which one can obtain average-complbeity resultsappearto
be quite far removed from the instancedistributionsoneen-
countersn practice.ln fact,formally definingthedistribution
of real-world probleminstancess generallyan openprob-
lemin itself. Smoothedanalysisattemptgo unify worst-case
and average-casehut suffers from limited applicability: it
works well on algorithmsfor problemsdefinedover dense
fields suchasthe simplex algorithm, but the applicability of
smoothedanalysison discreteproblemdomaings unclear

An alternatve approachwhich we will pursuein this pa-
per, is to identify specialstructuralpropertiescommonto
known problem instancesand rigorously shav how clever
algorithms can exploit such properties. Informal insights
aboutwhat suchspecialstructuremight be are currently al-
readyusedin thedesignof, for example,branchingandvari-
able choice heuristicsin combinatorialsearchmethods. A
commonfeatureof thesetechniquess anunderstandinghat
different groupsof variablesin a problem encodingoften
play quite distinct roles. For example,at the highestlevel,



onecandistinguishbetweerdependenandindependenvari-
ables. Thedependenor auxiliary variablesareneededo ob-
tain compactproblemencodingsbut the true combinatorics
arisesfrom the independentariables;e.g., the independent
variablesin an encodingof a planningdomainrepresenthe
various operatorsapplicablein a given stateof the world,
whereaghe dependenvariablesencodethe consequencesf
selectinga particularoperator A plansearchtechniquethat
branchegurelyontheindependenvariablescanobtainsub-
stantialspeedupsversearchmethodshatdonotexploit vari-
abledependencielt].

Anotherpowerful intuition in thedesignof searchmethods
is that one wantsto selectvariablesthat simplify the prob-
lem instanceas mud as possiblewhen thesevariablesare
assignedialues.This intuition leadsto the commonheuristic
of branchingon the mostconstrainedrariablefirst. In terms
of Booleansatisfiability this amountsto, in effect, focusing
in on the tractablesubstructureof the problem,namelythe
unit clauseq1-SAT structure)andthe binary clauseq2-SAT
structure).Thetrueeffectivenes®f thisapproacharisesrom
the fact that settingmostconstraintvariablesalso simplifies
higherarity clauseswhich eitherbecomesatisfiedor in turn
shrinkthemseleseventuallyto binaryor unaryclauses.

Thesegeneralinsightshave beenincorporatedn state-of-
the-art SAT and constraintsolvers, and their effectiveness
hasbeendemonstrate@mpirically on a significantnumber
of benchmarkproblems[18]. However, a more formal un-
derpinningexplaining the practical succesf thesestrate-
gieshasbeenlacking. In this paper we introducea formal
frameawork directly inspiredby thesetechniquesand present
rigorouscompleity resultsthatsupporttheir effectiveness.

Preview of results. Wefirst introducethe notionof “back-
door” variables. This is a setof variablesfor which thereis
a value assignmensuchthat the simplified problemcanbe
solvedby a poly-timealgorithm,calledthe“sub-soher”. The
sub-soher capturesany form of poly-timesimplificationpro-
cedureas usedin currentSAT/CSP solvers. We also con-
sider the notion of a “strong backdoor”whereary setting
of the backdoorvariablesleadsto a poly-time solvable sub-
problem.Thesetof all problemvariableformsatrivial back-
door set, but mary interestingpractical problem instances
possessnuch smallerbackdoorsand strongbackdoors.We
will studybackdoordn several practicalprobleminstances,
andidentify backdoorghatcontainonly afraction of the to-
tal numberof variables.For example,the SAT encodingof a
logisticsplanningproblem(l ogi sti cs. d. cnf ) contains
a backdoorwith only 12 variablesout of a total of nearly
7,000variables. Whengiven a setof backdoorvariablesof
a probleminstancepnecanrestrictthe combinatorialsearch
by branchingonly on the backdoorvariablesandthussearch
adrasticallyreducedspace.

In general finding a small setof backdoorvariablesfor a
probleminstanceis, however, itself a computationallyhard
problem. One contribution of this paperis thatwe formally
shav how thepresencef asmallbackdoorin a problempro-
videsa concretecomputationabdwantagein solvingit. We
analyzethree scenarios. First, we considera deterministic

B(n) deterministic randomized heuristic
n/k smallexp(n) | smallerexzp(n) | tiny exp(n)
O(log n) O(logn)
O(logn) ( o ) ( logn) poly(n)
0o1) poly(n) poly(n) poly(n)

Table 1: Time boundsfor solving CSPsin the various scenarios
consideredn this work. B(n) is an upperboundon the size of
the smallestbackdoor wheren is the numberof variablesin the
problem.k is afixed constantEmpiricalresults(Section3) suggest
that for practicalinstanceghe backdooris often a relatively small
fractionof n, e.g., n/100, or evenof sizelog n.

scenariavith anexhaustve searctof backdoosets.We shav

thatoneobtainsprovably bettersearchcompleity whenthe

backdoorcontainsupto acertainfractionof all variables We

thenshow that a randomizedsearchtechnique which in ef-

fect repeatedlyguessedackdoorsets,provably outperforms
a deterministicsearch.Finally, in our third scenariowve con-

siderthe availability of a variableselectionheuristic,which

provides guidancetowardsthe backdoorset. This stratey

canyetfurtherreducethe searctspace.Tablel givesahigh-

level summaryof theresults.By exploiting restartstrateyies,
we canidentify a polynomially solvablecasewhenthe back-
door containsat mostlog(n) variables.We believe that this

final scenariois closestto the behaior of currenteffective

SAT and constraintsolvers. Our formal analysisalso sug-
gestsseveralnovel algorithmicstratgjiesthatwarrantfurther

empiricalexploration.

2 Hidden structur e: Backbonesand
Backdoors

Our approachand analysisappliesboth to SAT and CSP
problems[17]. SAT is the abbraviation for the well-studied
Booleansatisfiability problem. CSPis the abbreviation for
themoregeneralproblemof constraintsatisiction.

A CSP problem, C, is characterizedby a setV =
{z1,x2,...,2,} of variables,with respectie domainsD1,
D, ..., D, (which list the possiblevaluesfor eachvari-
able) and a setof constraints. A constraintis definedon a
subsetof variablesS; c V denotingthe variables’simulta-
neoudegalassignmentsThatis, if S; = {@i,, Ziy,s- -, T, }s
thenthe constraintdefinesa subsetof the Cartesiarproduct
D;, x ... x D; . To simplify notation,we will assumehat
all variableshave the samedomainD. We used to denote
thesizeof D. An assignment is a functionfrom variables
to D. A solutionto a CSPis a completevariableassignment
thatsatisfiesall constraints A partialassignmentlefinesthe
valuesof a subsebf thevariablesin V. SAT is aspecialcase
of CSPwith only Booleanvariables(D = {True, False})
and constraintsgiven in the form of clauses.A clauseis a
disjunctionof literalsanda literal is a Booleanvariableor its
negation.

We usethe notationC[v/x] to denotethe simplified CSP
obtainedfrom a CSR C, by settingthe valueof variablezx to
valuewv. (A constraintinvolving « is simplified by keeping
only the allowedtuplesthathave = assignedo v.) Letag :



S CV — D beapartialassignmentWe useC|as] to denote
the simplified CSPobtainedby settingthe variablesdefined
in as. In a SAT problem,this correspond$o simplifying the
formulaby fixing thetruth valuesof someof the variables.

Our goal is to capturestructuralpropertiesof real world
probleminstances.We startby reviewing the conceptof a
backbonen a SAT/CSPproblem,asintroducedin [14]. A
variableis calleda backbonevariableif in all solutionsto the
CSPthe variableis assignedhe samevalue. Suchvariables
arealsocalledfrozenvariables[6]. Backbonevariablesare
usefulin studyingthe propertiesof the solution spaceof a
constraintsatisctionproblem.

Definition 2.1 [backbone] S is a backboneif there is a
uniquepartial assignmentig : S — D sud that Clag] is
satisfiable

We contrastthis variabletype with the kind we introduce,
backdoors.Backdoorsare variablesubsetgefinedwith re-
spectto a particularalgorithm; oncethe backdoorvariables
are assigned value, the problembecomeseasyunderthat
algorithm. (Notethatcontrarilyto the backbonaherecanbe
differentsetsof backdoowariables.)

To begin our expositionof backdoorsye definethe sortof
algorithmswe have in mind. We will call themsub-solves,
asthey solve tractablesubcasesf the generalconstraintsat-
isfactionproblem.

Definition 2.2 A sub-solverA givenasinputa CSR C, sat-
isfiesthefollowing:

e (Trichotomy) A either rejectsthe input C, or “deter-
mines” C correctly (asunsatisfiableor satisfiable returning
a solutionif satisfiable),

o (Efficiency)A runsin polynomialtime,

e (Trivial solvability) A candetermindf C is trivially true
(has no constaints) or trivially false (has a contradictory
constaint),

e (Self-reducibility) if A determines”, thenfor any vari-
ablex andvaluev, thenA determine<’[v/z].

Forinstance A couldbeanalgorithmthatsolves2-SAT in-
stancedut rejectsall otherinstanceslt is importantto note
thattheresultswe will show in this paperareindependenof
a particularsub-solher; our resultswill hold for any A satis-
fying theabove four properties.

In whatfollows, let A beasub-soler,andC bea CSP

We first considera notionof “backdoor’thatis suitablefor
satisfiableCSPs.

Definition 2.3 [backdoor] A nonemptysubsetS of the vari-
ablesis a backdoorin C for A if for someag : S — D, A
returnsa satisfyingassignmenof Clag].

Intuitively, the backdoorcorrespondso a setof variables,
suchthatwhensetcorrectly the sub-soher cansolwe there-
maining problem. In a sensethe backdooris a “witness”

to the satisfiability of the instance given a sub-soler algo-
rithm.! We alsointroducea strongemotion of the backdoor
to dealwith both satisfiableand unsatisfiablginconsistent)
probleminstances.

Definition 2.4 [strong backdoor] A nonemptysubsetS of

the variablesis a strong backdoorin C for A if for all

as : S — D, A returnsa satisfyingassignmenor concludes
unsatisfiabilityof Clas].

In contrasto backbonesvhich arenecessarilysetto a cer
tain value, a (strong)backdoorS is suficient for solvinga
problem. For example,whengiven the backdoorfor a SAT
problem, the searchcostis of order|D|!l. (Simply check
all possibleassignmentsf S.) This meansf S is relatively
small, one obtainsa large improvementover searchingthe
full spaceof variablehalueassignments.

We obsenethatindependentariablesareaparticularkind
of backdoor As statedin [12], they area setS of variables
for which all othervariablesmay be thoughtof asdefinedin
termsof S. For example,a maximal subsetf independent
variablesin a SAT encodingof a hardwareverificationprob-
lemis abackdoorfor unit propagationastheothervariables’
valuesmay be directly determinedafter settingthe indepen-
dentones[19].

Therearetwo key questionsoncerningbackdoors:

e What s the size of the backdoorin practicalproblem
instances?

e When taking into accountthe cost of searchingfor a
backdoorset, can one still obtainan overall computa-
tional advantagedn solvingthe CSP?

We addresghesetwo key questionsbelon. We will first
shaw that practicalprobleminstancescan have surprisingly
small backdoors. In the subsequensection,we shov how
evenby takinginto accountthe costof searchingor a back-
door, one can provably obtain an overall computationalad-
vantageby usingthebackdoor As wewill seethemagnitude
of thisimprovements, of course afunctionof thesizeof the
backdoor

3 Sizeof backdoors

We did an empirical study of the size of backdoorsin sev-
eralpracticalSAT instancesusingthe SAT solver Satz-rand,
arandomizedversionof Satz[16]. Satzincorporatepower-
ful variableselectiorheuristicsandanefficientsimplification
strat@y (i.e., a good sub-soher). We modified Satz-rando
tracethevariablesselectedor branchingandto keeptrackof
the minimum numberof variablesthat needto be setbefore
Satz-rand simplificationfound a satisfyingassignmeneffi-
ciently. (We are currently modifying this procedureto also
handleunsatisfiablénstancesandfind strongbackdoors.)

!Obsere thatany satisfiableCSPhasa backdoorof sizeat most
n—1; however, wewill seethatsignificantlysmallerbackdoorsarise
in practiceandgive a computationadwantagen search.



instance | #vars | #clauses| backdoor| fract.
logistics.d | 6783 | 437431 12 0.0018
3bitadd32 | 8704 32316 53 0.0061
pipe01 7736 26087 23 0.0030
gg-30.1 1235 8523 14 0.0113
gg35.1 1597 10658 15 0.0094

Table 2: Size of backdoorsfor several practical SAT in-
stances.

Table2 summarize®ur results. Our instancesarefrom a
varietyof domaing 18]. Theseinstancesarenow well within
the rangeof the fastestcurrentsolvers, suchas Chaf [15].
However, they arenon-trivial and cannotbe solved with the
previousgeneratiorof SAT solvers,e.g. Tableau3]. Clearly,
the new solversarebetterableto discover andexploit hidden
structuresuchassmallbackdoorsin fact,aswe canseefrom
thetable,theseinstancedave fairly tiny backdoors.Thatis,
only avery smallfractionof all variablescanbe usedto “un-
lock” a satisfyingassignmentWe conjecturghatsuchsmall

backdoor®ccurin mary otherreal-world probleminstances.

4 Exploiting backdoorsformally

We will analyzethree,increasinglypowerful stratejies: de-
terministic randomizedandheuristicbranching variable se-
lection The first two aremeantto work for ary CSPwhere
theinstancehasa small fraction of backdoorvariableswith
respectto the sub-soler. The randomizedstrately gener
ally outperformsthe deterministicone with high probabil-
ity (1 — 1/n, wheren is the numberof variables). This
reflectsthe performancegain found in practicewhen back-
trackingSAT solversareaugmentedvith randomizatior{15;
9]. Thethird strat@y yields tighter runtimeboundsthanthe
first two, but requiresus to assumethe existenceof a good
heuristicfor choosingbackdoorvariables(which we find to
bethecasein practice).

4.1 Deterministic strategy

The deterministicproceduremay be construedas a gener
alization of iteratve deepeningthat runs over all possible
searchtreesof eachdepth. We assumethe algorithm has
accesdo a particularsub-soler A runningin T'(n) (poly-
nomial)time, which definesthebackdoowariablesandC' is
anarbitraryCSPinstance.

Algorithm 4.1 Given a CSP C with n variables,
Fori=1,...,n,
For all subsets S of the n variables with |.S| = 1,

Perform a standard backtrack search (just on the vari-
ables in S) for an assignment that results in C being
solved by sub-solver A.

An analogouslgorithmworks for finding and exploiting
strong badkdoors in a CSPto prove unsatisfiability simply
keeptrack of whetherall assignmentso the variablesin S
resultin C' beinga contradiction(asdeterminedoy A). All

of the following we will sayholdsfor strongbackdoorsand
unsatisfiableCSPsunderthis modifiedalgorithm.

Note the procedureusesonly polynomial time for CSPs
with a constansizedbackdoor We areinterestedn thecase
wherea backdoorof size B(n) exists,for someB(n) < n/2
almosteverywhere. The following gives a simple runtime
boundin termsof n andB(n).

Theorem4.1 If C has a variable domainof sized and a
badkdoor of sizeat mostB(n), then Algorithm 4.1 runs in

O(p(n)(#)B(")) time, for somepolynomialp(n).

Proof. Theruntimeis boundecby T'(n) -2 (") d' (re-
call T'(n) is a runtime boundon A). SinceB(n) < n/2,
S By < q(n)(5(,,)) for somepolynomialg(n). This
and > B0 gt < ¢B™ imply that the runtimeis domi-
natedby the last term of the sum. Puttingit togethey the
boundis 7'(n) Y220 (M d' < T(n)g(n)(,r,)d5™ <

i (n)
) B(n) B(n)
T(n)q(n) %5 )

S < p(n) 5 asymptotically for

p(n) =T(n)-q(n). O

Thetheoremimpliesthatwhensmallbackdoorgor strong
backdoorsare presenta substantiaspeedumlmostalways
results.For example:

Corollary 4.1 If C hasa baddoorofsizeB(n) = O(log n),
thenC is solvablein (ﬁ)o(log ™) time
g n)

In our expositionof heuristicbranchingvariableselection,
we will seeanimprovementon this (a poly-timebound).For
avisualrepresentationf thedeterministicstratey’sruntime,
whend = 2 andbackdoor=of sizen/k areconsideredsee
Figurel. This graphalsoindicatesthefollowing corollaryin
thecaseof SAT (proof omitted):

Corollary 4.2 For Booleanformulaswith a baddoorof size
at mostn/4.404, Algorithm 4.1 solvesthe formulain O(c")
time wheec < 2.

As we have seenin the previoussection,in practice back-
doorscanbe quitetiny (=~ 1/566 = 0.18% of the variables,
forl ogi sti cs. d. cnf). Thereforetheseresultshavereal
bearingon theimprovedsolvability of real-world CSPs.

4.2 Randomizedstrategy

Betterperformanceaesultsfrom addingrandomization.This
speed-upormally verifiesawell-known factaboutreal-world
solvers:augmenting solver with randomizatiorcandramat-
ically improve performancd9; 10].

Again, we assumea sub-soler A is on tap, with runtime
T(n). Let B(n) be a poly-time computablefunction on N
that boundsthe backdoorsize,and b be a parametetto be
later determined. The ideais to repeatedlychooserandom
subset®f variableghatarelargerthan B(n), searchinghese
subsetgor a backdoor



Algorithm 4.2 Given a CSP C with n variables,
Repeat n(%)’g(”) times (and at least once):

Randomly choose a subset S of the n variables,
of size b - B(n). Perform a standard backtrack
search on variables in S. If C is ever solvable by
A, return the satisfying assignment.

As before,ananalogousalgorithmworks for general(sat-
isfiableor unsatisfiableC SPswith strongbackdoorsif every
leafin the searchtreeendswith A reportingunsatisfiability
thenthe C' is unsatisfiable.

The algorithm as statedrequiresa priori knowledge of
B(n). This maybe correctedby choosinga constanty > 1,
thenrunningthe algorithmassuminga backdoorof sizel. If
thatfails, runit againassuminga backdoowf size«, thena?,
o3, etc.,until asolutionto C'is found.

Theorem4.2 If C hasa baddoor of size B(n), Algorithm
4.2 findsa satisfyingassignmentvith probability approac-
ing 1.

Proof.  Giventhereis a B(n)-sizedbackdoorin C, the
probabilitythatarandomlychosensS of sizej > B(n),j <n
containghe entirebackdooris atleast

("B () = JG=De=Bt ((;’—Bcn)))B(")_

j=Bn)/ 1 \j n(n—1)---(n=B(n)+1) = \ (n—B(n))

Settingj = b - B(n), theprobability thatbacktrackinge-

. . L oV B( B(n)
sultsin A finding asolutionis atIeast(%)

(%)B(”), dueto the self-reducibilitypropertyof A.
Repeatinghis experimentn(%)’g(”) times, the al-
gorithmsucceedsvith probabilityatleastl — 1/n. m|

One can shav that the algorithm runs in
0 (max{l,71(%)3(")}db'3(")T(n)) time. It
remainsto chooseb to minimize this expression. As b
dependdlirectly on B(n), we evaluatetwo naturalcasegor
B(n).

e When B(n) = klogn for someconstantk, the runtime
is n(LLEpECI L kloznp k' for someconstantk’. For
large &/, the runtimeis optimizedwhen b is constant;it is

(=2-)OUogn) animprovemenioverthedeterministicoound.

logn

e When B(n) = n/k for someconstantk, we canshav

the runtimeis minimizedwhenp = -2k resultingin a

1+1In(d)
O(dn/k(A+In()/ n(d) (1n(d)(k — 1))™*) time bound. For
example,whend = 2 (the caseof SAT), b = k/2.443 and

thefollowing holds.

Corollary 4.3 For Booleanformulaswith at mostn/2.443
baddoor variables, Algorithm 4.2 solvesthe formula in
O(c"™) timg where ¢ < 2.

In the Corollary, c is afunctionof k. SeeFigurel.
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Figure 1: Impr oved exponentialtime. Whend = 2 (SAT) and
thesizeof thebackbonés a constanfraction of the numberof vari-

ables(B(n) = n/k), theruntimeof Alg. 4.1 (deterministic)and
4.2 (randomized)s of the form ¢™. ¢ (vertical axis)is a function

of k. Thetop curve givesc asa function of & for the deterministic
procedureThebottomcurve givesc for therandomizedprocedure.
Notethatfor k > 2.443, the randomizedalgorithmperformsexpo-

nentially betterthan2™, whereasuchan exponentialimprovement
for thedeterministicalgorithmdoesnot occuruntil & > 4.04.

4.3 Heuristic strategy

So far, we have consideredgeneral systematicand ran-
domizedsearchstratgies for finding and exploiting back-
doors. However, practical combinatorialsolvers generally
use heuristicsto guide the variable selectionprocess. As
noted in the introduction, a common principle is to first
branchon variablesthat simplify an instancethe most. In
effect, this meanssuch heuristicssteerthe variable choice
towardsvariablesin a backdoorset. We will now formally
analyzesuchheuristicguidance.

Restart Strategiesfor Heuristic Search. By incorporat-
ing the notion of a variablechoiceheuristicinto our frame-
work, our resultsarefurthersharpenedwe consideithe case
where a randomizeddepth-firstsearch(DFS) solver with a
sub-soler A is runningon aninstanceC' having a backdoor
of size B. The solver choosewariablesto branchon accord-
ing to a heuristic H, which hasa succesgrobability of at
least1/h of choosinga backdoorvariableat ary point in
the search. We will usethe notation(DFS,H,A) to denote
a solverwith the above properties.

Informally, arestartstrategyis simply apolicy thatrestarts
a solver afterrunningit for a specifiedamountof time, until
a solutionis found. Our main resultheregivesa condition
underwhich apolynomialtime restartstrateyy existsfor DFS
solving CSPswith smallbackdoors.

Theorem4.3 If the sizeof a badkdoorof a CSPC is B <



1 ]
logchj‘glg_g - for someconstant, then(DFS,H, A) hasarestart

strategy that solvesC' in polynomialtime

Proof.  Sincethe probability of choosinga backdoorvari-
ableis at least1/h, the probability that we consecutrely
choosethemis 1/hB. The probability of choosingthe cor-
rectsolutionwith only a polynomialamountof backtracking
in the DFSis atleastl /d®—*1°s" for someconstant:. Sup-
posel /dB—Fleen . 1 /pB > 1/n¢, for someconstank. Then
by restartinghesolverafterevery T4 (n) stepgwhereT's(n)
is theruntimeof A), thereis 1,/n¢ probabilityin eachrunthat
the backdoomwill be foundwithin a O(n*) amountof back-
tracking,andsetcorrectly From this one canshow thatthe
above inequality holds preciselywhen B < logc,lf%gd for
someconstant. a

An analogougesultholds for strongbackdoors.It turns
outthatthegivenboundon B is asymptoticallytight; we will
notprovethathere.Whenthevariabledomainsizeis constant
(e.g. SAT, 3-coloring,etc.),we have thefollowing. Let f be
ary poly-time computabldunctiononthe naturalnumbers.
Corollary 4.4 Given CSPswith a O(5257) baddoor for
which H hassuccesgrobability 1/f(n), (DFS,H,A) hasa
polynomialtimerestartstrategy.

Whenthe succesgprobability is constantthen CSPswith
O(log n) backdoorscanbe solved using a polynomialtime
restartstratgly on (DFS,H,A). Thisresultis thebestpossible
in termsof backdoorsize,asit would take supefpolynomial
time to searchfor a solutionamongw(log n) backdoomwari-
ables. The heuristicsearchruntimewhen B(n) = n/k is
still exponential,but this exponentialdropsdramaticallyas
n/k decreasesvenwhencomparedo the previoustwo al-
gorithms. Thatis, the runtimeis on the orderof ¢"/*, where
¢ = d-1/h (recalld is the domainsizeand1/h is success
probability).

Formal Discovery of Heavy-Tails in Heuristic Search.
We briefly outline our theoretical results connectingthe
heuristic searchmodel describedearlier with heasy-tailed
runtime phenomendound empirically [9]. It was conjec-
turedthat “critically constrained’variableswere a causeof
the heary-tailed behaior. We can prove that small setsof
backdoorvariablesleadto runtimeprofilesthatarebounded
from below by heary-tails.

The analysisthat achieses this result introducesa self-
similar binarytreestructure which we call a variable choice
tree Suchtreesrecursvely modela heuristics selectionof
backdoorvariables;as more backdoorvariablesare chosen,
theresultingsearcltcostis muchlower. It turnsoutthatback-
trackingsolverswith variablechoiceheuristicscanbe mod-
eledpreciselyby thesevariablechoicetrees whenthesizeof
a backdoorin the instanceis small. Analysisof thesetrees
leadsto thefollowing:

Theorem4.4 (Heavy-taillower bound)If the badkdoorsize
of an CSPC is o(n/logn), thenthe runtimedistribution of
(DFS,A,H) on C is lowerboundedby a Pareto-Levy distri-
bution, whenthe succesgrobability of H is constant.

5 Conclusions

We have formalized the idea of backdoor variables in

CSP/SA instances.Backdoorvariablescanbe usedto sig-
nificantlyreducehesearcimeededn solvingCSP/SA prob-
lems. We shaved that practicalinstancescan have surpris-
ingly small backdoors.We also provided a detailedformal
analysisdemonstratinghat one can obtain a concretecom-
putationaladvantageby exploiting suchbackdoors.
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