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Abstract

A fertile area of recent research has demonstrated conpogteomial time lower bounds for solving
natural hard problems on restricted computational modetwng these problems are Satisfiability, Vertex
Cover, Hamilton Path, MOP SAT, Majority-of-Majority-SAT, and Tautologies, to narmadew. The proofs
of these lower bounds follow a certain proof-by-contraidicstrategy, which we call “resource-trading” or
“alternation-trading.” An important open problem is to é@hine how powerful such proofs can possibly
be.

We propose a methodology for studying these proofs that siidlean amenable to both formal analysis
and automated theorem proving. Formalizing the framewak prove that the search for better lower
bounds can often be turned into a problem of solving a largesef linear programming instances. We
implement a small-scale theorem prover and report sungrigisults, which allow us to extract new human-
readable time lower bounds for several problems. We alsthesiamework to prove concrete limitations
on the current techniques.
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1 Introduction

This work is concerned with proving new limitations on corngya by exploiting their capabilities. Many
known lower bounds for natural problems follow a patterrt tha call aresource-trading scheménformally
speaking, the scheme uses four basic steps:

(1) Assume a hard probleii can be solved im time with resourcesR. (Let’'s abbreviate the class of such
problems as?[n¢].) We wish to obtain a contradiction. For exampign©] may beDTISP[n¢, poly(log n)],
the set of problems solvable itf time and polylog n) space, andl may be satisfiability (SAT).

(2) Prove aSpeedup Lemntaat “trades time for resources”, wheRdt| is shown to be in a clasS|o(t)], for

a more powerful resourcg€ and polynomialg. For exampleS[t] may be the class of problems solvable by
alternating machines in time Nepomnjascii [Nep70] showed that p@lyg n) space algorithms running in
n¥ time can be simulated by%, machine (using: alternations) irO(n) time.

(3) Prove aSlowdown Lemmthat “trades resources for time”, whesét] is shown to be inz[t?], for small
d > 1. This typically uses the assumption thate R[n¢|. For example, if SAT has an® time, polylogn)
space algorithm, then (by a strong form of the Cook-Levirotam) it follows thatNTIME(t] hastct°() time,
poly(log t) space algorithms, and consequerilyTIME]¢] hast<“+() time, poly(log t) space algorithms.

(4) Combine (2) and (3) to sho@[t] C C[t'~¢], for somee > 0 and complexity clas€][t], implying a
contradiction with a hierarchy theorem fr For example, if SAT has auf time, poly(log n) space algorithm,
thenT, TIME[#] € DTISP[t<*+°() poly(log ¢)] € My TIME[t<*/2], where the first inclusion holds by (3) and
the second holds by (2). This contradicts the alternatimg thierarchy ifc> < 2. The above is theV2—¢
lower bound of Lipton and Viglas [LV99].

This scheme has been applied in many settings, dating bahlk @0's. A partial list includes:
Time Versus Space.Hopcroft, Paul, and Valiant [HPV77] proved th&®PACE[n] ¢ DTIME[o(n logn)] for
multitape Turing machines, by proving the “speedup lemrhatDTIME[t] C SPACE[t/ log t] and invoking
diagonalization. (Their result was also extended to gemeoaels [PR81, HLMW86].)

Determinism vs Nondeterminism for Multitape TMs. A celebrated result of Paul-Pippenger-Szemeredi-
Trotter [PPST83] is thall TIME[n] # DTIME[n| for multitape Turing machines. The key component in the
proof is the “speedup lemma” thBXTIME[¢] C X, TIME[t/ log™ t] in the multitape setting.

Deterministic and Nondeterministic Space-Bounded Algothms. Our model is a random access machine
using small spacen(/(logn)¢, n'~—¢, andn°()) are typical values). The time lower bounds are for tradi-
tional NP-complete problems and problems higher in the polynomianchy [Kan84, For97, LV99, FvMOO0,
FLVMVOS5, Wil06, Wil08]. The best known deterministic timevrer bound for solving SAT witm°() space
algorithms isp2¢os(m/7)—o(1) > ,1.801 \Wj|08]. The bound also holds for the counting problem M@ESAT
wherem is a composite that is not a prime power. For nondeterminatjorithms using.°") space, the best
known time lower bound known for naturab-NP problems (such asADTOLOGY) has beemv2-o(), by
Fortnow and Van Melkebeek [FYvMOO].

Probabilistic and Quantum Space-Bounded Algorithms. Allender et al. [AKRRV01] showed that Maj-
Maj-SAT requiresn! (1) time to solve on unbounded error machines thatnisé space, foe > 0. Diehl
and Van Melkebeek [DvMO6] proved that fér> 2, k-QBF requiresﬂ(n’““’(”) time with randomized two-
sided error algorithms using?(!) space. Viola [Vio07] has shown that 3-QBF requirés*(!) time on Turing
machines with a random access input tape and two-way redel-aecess to a random bit tape. Van Melkebeek
and Watson [vMWO07, vM07] have shown how to adapt the resultddémanet al. [ADH97] that BQP C PP

to extend Allendeet al. to a time lower bound for solving Maj-Maj-SAT with quantungatithms.



General Multidimensional TMs. This model has read-only random access to its input;?4h read-write
store, and read-write access td-dimensional tape for a fixed > 1. This model generalizes several others,
and is the most powerful (and physically realistic) modedwn where we still know non-trivial time lower
bounds for SAT. Multidimensional TMs have been studied fansnyears; for instance, [Lou80, PR81, Gri82,
Kan83, MS87, LL90, vMRO05, Wil06] proved lower bounds for\dng problems in this model, and the best

bound for SAT is essentiallf(nV (¢+2)/(@+1)) time in thed-dimensional case.

The lower bound proofs of the above type have been typieallijo¢ making it hard to build intuition about
them. One gets a sense that the space of all possible progié ba difficult to systematically study.

1.1 Main Results

We introduce a methodology for reasoning about resouesBrg proofs that is also practically implementable
for finding short proofs. We argue that for almost all knowsarce-trading lower bounds, the proofs can be
reformulated in a way that the search for new lower boundsibes a feasible problem that computers can
help attack: Informally, the “hard work” in proofs can often be replacegldseries of linear programming
problems. Furthermore the framework allows us to provetéitiins on what can be proved. These limitations
are important since some components of these proofs dolativize in some sense (cf. Appendix A).

In this paper, this approach is applied in several scenarinsall cases, the resource being “traded” is
alternations, so for the purposes of this work we call th@fsralternation-trading

Deterministic Time-Space Lower Bounds for SAT and Beyond Aided by results of a computer program,
we show that any algorithm solving SAT ifin) time ands(n) space must have- s > Q(n2c0s(7/T)—o(1)),
Previously, the best known result wass > Q(n!'°73) [FLVMVO05]. It has been conjectured that the current
framework sufficed to prove a2—°(1) time lower bound for SAT, against algorithms usintj') space? We
present strong evidence (from computer search) that thekhesn n2<s(7/7)=(1) Jower bound [Wil08] is
already optimal for the framework. We show that it will be insgible to obtaim? with the framework,
formalizing a conjecture of [FLVMVO05}. We also prove lower bounds on QBFuantified Boolean formulas
with at mostk quantifier blocks), showing it required(n*+1=%) time for n°() space algorithms, where
8 < 0.2 andlim;_, 0, = 0.* These results appear also optimal for the current tools.

Nondeterministic Time-Space Lower Bounds for TautologiesAdapting the methodology for this problem,
a computer program found a very short proof improving upartrfesv and Van Melkebeek’s 8-year old bound.
Longer proofs suggested an interesting pattern. Formagliitj we prove (on paper) am”’*—0(1) > 51587
time lower bound, and experiments suggest optimality ferftamework. After learning of our short proof,
Diehl and Van Melkebeek have proven a similar result [DvM\\WO/e also show it is not possible to obtain
ann® time lower bound, where = 1.618.. .. is the golden ratio. This is surprising since we have known fo
some time [FYMOOQ] that &% lower bound is provable faleterministicalgorithms.

Lower Bounds for Multidimensional TMs. Here the method uncovers highly regular behavior in the best
lower bound proofs, regardless of the dimension of the tegtedying the output of a theorem prover, we
extract ar2(n") time lower bound for thé-dimensional case, wherg > 1 is the root of a particular quintic

We note that combinatorial arguments such as Santhanami-space lower bound for SAT on multitape Turing ma-
chines [San01] do not fall under the alternation-tradingadm, but they are already known to have different liniitas.

2| could not find an explicit reference for this conjecturet bhave received several referee reports in the past thiat istaAlso
cf. [LV99] in FOCS'99.

3That is, we formalize the statement: “...some complexigotists feel that improving the golden ratio exponent belydmvould
require a breakthrough” in Section 8 of [FLVMVO05].

“Note the QBF, results appeared in the author’s PhD thesis in 2007 but hese bnpublished to date.



pa(x) with coefficients depending ath For exampler; ~ 1.3009, ro ~ 1.1887, andrs ~ 1.1372. Again,
computer search suggests this is the best possible, andowe fiat it is impossible to improve the bound for
d-dimensional TMs ta:!1/(@+1) with the current tools.

The above lower bounds hold for othEiP and co-NP-hard problems as well, since the only property
required is that every set NTIME[n] (respectivelycoNTIME[n]) has sufficiently efficient reductions to the
problem. Furthermore, we stress that this approach is miteldl to the above scenarios, and can be applied
to the league of problems discussed in Van Melkebeek’s garfxd04, vM0O7]. This work promotes a new
methodology for proving lower bounds, where prospectivegiebounders formalize their proof rules, write a
program to test ideas and generate short proofs, then dtedgsults and extrapolate new results.

1.2 Reduction to Linear Programming

The key to our formulation is that we separatediszrete choicem a lower bound proof from theeal-valued
choices The discrete choices consist of the sequence of rules tg apa proof, and which complexity class
C[t] to use in the proof by contradiction. We give several singdtions that greatly reduce the number of
necessary discrete choices, without loss of generalital-Reued choices come from selectiigas well as
parameters arising from rule applications. We prove thaedhe discrete choices are made, the remaining
real-valued problem can be expressed as an instance af pregramming. This makes it possible to search
for new proofs via computer, and it also gives us a formal keand the limitations of these proofs.

One cannot easily search over all possible proofs, as thdeuof discrete choices is stitb 2 /n3/2 for
proofs ofn lines (proportional to thexith Catalan number). Nevertheless it is quite feasible tockeaver
all 20+ line proofs. These searches already reveal highly regalieqnms, indicating that certain strategies
will be most successful in proving lower bounds; in each s@sestudy, the resulting strategies are different.
Following the strategies, we establish new lower boundfstdéinally, the patterns also suggest how to prove
limitations on the proof system.

Important Note: In the first 12 pages, we can only briefly describe the resuitstachniques. Please see the
Appendices for background information and more details.

2 Preliminaries

We assume familiarity with the basics of complexity, esplbgialternation [CKS81]. We use big-notation in
the infinitely often sense, so statements like “SAT is nabim°) time” are equivalent to “SAT require3(n°)
time.” All functions are assumed to be constructible witthia appropriate bounds. Our default computational
model is the random access machine, but particular varinist affect the result TISP[t(n), s(n)] is the
class of languages accepted by a RAM runningir) time ands(n) space, simultaneously. For convenience,
we defineDTS[t(n)] := DTISP[t(n)'*°1) n°M] to avoid negligiblen(1) factors.

To properly formalize alternation-trading proofs, we attuce notation for alternating complexity classes
which includeinput constraintsbetween alternations. These constraints are criticah®ifdrmalism. Define
(3 f(n))®C to be the class of languages recognized by a macNinlkat, on inputz, writes af(n)'t°() bit
stringy nondeterministically, copies at mast°(!) bits = of the tuple(z, y) deterministically (inO(n+°(1))
time), then feeds as input to a machine from cla€s We refer to this behavior by saying that ttlassC is
constrained to’ input Define(3 f(n))C := (3 f(n))™ax{L.(og f())/(een)}tc That s, the default input length
is assumed to b@(f (n) oM 4nlt+e(D)), The clasgY f(n))’C is defined similarly (with co-nondeterminism).
We say that the existential and universal phases of an atteghcomputation arquantifier blocksto reflect
the notation. Hence a machine of the clégs n® )% (Qq n) - - % (Q n®)*x+1DTS[n%+1] with Q; €
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{3,v} means that the input to the computation starting atthejuantifier block is of lengtbit°() for all
i=1,...,k, and the input to th® TS computation has length’++:+°(1) (Of course, the first quantifier block
always has an input of lengtlh) It is important to keep track of the input lengths to quigtiblocks, since
several lower bounds rely on the fact that these inputs camadl in certain interesting cases.

For readers new to this area, we strongly encourage thematb Appendix A,A Short Introduction to
Time-Space Lower Bounds

3 Time-Space Lower Bounds for SAT

Our study begins with polynomial time-space lower boundsN®IME[n] problems such as SAT. We shall
describe the approach in some detail here; the other seasgyme knowledge of this section. We begin with a
formalization of the alternation-trading framework. Ahation-trading proofs apply a sequence of “speedup”
and “slowdown” lemmas in some order, with the goal of reaglarcontradiction by a time hierarchy theorem.
We formalize alternation-trading proofs fBITS classes as follows:

Definition 3.1 Letc > 1. Analternation-trading proof fot is a list of complexity classes of the form:
(Qun™)*(Q2n) P (Qg n™)**+1DTS[n+1], (1)

wherek > 0, Q; € {3,V}, Qi # Qi+1,a; > 0, andb; > 1, for all i. (Whenk = 0, the class is deterministic.)
The items of the list are callelthes of the proaf Each line is obtained from the previous line by applying
either aspeedup ruler a slowdown rule More precisely, if théth line is

(Q1 n™)b2(Qq n?2) - - Ok (Qp, n™)Pk+1DTS[n+1],

then the(i + 1)st line has one of three possible forms:

1. (Speedup Rule Q)R n®)™>{= 1} (Qp4 1 n®)IDTS[n*+1~*], whenk = 0 andz € (0, aj41).8

2. (Speedup Rule 1)Q; n™)%2(Qy n?2) - - bk (Q nmax{ewahymaxiebini}(Qy ) n0)bk+1DTS[pak+1=7],
for k > 0 and anyx € (0, ag41)-

3. (Speedup Rule 2001 n® )2 - - bk (Qp n)+1 (Qpyy n®) @@ bkt1}(Qp 40 n0) 1 DTS[n+1-2], for
k> 0and anyz € (0,ap41).

4. (Slowdown Rule) @ n)%2(Qq n%) - - -be=1 (Qp_y n®—1)2s DTS[noma{arr1.arbe.bet13] for k > 0.

An alternation-trading prooshows(NTIME[n] C DTS[n¢] = A; C Ay) if itsfirst line is A; and its last
line is As.

The definition comes directly from the statements of the Bppd_emma (Lemma A.1) and Slowdown
Lemma (Lemma A.2) for space-bounded computations. (Nae:thin the Speedup Lemma corresponds
to logn < n°M, which is negligible.) Speedup Rules 0, 1, and 2 can be easiified to be syntactic
formulations of the Speedup Lemma, where ERES part of the sped-up computation only reads two guessed

5This formalization hagmplicitly appeared in prior work, but not to the degree that we invasim this paper.
®Please note that thé -+ 1)th quantifier isn° in order to account for th€(log n) size of the quantifier.



configurations—so the input it reads is different from thpuinread by the innermost quantifier block. For
instance, Speedup Rule 1 holds, since

(Q1 nal)bQ(Q2 na). . R (Qr nak)ka DTS[n%+1]
C (Q1n™)P2(Qan2) - - bk (Q n)Prr1 (Qp n®) (e} (Qy g nO)Prr1 DTS[n+1]
- (Ql nal)bz (QQ nag) bk (Qk nmax{ak,x})max{karl,x}(QIH_I no)bk+1 DTS[n“kH].

Rule 2 is akin to Rule 1, except that it uses opposite quarstiiieits invocation of the Speedup Lemma. The
Slowdown Rule works analogously to Lemma A.2. It followsttakliernation-trading proofs are sound.

Note Speedup Rules 0 and 2 add two quantifier blocks, SpeedigplRadds only one quantifier, and all
three rules introduce a parameter By considering “normal form” proofs (defined in the next tia), we
can show that Rule 2 can always be replaced by applicatioRsilef 1. For a proof, cf. Appendix C. For this
reason we just refer tihe Speedup Ruldepending on which of Rule 0 or Rule 1 applies.

A Normal Form. Define any class of the form in (1) to Bemple Define classeg; and A, to becomplemen-
tary if A, isthe class of complements of languagedin Every known (model-independent) time-space lower
bound for SAT showsNTIME[n] C DTS[n¢] implies A; C A", for some complementary simple classes
Ay and A,, contradicting a time hierarchy (cf. Theorem A.2). A simidaim holds for nondeterministic
time-space lower bounds against tautologies (which plVEVIE[n] C coNTS[n¢] implies A; C A,), for d-
dimensional machine lower bounds solving SAT (which priMdME[n] C DTIME,[n¢] implies A; C As),
and for other problems.

We now introduce anormal formfor alternation-trading proofs. We show that any lower lsbymovable
with complementary simple classes can also be establislitbdawnormal form proof. This simplification
greatly reduces the degrees of freedom in a proof, as we mgetdrave to worry abowhichcomplementary
simple classes to choose for the contradiction.

Definition 3.2 Letc > 1. An alternation-trading proof fot: is in normal formif (a) the first and last lines are
DTS[n? andDTS[n®] respectively, for some > o, and (b) no other lines ar®TS classes.

We show that a normal form proof ferimplies thatNTIME[n] ¢ DTS[n¢].

Lemma 3.1 Letc > 1. If there is an alternation-trading proof farin normal form having at least two lines,
thenNTIME[n] € DTS[n¢].

Theorem 3.1 Let A; and A, be complementary. If there is an alternation-trading pr@dfor ¢ that shows
(NTIME[n] C DTS[n¢] = A; C A,), then there is a normal form proof fet of length at most that oP.

Proofs of Lemma 3.1 and Theorem 3.1 can be found in AppendikHe.important consequence is that we
only need to focus on normal form proofs in a proof search.tR®remainder of this section, we assume that
all alternation-trading proofs under discussion are imraform.

Proof Annotations. Different lower bound proofs can result in quite differeetjgences of speedups and
slowdowns. Aproof annotatiorrepresents such a sequence.

Definition 3.3 A proof annotatiorfor an alternation-trading proof of lines is the(¢ — 1)-bit vector A where
foralli=1,...,0—1, A[i] = 1 (respectivelyA[:] = 0) if theith line applies a Speedup Rule (respectively, a
Slowdown Rule).

An (¢—1)-bit proof annotation corresponds to a “strategy” fordime proof. For a normal form alternation-
trading proof with? lines, it is not hard to show that its annotatidnmust haveA[1] = 1, A[¢ — 2] = 0, and
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A[¢ — 1] = 0. The number of possible proof annotations is closely rdlatethe number of well-balanced
strings over parentheses. Recall that Mtie Catalan number i€'(k) = k%rl(%f) A well-known fact states

that the number of well-balanced strings of lengthis C' (k).

Proposition 1 Let? > 3 be even. The number of possible annotations for proofdinés isC(¢/2 — 1).

Hence the number of possible annotations for proofélofes is©(2¢/¢%/2). Note that an annotatiotioes
not determine a proof entirely, as there are other parameféng groblem of determining optimal values for
these parameters is tackled in the next section.) To ilitestthe annotation concept, we give four examples.

e Lipton-Viglas’ nV? lower bound [LV99] (from the Introduction) has the annatatj1, 0, 0].
e Then!-6%4 bound of theShort Introduction(cf. Appendix A) corresponds tad, 1,0,0, 1,0, 0].

e Then? bound of Fortnow-Van Melkebeek [FYMO00] is an inductive gromrresponding to an infinite
sequence of annotations. In normal form, the sequendg, 0], [1, 1,0,0,0], [1,1,1,0,0,0,0], ...

e Then2<os(7/7) hound [Wil08] has two stages of induction. Lét=1,0,1,0,...,1,0,0, where the:. .’
contain any number of repetitions. The sequen¢djigl, A, A],[1,1, A, A, A],[1,1,1, 4, A, A, A],...

That is, the proof performs many speedups, then a sequeroarof slowdown-speedup alternations,
then two consecutive slowdowns, repeating this until @ldbantifiers have been removed.

3.1 Translation To Linear Programming

Given a (normal form) proof annotation, how can we deterntir@ebest proof possible with it? The obstacles
are (a) the runtimes of the first and I&TS classes of the proof are free parameters, and (b) each afjitic
of a Speedup Rule introduces a parameter We now show how to reduce an annotatidrandc > 1 to

a linear program that is feasible if and only if there is aermlation-trading proof oNTIME[n] ¢ DTS[n¢]
with annotationA. More precisely, the problem of setting parameters can &&ed as an arithmetic circuit
evaluation where the circuit hasax gates, addition gates, and input gates that multiply tinguat byc. Such
circuits can be evaluated using a linear program (cf. [DRrliat minimizes the sum of the gate values.

Let A be an annotation of — 1 bits, and letn be the maximum number of quantifier blocks in a linedof
notem is easily computed in linear time. The target LP has var@able, b; ;, andz;, foralli =0,...,/ -1
andj = 1,...,m. The variablesi; ; represent the runtime exponent of tite quantifier block in the class on
theith line, b; ; is the input exponent to thgh quantifier block of the class on thith line, and for all lines
that use a Speedup Rule,is the choice of: in the Speedup Rule. For example:

e If the kth line of a proof isDTS[n?], the corresponding constraints are
a1 = a, bk:,l =1, (Vk>0) Qi = bkﬂ' =0.

e If the kth line of a proof is(3 n% )’ DTS[n?], then the constraints are
aro=a, bp1 =0, ag1=a', bp1=1, (Vk>1)ar;="bg;=0.

The objective is to minimizé_, ;(a;,; + bij) + >_;z;. The LP constraints depend on the lines of the
annotation, as follows.

Initial Constraints. For theOth and(¢ — 1)th lines we havey ; > a¢—1 1, as well as

ap,1 > 1, 1)071 = 1, (Vk > 1) ap k= boJf = 0, and ag > 1, 1)571 = 1, (Vk > 1) Qe = b&k = 0,
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representindTS[n?-1] andDTS[n%-1.0], respectively. The 1st line of a proof always applies Sppdriule
1, having the form(Q;n®)™>{=:1}(Q, n®)!DTS[n**]. So the constraints for the 1st line are:

a1 =ag1 — 21, 11 =1,a12=0,b12>x1, bi2>1, a3 =23, b3 =1,
(Vk: 4§k§m)a1,k:b1,k20.

The below constraint sets simulate the Speedup and SlowBaoilas:

Speedup Rule ConstraintsFor theith line wherei > 1 and A[i] = 1, the constraints are

a1 > 1, ajn > a;—110 — 2, big =bi—11, a;2 =0, bj2 > w;, bjo >bi_11, a;3 > a;—1.2,
a;i3 >, biz>bi—12, (VEk: 4<k<m)ajr=ai—1k-1,bir =bi—1 k1.

These constraints express that *2(Qy n?2)*DTS[n%] in the (i — 1)th line is replaced with
L b2 (Q2 nmax{ag,x})max{x,bl}(Ql nO)bl DTs[nmax{m—x,l}]

in theth line, where), is opposite ta)s.
Slowdown Rule Constraints.For theith line whereA[:] = 0, the constraints are

i1 > C-Qi—11, Qi1 > C-Qi—1,2, Qi1 > C-bi_11, aj1 > c-bi_12, bj1 =bi_12
Vk:2<k<m-—1) Qi = Q-1 k+1s ik = bic1k+1, QGim = bim = 0.

These express the replacement of 2 (Q1n2)"' DTS[n%] in the (i — 1)th line with

)

in theith line.
This concludes the description of the linear program. To firelargest that still yields a feasible LP, we
can simply binary search for it. The following theorem sumizes the above discussion.

Theorem 3.2 Given a proof annotation of lines, the best possible lower bound proof following theaian
tion can be determined up todigits of precision, irpoly(n) time.

Proof Search Results.Following the above formulation, we wrote proof search ireeg in Maple. Millions
of proof annotations were tried, including all those of poe¢ work, with no success beyond theos(7/7)
exponent. The best lower bounds followed a highly reguldtepa For a424 line annotation following the
pattern, the optimal exponent was only in the intefta$0175,1.8018). For more details, cf. Appendix E.
One interesting sequence of annotations from the pattern is

1¥11000(10)0(10)%0- - - (10)*0,
for k£ > 2. One can prove that this sequence cannot yield any lowerdbbetter thar2 cos(r /7).

Theorem 3.3 In the limit (ask — o0), the maximum lower bound provable with the sequence oftations

1¥11000(10)0(10)20(10)30 - - - (10)*0 for k > 0 is that SAT cannot be solved @(n?°°3(*/T)~°(1)) time and
o(1)

n°\") space.

A similar argument applies to all other annotations founc¢dmputer. We are led to:



Conjecture 3.1 There is no alternation-trading proof th&tTIME[n] ¢ DTS[n], for anyc > 2 cos(7/7).

Proving the above conjecture seems currently out of reaehcall give a partial result:

Theorem 3.4 There is no alternation-trading proof th&dTIME[n] ¢ DTS[n?].
A proof is in Appendix F. At a high level, the proof argues thay minimum length proof of a quadratic
lower bound could be shortened, giving a contradiction.

Good News.Despite the bad news above, the theorem prover did give uggarinsight to prove a new lower

bound ofQ(n?°s(t/T)—=(1)) on the time-space product of algorithms solving SAT. Alese results have also
been generalized to quantified Boolean formulas, leadimgto lower bounds. For more, cf. Appendices B
and M, respectively.

4 Nondeterministic Time-Space Lower Bounds for Tautologis

The problem of proving nondeterministic time-space lowaurids forco-NP has also been studied. Fortnow
and Van Melkebeek [FvM0O] proved thapTToLOGY requires2(n¥2°()) time on a nondeterministig®(!)
space RAM. However, since their initial result, no furthemprovements had been made. We show how to
extend the approach of the previous section to this probéerh find that the best proof annotations look quite
different. Here the approach turns out to be successful dinghnew proofs.

4.1 The Framework and Linear Programming Translation

Similar to the clas®TS, setNTS[n%] := NTISP[n?, n°(M] andcoNTS[n?) := coNTISP[n®, n°M)] for brevity.
As in the previous lower bound setting, there are Speeduséovddown rules that are applied in some way
that contradicts a time hierarchy, although the rules amgegdhat different here. In the following, 162 be a
string of quantifier blocks, s@ = (Q1 n®)? - - (Qp_1 n®%-1).

Lemma 4.1 (Speedup) Fob > 1,a > 1,z > 0, ands > 0,
QPNTISP[n®, n®] C Qb(3 n=ts)max{batst(y Jog n)max{bsINTISP[na~" n?].
In particular for s = o(1) we haveNTS[n?] C (3 n®)max{Lz} (Y log n)'NTS[n*~%].
Proof. The proof is analogous to Lemma A.1 (the Speedup LemmBTd6P). O

Lemma 4.2 (Slowdown) IfTAUTOLOGY is in NTS[n¢] then

1. Q¥(3 n)Pk+1NTS[n%+1] C QPcoNTS[pemax{arart1brr1.b}],

2. QY(V n)be+1coNTS[n+1] € QUNTS[pemax{ararrybur1bl],

3. Q*(3 n%)b+1coNTS[n%+1] C QP(3 n )bs+1 NTS[pemax{artbrn}] and
(¥ n)

4. QV(V no )b NTS[no+1] C QP(Y nx )b+t coNTS [nemax{ansibisi}],



The proofs are omitted and are left to the interested reddesbtain contradictions, one uses the alternating
time hierarchy (Theorem A.2) just as in the deterministisecaThe above lemmas immediately lead to a
natural definition oflternation-trading proof thatoNTIME[n] C NTS[n] = A; C As, for classesA; and
A,. Another way to yield a contradiction uses a result simiecémma 3.1, which showed thRTIME[n] C
DTS[n¢] impliesDTS[n?] ¢ DTS[n®] for a > .

Lemma 4.3 If coNTIME[n] C NTS[n¢] thenNTS[n?] € coNTS[n®] for a > a'.

This lemma can be used to motivate a definitiomafmal form proof and prove that any alternation-trading
proof can be converted into normal form.

Definition 4.1 Letc > 1. An alternation-trading proof thatcoNTIME[n] C NTS[n¢] = A; C Ag) isin
normal formif (1) A; = NTS[n?], Ay = coNTS[n®], for somea > o, and(2) no other lines areNTS or
coNTS classes.

Example. If TAUTOLOGY € NTS[n¢] thencoNTIME[n] C NTS[n¢t°(1)] by Theorem A.1, siNTS[n?] C

(3 n)L(V¥ logn)!NTS[n] by Lemma 4.1 TISP Speedup). Applying Lemma 4.2ITISP Slowdown) thrice,
(3n)(V logn)*NTS[n] C (3 n) (¥ logn)'coNTS[n] C (3 1) NTS[n’] € coNTS[n"]. Whene < ¥/2 ~

1.25, NTS[n? C coNTS[n®] for somea > o, which contradicts Lemma 4.3.

Lemma 4.4 Letc > 1. If there is an alternation-trading proof th&toNTIME[n] C NTS[n¢] = A; C Aj)
in normal form, and the proof has at least two lines, theNTIME[n] € NTS[n].

Theorem 4.1 Let A; and A, be simple and complementary. If there is an alternatiowlitrg proof P that
(NTIME[n] C DTS[n] = A; C Ag), then there is a normal form proof fer of length at most that aP.

One can also define proof annotations for this setting. Thiv corresponding to valid annotations change
due to differences in the rules. For example, rjeté, 0, 0], [1,1,0,0,0,0,0], and[1,0,1,0,0,0, 0] are valid
annotations for this setting, the first being the annotaforthe above example. From the Speedup and Slow-
down Lemmas given above, observe that the operations omerf®are agaimax, +, and multiplication
by ¢. Hence the translation of annotations to linear programgnialiows a similar strategy as before: we
define variables; ;, b; j, z; for all lines¢ and possible quantifier blocks replace components of the form
max{a,a’'} = a” with @” > a, " > o/, then minimize)_ a; ; + b; ; + ;.

4.2 Proof Search Results, a Time Lower Bound, and a Limitatio

The structure of good lower bound proofs for theallfoLOGY versusNTISP” problem turned out to be
different from those for the “SAT versu3TISP” problem. The program uncovered interesting new results.
For one, Fortnow and Van Melkebeek® lower bound is not optimal; the best 11-line proof alreadegia
1.419 exponent. For more details, cf. Appendix G. From experisient found annotationd,, A,, Az, A4

(all optimal for their number of lines) with the property th&; .1 = [1, A;, 4;,0]. This naturally suggests a
proof by induction where the induction hypothesis is afgptigice. We arrived at the following.

Theorem 4.2 TAUTOLOGY requiresn V2—(1) time for nondeterministic algorithms using(!) space.

The proof is in Appendix H; it is an induction correspondimgatn infinite sequence of annotations. The
theorem’s annotations and parameter settings for the dinststeps of the induction are precisely those chosen
by the search program fot,, As, A3, andAy; in this sense, the formal proof corresponds with the besiit®



from computer search. As experiments indicated that theesempA,, Ao, As, etc.is essentially the best one
can do, we believe the lower bound is optimal for this framiuwo

Conjecture 4.1 There is no alternation trading proof thabNTIME[n] ¢ NTS[n¢], for anyc > /4.

Some interesting limitation can be proved for alternati@ualing proofs. Namely, unlike the case of time
lower bounds for SAT, no golden ratio lower bound can be agliién this setting. The proofis in Appendix I.

Theorem 4.3 There is no alternation trading proof thadNTIME[n] ¢ NTS[n¢], for anyc > ¢ ~ 1.618.

5 Lower Bounds for Multidimensional TMs

Next, we consider lower bounds for a multidimensional maehtmodel, which subsumes both the small-space
random access model and off-line one-tape Turing machindgelso Our approach yields new lower bounds

here as well. To recall, the machine model has a read-onjra-access input tape, a read-write/random
access storage af!) bits, and al-dimensional tape that is read-write with sequential (way) access.

5.1 The Framework and Linear Programming Translation

DefineDTIME,[t(n)] to be the class of languages recognizedizimensional one-tape machineit(n))
time. Lower bound proofs for these machines have differentctire from the first two: one speedup rule
simulates al-dimensional machine by a nondeterministic (or co-nomrdatastic) machine with a small space
bound. More precisely, l&p represent a string of quantifier blocks, @o= (Q1 n®)%2 - - - (Qy n%*-1).

Lemma 5.1 OTIME, to DTISP) LetQx+1 € {3,V}. Thenforall0 < s < aandb > 1,
Q'DTIMEg[n®] C Q*(Qry1n® *)max{e= s DTISP[n®, n].

The proof of Lemma 5.1 guesses a short crossing sequencditites the tape inta® blocks, each of
which can be simulated i@ (n%*) space, cf. [MS87, vMRO05]. We omit its proof here.

Lemma 5.1 lets us use the Speedup Lemma for space-boundéihemflemma A.1) to prove class inclu-
sions. Another Slowdown Lemma is required; its proof fokothie lines of earlier results. Again, I€tbe a
string of quantifier blocks.

Lemma 5.2 (Slowdown forDTIME;) Suppos&NTIME[n] C DTIME4[n¢]|. Then fora;,b; > 1, e < ajy1,
QP (Qps1 n )Pkr1 DTIMEg[n+1] C QU DTIME [n¢max{br-bit1.a-0141}] and
QP (Qpy1 n®) k1 DTISP[n®+1, €] C QP DTIME [n¢max{brbrr1akaria}],

We also use a standard time hierarchy theorem:

Lemma 5.3 For a > a’, DTIME4[n?] ¢ DTIME4[n®].

Example. In 1983, Kannan [Kan83] proved thafTIME[n] ¢ DTIME; [n W], using a weaker version of
Lemma 5.1. Reproducing his argument:

DTIME;[»*% C (3 n)DTISP[n*? n'/?] by DTIME, to DTISP (Lemma 5.1)
(3 n)(¥ logn)DTISP[n,n'/?] by the Speedup Lemma f&TISP (Lemma A.1)
(3n)DTIME;[n¢] by the Slowdown Lemma fdDTIME,; (Lemma 5.2)
DTIME; [n¢"] by Slowdown forDTIME,

N 1NN
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A contradiction follows frome < /3/2 and Lemma 5.3. But SAE DTIME;[n¢] implies NTIME[n] C

DTIME; [n¢+°()] (Theorem A.1), so SAT cannot be solvednV/3/2—<) time on a 1-D TM. This is the SAT
lower bound proved by Van Melkebeek and Raz [vMRO5].

Corresponding notions of alternation-trading proofs amubdations can be defined here as well. The simple
classes here have eitheD& ISP[t, s] or DTIME,[t] phase at the end of their descriptions. There are two
possible Speedup Lemmas for a class wilhTdSP phase: one introduces only a single quantifier, and another
introduces two. However, just as before, we can prove therge&peedup is unnecessary. Hence the proof
annotations for this setting can be bit vectors, for the tules applicable at each step. If the deterministic
class is D TIME, class, a “speedup” means that we apply@idME,; to DTISP Lemma. If the deterministic
class isDTISP, a “speedup” means that we apply the Speedup Lemma. For éxaimpannotation for above
example ig1, 1, 0,0]. The structure of valid proof annotations changes accglylin

One can also define a normal form proof that begins WItHME;[n] and ends wittDTIME ;[n%], where
a’ < a. Such proofs imply lower bounds due to Lemma 5.3. Every m@digon-trading lower bound proof
againstDTIME,; has a corresponding normal form proof, by an argument aoatp Theorem 4.1. Finally,
the translation to linear programming is similar, excetthew variables; are introduced for the space
exponent of théTISP class in linei (for all relevanti). Theses, are additional free parameters.

5.2 Time Lower Bound and Proof Limitation

The best annotation found (for all dimensiaf)svas the 66 line annotation
1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,0,
1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1, 1,0, 0],
which leads to proofs th& TIME[n] is notin any oD TIME; [n!-399], DTIME;[n 1875, andD TIME3[n!-1343].
In fact, all the best annotations found had the fditm 1 (0 1 1)* 0 (0 1 1)* 0 0]. (More details are in Ap-

pendix J.) The annotations suggest a proof where one haslactive lemma capturing th@ 1 1)* behavior,
then applies the lemma twice to a proof of six more lines. Shigtegy leads to:

Theorem 5.1 SAT ¢ DTIME,[n€], for all ¢ < rg wherery > 1 is a root of
pa(r) = (2d+1)(d+1)%2° —2(d+1)(2d +1)z* — d*23 +2(d+1)2* — ((2d+1)(d+1)* + D)z +d(d+1).

The proof is in Appendix K. It establishes an inductive Spgetdemma that efficiently simulatd3TIME,
in o TIME assumingNTIME[n] C DTIME,4[n¢], then applies the lemma twice in the lower bound proof. We
again conjecture that the above lower bound is optimal fieri@tion-trading proofs. We can prove that no
n'*1/4 Jower bound is possible fat-dimensional TMs. The proof is in Appendix L.

Theorem 5.2 There is no alternation trading proof that SATDTIME,[n¢], for anyc > 1 + 1/d.

6 Discussion

We introduced a methodology for reasoning about lower bsundhe alternation-trading framework. This

gives an elegant and general way to attack lower bound prablga computer, and lets us establish concrete
limitations on known techniques. We now have a better utaeding of what these techniques can and cannot
do, and a tool for addressing future problems. Previoustyptoblem of setting parameters to get a good lower
bound was an highly technical exercise. This work shouldicedhe load on further research: once a new
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speedup or slowdown lemma is found, one only needs to findelegant linear programming formulation to
begin understanding its power. We end with two open problems

1. Establish tight limitations for alternation-trading pré@ That is, show that the best possible alternation-
trading proofs match the ones we have provided. Empiricalite are sometimes met with skepticism,
so it is critical to verify the limitations with formal proofVe have managed to prove non-trivial limita-
tions, and it seems likely that the ideas in those can be dgtén

2. Discover ingredients that add signficantly to the framewdtere there are several possible avenues.
One s to find new separation results that lead to new comtiads. Another is to find improved Speedup
and/or Slowdown Lemmas. The Slowdown Lemmas are the “bkihdé the ingredients, in that they
are the most elementary (and they relativize). For instahogay be possible to give an better Speedup
Lemma by proving thaDTS is containednfinitely oftenin a faster alternating time class, and use an
almost-everywheréme hierarchy [GHS91, ABHH93] to obtain a contradiction.

Finally, combinatorial methods have led to several impvestme-space lower bounds. For example,
Ajtai [Ajt02] and Beameet al. [BJS01] have proven time-space lower bounds for branchingrams;
Gurevich and Shelah [GS88] gave a problenNifiISP[n, log n] but notDTISP[n!*¢ nt]) whenb +

2a < 1/2. Is it possible to incorporate combinatorial methods it alternation-trading framework?
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Guide to the Appendices

e Appendix A is a short introduction to the technigues usedhis work and related ones.
e Appendix B proves that for any timeand space SAT algorithm,ts = Q(n°) for all ¢ < 2 cos(7 /7).

e Appendix C proves that Speedup Rule 2 is redundant, i.eanibe simulated by Speedup Rule 1 in the
proof system.

e Appendix D proves some properties that allow us to restrcselves to considering normal form proofs.
e Appendix E analyzes results of a computer proof search fart®Ae-space lower bounds.

e Appendix F proves that no quadratic time lower bound for SAThen°(!) space setting can be proved
with alternation-trading proofs.

e Appendix G analyzes results of a computer proof search fatolagy time-space lower bounds (on
nondeterministic machines).

e Appendix H proves a V2 time lower bound, based on results of Appendix F.
e Appendix | proves that an? ~ n'-618 time lower bound for Tautology is not possible.

e Appendix J analyzes results of a computer proof search far IB#ver bounds on multidimensional
TMs.

e Appendix K proves lower bounds based on the results of Apgdnd

e Appendix L proves that an'*+!/ time lower bound for SAT od-dimensional TMs is not possible with
alternation-trading.

e Appendix M proves new lower bounds for QBRnspired by the results of computer searches.
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A A Short Introduction to Time-Space Lower Bounds

Here we give a brief overview of the tools that have been usqutdve time-space tradeoff lower bounds.
We focus on deterministic time lower bounds for satisfiapilor algorithms using:°(!) space, as the other
relevant lower bound problems use analogous tools andftespace case is especially simple to work with.

It is known that satisfiability of Boolean formulas in congiine normal form (SAT) is a complete problem
under tight reductions for a small nondeterministic coripyeclass. DefineNQL asnondeterministic quasi-
linear time i.e.

NQL := | J NTIME[n - (logn)°] = NTIME[n - poly(log n)].
c>0

Theorem A.1 (Cook [Co088], Schnorr [Sch78], Tourlakis [Tow1], Fortnow et al. [FLvMV05]) SAT isNQL-
complete, under reductions in quasi-linear time anfogn) space simultaneously, for both multitape and
random access machine models. Moreover, each bit of thetieducan be computed i (poly(logn)) time
andO(log n) space in both machine models.

LetC[t(n)] represent a timé(n) complexity class under one of the three models:
e deterministic RAM using time and¢°(!) space,
e co-nondeterministic RAM using timeand¢°(!) space,
¢ d-dimensional Turing machine using time

The above theorem implies thatNfTIME[n] ¢ C]t], then SAT¢ C|[t], modulo polylogarithmic factors.

Corollary A.1 If NTIME[n] € C[t(n)], then there is & > 0 such that SAT¢ C[t(n) - (logt(n))*].

Hence we want to prov@lTIME[n] ¢ C[n¢] for a large constant > 1. For the purposes of time lower
bounds for small space algorithms, we work win°] = DTS[n¢] = DTISP[n¢, n°™)]. Van Melkebeek and
Raz [vVMRO5] observed that a similar corollary holds for amglggemI1 such that SAT reduces td under
highly efficient reductionsg.g. VERTEX COVER, HAMILTON PATH, 3-SAT, and Max-2-SAT. It follows that
identical time lower bounds hold for these problems as well.

Speedups, Slowdowns, and Contradictions. Given that our goal is to prov TIME[n] € DTS[n¢], how
can we go about this? In an alternation-trading proof, werassthatNTIME[»] C DTS[n¢] and attempt to
establish a contradiction, by applying two lemmas in suctag that a time hierarchy is violated. One lemma
(called the “speedup lemma”) take®d S[t] class and places it in an alternating class with runtirfi¢; the
other (called the “slowdown lemma”) takes an alternatirggsiwith runtime and places it in a class with one
less alternation and runtin@(t¢).

Lemma A.1 (Speedup Lemma)Leta > 1,e > 0and0 < z < a. Then
DTISP[n“,ne] - (Ql nm—i—e)max{l,m—i—e}(QQ log n)max{l,e}DTlsp[na—x7ne]’
for Q; € {3,V} whereQ; # Q.. In particular,

DTS[n? C (Q1 n®)™>{L}(Q, logn)' DTSR ™).
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Proof. Let M be arandom access machine usirfigime andn® space. To get a simulation 8f having type
(3 prteymax{latel(y Jog p)max{Le} DTISP[n2~* n¢], the simulationV (z) existentially guesses a sequence
of configurationsCy,...,Cy= of M(x). It then appends the initial configuration to the beginnifighe
sequence and the accepting configuration to the end of theeseg. ThenV(z) universally guesses ac
{0,...,n"}, erases all configurations exceptandC;, 1, then simulated/ () starting fromC;, accepting if
and only if theC; 4 is reached withim®~* steps. It is easy to see that the simulation is correct. Tpatin
constraints on the quantifier blocks are satisfied, sin@ #ie universal guess, the input is onlyC;, and
C;41, Which is of sizen + 2n¢ < pmax{let+o(l), 0

The Speedup Lemma dates back to work of Nepomnjascii [Nepii@Kannan [Kan84]. Note that in the
above alternating simulation, the input to the fiRalISP computation is linear im + n¢, regardless of the
choice ofz. This is a surprisingly subtle property that is exploite@vily in alternation-trading proofs. The
Slowdown Lemma is the following folklore result:

Lemma A.2 (Slowdown Lemma) Leta > 1,e > 0,a’ > 0, andb > 1. If NTIME[n] C DTISP[n¢, n¢], then
for both@ € {3,V},

(Q na’)bDTIME[na] C DTISP[nc-max{a,a’,b}’ ne-max{a,a’,b}].
In particular, if NTIME[n] C DTS[n¢], then
(@ n” )’ DTIME[n®] C DTS[nemax{ee’0}],

Proof. Let L be a problem i@ n®)*DTIME[n?], and letA be an algorithm satisfyind.(4) = L. On
an inputz of lengthn, A guesses a string of lengthn®+°(1) | then feeds am®*+°() bit string z to A’(z),
where A’ is a deterministic algorithm that runs irf" time. SinceNTIME[n] C DTISP[n¢, n¢] andDTISP
is closed under complement, by padding we hBVEME[p(n)] U coNTIME[p(n)] € DTISP[p(n)¢, p(n)€]
for polynomialsp(n) > n. ThereforeA can be simulated with a deterministic algorithBn Since the total
runtime of 4 is n® to(1) 4 pb+e(l) 4 pa the runtime ofB is nemax{a.a’.b}+0(1) and the space usage is similar.
O

The final component of an alternation-trading proof is a tiezarchy theorem, the most general of which
is the following, provable by a simple diagonalization.

Theorem A.2 (Alternating Time Hierarchy) For k£ > 0, for all Q; € {3,V}, a} > a; > 1, andd} > b; > 1,
(Ql nal)b2 bk (Qk nak)bk+1 DTS[nak“] g (Rl naﬁ)blz . (Rk n“;c)b;gﬂ DTS[TL%H],
whereR; € {3,V} and R; # Q;.

Remark 1 Are alternation-trading proofs relativizing? The Slowdowemma relativizes, but the Speedup
Lemma does not relativize in most oracle models, for thelsimgason that the original machine runs longer
than the (sped-up) host machine, and can therefore ask tapgeies. This is typically the case. For example,
the proof thatNTIME[n] # DTIME[n] is non-relativizing, since a powerful enough oracle makes tivo
classes equal. Therefore, we consider alternation-trgdanoofs to be in that rare class of non-relativizing
and non-naturalizing lower bounds (but acknowledge thatamlief is not unanimously held).
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Two Instructive Examples. In order to understand alternation-trading proofs, it isessary to consider
some examples. The art behind their construction condigitsding the proper sequence of rules to apply, and
the right settings of the parametein the Speedup Lemma.

1. In FOCS'99, Lipton and Viglas proved that SAT cannot bevadlby algorithms running imVv2-e
time andn°(!) space, for ale > 0. Their proof can be summarized as follows: by Theorem A4, th
assumption that there is such a SAT algorithm implies RBtME([n] C DTS[n¢] with ¢ < 2. Then

(3 n%) (Y n¥)DTS[N ] (3 n?*)DTS[n?] (Slowdown Lemma)
DTS[n?] (Slowdown Lemma)

(Vn)(3 logn)DTS[n| (Speedup Lemma, with = 1).

N 1NN

But (3 n2/<*)(V n2/<*)DTS[n?/<’] C (¥ n)(3 logn)DTS[n] contradicts Theorem A.2. In fact, one can
show that ifc? = 2, we still have a contradiction witNTIME[n] € DTS[n¢], so thes can be removed

from the previous statement and state that SAT cannot bedaiv,V2 time andn°®) exactly’

2. Improving on the previous example, one can show AT TS[n!-6%04], If NTIME[n] C DTS[n] and
V2 < ¢ < 2, then by applying the Speedup and Slowdown Lemmas apptelyriane can derive:

DTS[n"/2+2] (3 n/2)(¥ log n)DTS[n?

(3 02/2)(V logn) (¥ n)(3 logn)DTS[n]
(3n°/%)(¥ n)(3 logn)DTS[n]
(3n/?)(¢ n)DTS['

(3 %DT[ gy
(3n/2)(3n/2)(Y logn)DTS[n/?]
(3

(In°

N 1N

N 1N 1N

(
nc/2)(Y logn)DTS[n/?]
/DTS2
DTS[n¢"/?]

N 1N

Whenc?/2 +2 > ¢*/2 (which happens i < 1. 6004), we haveDTS[n?] C DTS[n®] for somea > d/.
Notice that we do not know iDTS[n?] ¢ DTS[n] whend’ > a, as the space bounds on both sides
of the inequality are the same However one can still show bwaslation argument (similar to the
footnote) that eitheDTS[n?] ¢ DTS[n*] or NTIME[n] ¢ DTS[n¢], concluding the proof.

While the second example is more clever in structure, a nmegedsting fact is that the proof was found by
a computer program. By “found”, we mean that the programiagpghe Speedup and Slowdown Lemmas in
precisely the same order and the same parameter settivysg loaly minimum knowledge of these Lemmas
along with a way to check the validity of the parameters. Mweg, the program verified that the above is the
best possiblalternation-trading proof that applies the Speedup and@avn Lemmas for at mogttimes. A
precise definition of “alternation-trading proof” is giveénSection 3.

"SupposeNTIME[n] € DTS[n°] and L2 TIME[n] € M>TIME[n'T°™M]. The first assumption, along with the Speedup and
Slowdown Lemmas, implies that for evekythere's akK satisfyingZ, TIME[n*] C NTIME[n*°] C X x TIME[n]. But the second
assumption implies tha x TIME[n] = L2 TIME[n'*°(V)]. HenceX,TIME[n*] C L, TIME[n'*°()], which contradicts the time
hierarchy forz> TIME.
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B New Lower Bound on the Time-Space Product for SA?

Using Lemma A.1in its full generality, it is possible to atlapr linear programming framework to prove time
lower bounds for SAT for any fixed space bouttj wheres < (0,1). Trying a range of values fay, we found
that for each of them, the optimal annotations forti€) space setting also appeared to be optimakfary
space bound®. The following table gives time-space pairs for which owgdiem prover has shown that no
SAT algorithm can satisfy both time and space requirementsl&maously.

Time | Space
L6 [ 9
17 | 75
nl24 | 666
136 | 5
pl51 | 5,333
158 | 25
L7 'l
75 | 05

Based on this table, it is natural to conjecture that the-p&ce product for any algorithm solvingySis
at leastQ(n2°03(/7) > (n!'81), and the product is minimized when the space is as small as@sIn
the below, we establish the conjecture. To the best of owvladge, the previously best known bound on the
time-space product was onfy(n!->73) [FLvMVO05]. While the proof annotations in the below are agdus
to the2 cos(7/7) bound (as suggested by the experiments), the paramefagsett the proof rely a great deal
on our study of the theorem prover’s output.

Theorem B.1 Lett(n) and s(n) be bounded above by polynomials. Any algorithm solving 8Aimiet and
spaces requirest - s = Q(n?s(7/1=¢) for all ¢ > 0.

Proof. Suppose SAT is solved in time= n¢ and spaces = n?, with ¢ + d < 2cos(r/7). Of course
we must have: > 1, and sod < 1 — 2cos(7/7) < 1. By Theorem A.1, it follows thaNTIME[n] C
DTISP[netoll) pd+o)],

Define the sequences := 2 — d, ¢y 41 := ccffj, andd; :=d, dgy1 := d'c—’;“. It is easy to see thaj, > ¢
for all k, and that the sequencés, } and{d; } are monotone nondecreasing fof d < 2 andd < 1.

First we prove that for alk,

DTISP[n®,n%] C (3 n'+°M)(V log n)DTISP[n!+o(1) pdte)], 2)

By the Speedup Lemma,
T nt,n™ =DT n“ % n C(dn ogn)DT n,n .
D ISP c d +0(1) D ISP 2—d d+0(1) 3 1+O(1) v 1 D ISP d+0(1)

For the inductive step, we have the following (subtle) sedkinclusions:

DTISP[nes+1, pkt1te] (3 pl+oM)(y log n)DTISP[nk+1—(1=dkt1) pdriaito(D] (Speedup)
= (3n!tW) (V¥ log n)DTISP[net/¢, ndet1toM)]  (def. of cpy1, & ¢ > ¢)

(3 n e DTISP[per+o) pde+e(D)]  (Slowdown & def. ofdy,)

(3 n' WYV log n)DTISP[R! oM pd+e(M]  (by induction)

8A early version of the work in this section was reported inahéhor's PhD thesis in 2007.
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The sequencéc;, } converges te., = ¢/(c — 1 + d), hence{dy} converges ta., = d/(c — 1+ d). (Note
we havec > ¢ — 1 + d, sinced < 1.) Therefore for alt’ < ¢y, d' < doo,

DTISP[n¢ , n?] C (3 n' M) (V log n)DTISP[p! M) pdted)], 3)
Note if ¢? < ¢;, for anyk, we already obtain a contradiction: for sufficiently latgeve have
NTIME[t*/¢] C DTISP[t, t%] C (3 t*F°M)(V log n)DTISP[t' oM td+o(1)] € NTIME[t],

where the first inclusion follows from Slowdown, the seconohf eq.(2), and the third from Slowdown.
From these containments, one can derive a time hierarcly aytradiction, along the lines of Lemma 3.1.
Therefore we may assume thét> ¢, for all k.

Equation (3) can be combined with another inductive argurteeproduce a contradiction. In particular, for
all k and/,

DTISPnee—kdetXima(e/ee)’ pyde] C (3 (/") (Y 1og n)DTISP[n(€/e0) +o(1) (/e +o()] — (g)

The proof of equation (4) is very similar in structure to Lem8 in [Wil08]. For completeness, we give
the sequence of inclusions to derive it. Wheg: 1, for arbitrary? we have

DTISP[ncet(e/e)=de pde) 3n/)(V logn)'DTISP[n, n®] (Speedup)
5 /e (¥ logn)! (¥ n1+°(1))(3 log n)DTISP[n I+o(1) d+0(1)] (Eq. (2))
3 n/e) (¥ pr ) DTISP[peto) pdto)]  (Slowdown)

( )
( )
( )
(3 n/)DTISP[p to) pdete)]  (Slowdown; noter, > ¢ soc > c2/cy)
( )
( )

NN NN N

3 /o) (3n/)(Y log n)DTISPne /erte®) pde’/ertoV] (Eq. (2))

(
3 n</)(V logn)DTISP[pe /et pde/eetoll)]

For the inductive step, we have

DTISP[ner e i (/e gy

C  (3n(/") (V¥ logn)DTISP[n Ce—%—l)dﬁEE<C2/CZ>"+°<1>,ndf] (Speedup)

C  (In(/ON Y logn) (¥ nle/" )3 logn)DTISPp /e +o(1) pd(c/c)* ! +o(1)]  (Induction)
C (@nl/Dy v 1ogn)(vn (/e)* \DTISP[pele®/ee)" o) pd(e®/e)*™ +o(1)]  (Slowdown)

C (3D \DTISP[ne (*/e)* 1 Ho(l) pde(e?/en)*  +o(1)] (Slowdown)

C (Il T neyy 1ogn)DTlsp[n<02/ce>’“+°<1>,nd<02/0f>’“+°<1>] (Eq. (2))

— (3n Jco)® )(¥ log n)DTISP[n (cz/cl)k—i-o(l)’nd(cz/cl)k+o(1)]

Now, for sufficiently larget(n) > n we have
NT||\/|E[t(Cz—kdz+Zf:1(02/Cz)i)/C]
C  DTISP[teekdetZin (e?/en) o) pde]  (Slowdown)
C 3@/ (Y log n)DTISP[(* /) +o(1) pd(c®/e)*+o()]  (Eq. (4))
C (/") DTISP[e(e/e)*+o(l) pd(e/eo*+o(1)]  (Slowdown)
C  NTIME[te(e*/ee) +o(1)]
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A contradiction with the nondeterministic time hierarctojidws, when

k
co — kdy + Z(cz/cz)i < A /e (5)
=1
Finally, we claim that where + d < 2cos(w/7), inequality (5) holds for sufficiently largé and¢. The
theorem follows immediately from this claim. To see why thedro is true, we analyze the case whérand
£ grow unboundedly and use the fact that the underlying semsesre monotone nondecreasing. Rewrite the
inequality into the form

Cy — kdz i

2/ Ni—k _ 2
—5 73 T c“/cy < c“. (6)
T §:j< )
As k — oo, the first term on the LHS vanishes sin€e> ¢, for all ¢. The second term convergesl_cll/CQ.
Now as¢ — oo, ¢; — ¢ = ¢/(c — 1 + d). Hence in the limit, inequality (5) becomes
1 2 2 ¢ 2 2/ 2 2
0+ < = 1<cf———— <= ¢ —ct+de<c*(c"—c+dc)—c

1— ¢z —c+de

1
c(c—1+4d)
— c—l4d<c(@—ctde)—c = 2c—1+d<E - +d® = 0<S - +d® —2c+1—4d.

It remains to show that the bivariate polynomiék, y) = 2° — 22 — 2z + 1 + y(2? — 1) is greater tha® over
all points(z, y) wherex + y > 2 cos(w/7). Wheny = 0, p(z) = 0 over the range: € [1, oo] precisely when
x = 2cos(m/7), andp(x) > 0 for all z < 2cos(w/7). But for ally > 0 andz > 1, the resulting polynomial
strictly dominateg(x, 0) and we also have(z,y) > 0 for anyz + y < 2 cos(w/7).

O

C Speedup Rule 2 is Redundant

To prove this we first need a lemma relating this andb;’s of an alternating class.

Definition C.1 A class (Q1 n®)%2(Qy n92)---% (Qy n®)*+1DTS[n%+1] is orderly if it is either (a) a
DTS[n| class, or (b) forali = 1,...,k, a; < bj41.

Lemma C.1 Supposed; is orderly. Then every alternation-trading proof begingiwith A; consists of only
orderly classes.

Proof. Induction on the number of lines. The base case is triviag ifduction hypothesis is that thith line,
(@1 n*)"(Q2 n™) - (Qx n )"+ DTS[n*+1],
is orderly. For thg? + 1)th line, we consider the rules in turn:
e (Speedup Rule 0) Clearly;, n*)™>{=1}(Q, 1 n°)'DTS[n%+1-?] is orderly.
e (Speedup Rule 1) Suppose the line is
(Q1 n™)2(Qa %) - - Uk (Q, pmlonahymax{zbrsi} (), | p0)ok+1 DTS [k +1-2],
Thenay < by1 by the induction hypothesis, soax{ax, 2} < max{z,bxy1}, 1 < bgi1, thus the class

is orderly.
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e (Speedup Rule 2) This case is clear, as the line is:
(Q1 n™)%2(Qo n92) - - O (Qp n™)P+1 (Qp g n®) <@ bki1} (O o 10)Pk+1 DTS [k +1 7],
e (Slowdown Rule) Obvious, given the hypothesis.
This concludes all the cases. O

Lemma C.2 Let A; be orderly. For every alternation-trading proof th&TIME[n] C DTS[n¢] = A; C
As, there is another alternation-trading proof of the sameliogiion that does not use Speedup Rule 2.

Proof. Consider a proof’ that applies Speedup Rule 2 at some line. The line has the form

A = (Q1 )2 (Qg n2) - - B (Qp n)o:+1 (Qp 1 n®) @bt} (Q o nO)o+1 DTS[nak+1-7],
We consider two cases:

1. If x < ag, thenz < by, by Lemma C.1. By applying Speedup Rule 2, one obtains
A= (Q1n™)2(Qan) -+ P (Qp n™) 1 (Qpyy n®)" PPk} (Qp o m0)Phe1 DTS M1 7]
= (Qun™)"(Q2 n™) -+ (Qr n™)" 41 (Qua1 1°)" 1 (Qpa )+ DTS[n+1 7],
If we instead apply Speedup Rule 1 with= z, the class is
B = (Q1 n)"2(Qq n%) - - b (Q nmax{ak,w’})max{m’,bk+1}(QIH_I nO)bk+1DTs[nak+1—m’]
= (Q1 n™)"2(Q2 ™) - - P (Q) n™)"+1(Qpgq n°) "1 DTS +177].
Then by applying Speedup Rule 1 with= 0, the above class is in
(Q1 1) (Q2 n2) - (Qr ™)1 (Qpr n°)" 1 (Qpp )1 DTS[nM+1 7],

It is clear thatB C A: every parameter i3 is at most the corresponding parameterdin Thus any
inclusion derived with Rule 2 could only be made stronger flging Rule 1 twice instead.

2. If x > ag, then Speedup Rule 2 gives
A=(Qy nal)b2 (Qz n%)-- b (Qr nak)karl (Qrs1 nx)max{vak+l}(Qk+2 no)bk+1 DTS[n%+177].
Speedup Rule 1 with’ = a;, gives
B=(Q n‘ll)b2 (Qz n®) - bie (Qr nmax{akvm,})max{wlvkaﬂ}(Qk_’_l no)bk+1 DTS[nak+1—$/]'

= (Q1 n)"(Qa n) - ¥ (Qg n™* )"+ (Qpyy nO)PH+ DTS[n%+1 %],

where we used the fact that = a; < bi,1 (Lemma C.1). Applying Speedup Rule 1 again with
z' =z — ag, Bis contained in

(Ql nal)b2 by (Qk nak)bk+1(Qk+1 nmax{x—ak,l})max{x—ak,karl}(Qk+2 nO)karl DTS[nak+l_I].

Again, observe C A in this case, and every parameterAris at most the corresponding parameter in
A.

This completes the proof. O
As a consequence, Speedup Rule 2 is not necessary for nammapfoofs.

Theorem C.1 For every alternation-trading proof diTIME[n] C DTS[n] = A; C Ay in normal form,
there is another alternation-trading proof of the same fttlaés not use Speedup Rule 2.

Proof. By Lemma C.1, every normal form alternation-trading praobdiderly. So by Lemma C.2, there is an
equivalent alternation-trading proof that does not usee8pe Rule 2. O
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D Proofs of Normal Form Properties

Here we establish Lemma 3.1 and Theorem 3.1, which show ttlsaffices to consider alternation-trading
proofs written in normal form:

Lemma 3.1Letc > 1. If there is an alternation-trading proof far in normal form having at least two lines,
thenNTIME[n] € DTS[n¢].

Proof. Let P be an alternation-trading proof ferin normal form. We consider two cases.

e Suppose: > a’. In this caseNTIME[n] C DTS[n¢] implies DTS[n? C DTS[n*~°] for somes > 0.
By translation,DTS[n%] € DTS[n%~?] implies

DTS[n®*/(@=9] € DTS[n? C DTSR,

andDTS[na(@/(a=9)") € DTS[ne=?] for all i > 0. Sinces > 0, this impliesDTS[nl] C DTS[n*?]
forall L > a — 4. Therefore, iNTIME[n] C DTS[n¢] then for allL > a,

NTIME[n’] C DTS[n] € DTS[n*"°] C coNTIME[n®~?],
a contradiction to the time hierarchy (Theorem A.2).

e Supposer = a’. Let A be a line inP with a positive number of alternations. (Such a line musstexi
sinceP has at least two lines.) The proBfproves thaNTIME[n] C DTS[n¢] impliesDTS[n?%] C A C
DTS[n”], s0A = DTS[n?].

SinceDTS[n?] is closed under complement,
A=A, (7)

whereA’ is the complement ofl. Without loss of generality, assume= (3 n9)B and A’ = (V n%)B’
for somed > 0 and complementary classé&sand B’. Clearly,

A = (vn®)A andA = (In°)A. (8)

Now consider the classTS[n®($1] D DTS[n¥], for arbitraryk > 1. By the Speedup Lemma (LemmaA.1)
and the fact thabTS[n®] C A’ for somes > 0,

DTS[n*] € DTS[RO51] € (3nd)(Vnd)--- (3nd) (¥ nd) A'.
/5]

Applying equations (7) and (8), we have

(An®) (VY nl)--- (I nl)(V¥nl)A
= (3nO)(¥n®) .- (Ind)A
= (3n9)(Vn®)---(Ind)A
= 3no)(Vn®)---A
= =3n0)(Vn®)A = (3nd)A = (3In’)A = A
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ThereforeDTS[n*] C A, for everyk > 1. HenceNP C DTS[rOM) noM] C A. But by applying a
slowdown step for a finite number of times g there is an alternation-trading proof th&tC DTS[n ]
for a constantk’. It follows thatNP € A C DTS[nf] C coNTIME[n’], contradicting the time
hierarchy (Theorem A.2). SNTIME[n] ¢ DTS[n¢] in this case as well.

a

Theorem 3.1Let A; and A, be complementary. If there is an alternation-trading préofor ¢ that shows
(NTIME[n] C DTS[n] = A; C Asg), then there is a normal form proof fer of length at most that aP.

Proof. Consider an alternation-trading proBffor ¢, written as
P=A,Cq,...,Ck, As.

Define thedual proof P’ by
P = A27 _'017 s 7_'Ck7A17

where the notatiomC' denotes the unique complementary simple clas€’fare. every V' in C' is replaced
with ‘3, and vice-versa. Note thdt’ is an alternation-trading proof if and only #f is one.

Since the quantifiers of the first and last linefoére different, note there there must be a lihe= DTS[n?|
for somea.

e Suppose there is only one deterministic clasg®jrcall it C;. Then
P =C;,Ciqq,...C Ay, —Cy, ..., —C;

is also an alternation-trading proof, obtained by piecimggether the appropriate lines frofmand P’.
However,C; = —C;, sinceDTS[n?] is closed under complement. Henk# is in normal form: its first
and last lines ar®TS classes, and no intermediate class 3T class.

e Suppose there ave> 2 differentDTS classes inP. Write P as
P=Ay,....DTS[n*],...,DTS[n*],...,...,DTS[n%],..., As.
There are two cases:

- If there is ani € [k] satisfyinga; > a;11, we are done: leP” to be the sequence of lines from
DTS[n%] andDTS[n*+1], and this is in normal form.

- If a; < a;41 for everyi, then setP” = DTS[n%],..., Ay, ..., DTS[n?], where the classes in the
first“...” in P” are taken directly fron®, and the classes in the second." in P” are obtained
by taking the linesds, ..., DTS[n%]in P’. P”is in normal form since:;, > a;.

O

E Experimental Results: Time-Space Lower Bounds for SAT

We wrote a program that given a proof annotation generatesethvant linear programming instance, solves
it, then prints the proof in human-readable form. For prowfi@tations exceeding 100 lines, we used the
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Ip _solve package to solve the corresponding linear progtawie also wrote heuristic search routines that
try to derive new proofs from old ones. One program starth witjueue of annotations, pulls the head of the
gqueue, and then tries all possible ways to add at most fositdthe annotation. If the resulting lower bound
from the new annotation increases, the new annotation iscacthe queue. Interestingly, this simple strategy
generated all the optimal lower bounds that were found byestive search, and more.

First we verified all the previously known lower bounds, sashthen?<s("/7) pound. In some cases, we
found better settings of the parameters than had been foutittipast, but no proof better thasos(*/7).
Then we searched the space of proof annotations, lookinigtieresting patterns. For all evén= 2, . .., 26,
we exhaustively searched over all valid proof annotatioite % lines. The best proof annotations for each
k are given in the below table. Fér> 26 we have not exhaustively searched all proofs, but instead as
heuristic search as described above; these rows of thegiabiearked with an asterisk. For rows with multiple
annotations, we checked the annotations to two more deglaeds to further verify that the obtained lower
bounds are likely the same. Theof a row is the difference between the exponent of that ronta@@éxponent
of the previous row.

#Lines Best Proof Annotation(s) L.B. A

4 [1,0,0] 1.4142 0

6 [1,0,1,0,0] 15213 | 0.1071

[1,1,0,0,0]
8 [1,1,0,0,1,0,0] 1.6004 | 0.0791
10 [1,1,0,0,1,0,1,0,0] 1.633315| 0.032915
[1,1,0,1,0,0,1,0,0]
[1,1,1,0,0,0,1,0,0]
12 [1,1,1,0,0,1,0,0,1,0,0] 1.6635 | 0.0302
14 [1,1,1,0,0,1,0,0,1,0,1,0,0] 1.6871 | 0.0236
16 [1,1,1,0,0,1,0,1,0,0,1,0,1,0,0] 1.699676| 0.012576
1,1,1,0,1,0,0,1,0,0,1,0,1,0,0]
1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
18 t,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0,0] 1.7121 | 0.0125
20 [1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,0] 1.7232 | 0.0111
22 1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0] 1.7322 | 0.0090
24 1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0] 1.737851| 0.005651
1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0]
1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0]
26 ,1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0, 1,0, 0] 1.7437 | 0.005849
28* 1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0, 0] 1.7491 | 0.0054
30* 1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0, 0] 1.7537 | 0.0046
32* 1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0] 1.7577 | 0.0040
34* | [1,1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0] | 1.760632| 0.002932
n,1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0, 1,0, 0]
t,1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0, 1,0, 0]

We observe that the proofs produced by the annotations itatile have strong similarities to those in the
2 cos(/7) lower bound. For example, the best 14-line proof (provingén'-57!) lower bound) looks like:

0, DTS[n"5.275587925]
1, (E n"1.853485593)(A n"1.)DTS[n"3.422102331]
2, (E n"1.853485593)(A n"1.422102331)(E n"1.)DTS[n"2.00

0000001]

®Thelp _solve package is an open source simplex-based linear progransulwver. It is maintained by a community on Yahoo
Groups:http://groups.yahoo.com/group/Ip solve .
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(E n"1.853485593)(A n"1.422102331)(E n"1.000000001)( A n"1.000000000)DTS[n"1.]
(E n"1.853485593)(A n"1.422102331)(E n"1.000000001)D TS[n"1.687100000]
(E n"1.853485593)(A n"1.422102331)DTS[n"2.846306408 ]

(E n"1.853485593)(A n"1.423153204)(E n"1.000000000)D TS[n"1.423153204]
(E n"1.853485593)(A n"1.423153204)DTS[n"2.401001771 ]

, (E n"1.853485593)DTS[n"4.050730087]

9, (E n"1.853485593)(A n"1.000000000)DTS[n"2.197244494 ]

10, (E n"1.853485593)DTS[n"3.706971186]

11, (E n"1.853485593)(A n"1.000000000)DTS[n"1.85348559 3]

12, (E n"1.853485593)DTS[n"3.127015544]

13, DTS[n"5.275587925]

©O~NO AW

Looking closely at the table, there is a strong correlatietwieen later rows of the table and earlier ones.
For example, there is a tie for best annotation at 10, 16, 124 34 lines, among three annotations that differ
only in three of their bits. To develop a greater undersiagdif what is happening, let us introduce some
abbreviations in the annotation. Where an annotation amthe string(1 0)* 0, we put the symbok, for
k > 1. Where an annotation contains the strii@00, we just putO. The following table emerges:

#Lines | Best Proof Annotation(s) L.B. A
4 1 1.4142 0
6 2 15213 | 0.1071
0
8 12 1.6004 | 0.0791
10 112 1.633315| 0.032915
121
101
12 11111 1.6635 | 0.0302
14 11112 1.6871 | 0.0236
16 11122 1.699676| 0.012576
11212
11012
18 1111112 1.7121 | 0.0125
20 1111122 1.7232 | 0.0111
22 1111123 1.7322 | 0.0090
24 1111223 1.737851| 0.005651
1112123
1110123
26 111111123 1.7437 | 0.005849
28* 111111223 1.7491 | 0.0054
30* 111111233 1.7537 | 0.0046
32+ 111111234 1.7577 | 0.0040
34* 111112234 1.760632| 0.002932
111121234
111101234

For an optimal annotation that ends with a non-Zera longer optimal annotation can be obtained by adding
either ak or k+1 to the end, and & at the beginning. (There are of course some restrictiorese twre no more
than three consecutivEs, no more than two consecuti&s, etc) While we do not yet know how tprove
that all of the best proofs must have this behavior, it seetra@dinarily unlikely that this pattern deviates at
some later point.
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The table suggests that we examine proof annotations obthelf --- 101 2 3 4 - - -. Unfortunately these
annotations do not lead to an improvement. To illustratetHe 424 line proof annotation denoted by

1111111111111111101234 --- 171819,

experiments withp _solve revealed that the optimal exponent is only in the intefta$0175, 1.8018).
These results (along with the fact that any annotation inati@ve formprovably can yield no better than a
2 cos(m/7) exponent, cf. Theorem 3.3) point strongly to the conjectheg there is no alternation-trading
proof thatNTIME[n] € DTS[n¢], for anyc > 2 cos(w/7) ~ 1.8019.

F Proof of Theorem 3.4: No Quadratic Lower Bound

In their paper showing that SAT cannot be solvedin?) time andn°!) space, Fortnovet al. [FLvMVO05]
write that “some complexity theorists feel that improvitg tgolden ratio exponent beyond 2 would require a
breakthrough.” Here we give a formal proof of this sentime&ithough the proof is simple, we believe it is
important as a formalization of a folklore conjecture.

Theorem 3.4There is no alternation-trading proof &fTIME[n] ¢ DTS[n?].

Proof. (Sketch) Suppose there is such a proof, andilee a minimum length annotation in normal form for
it. We claim thatA can be made shorter, yet the resulting LP is still feasiblledaforiginal LP was feasible.

First we observe that every normal form annotation contaisequencé, (. Normal form annotations
can be put in 1-1 correspondence with strings of balanceengaeses of the forrix) , wherex is an non-
empty balanced parentheses string. The first speedup inch pooresponds td( , as it introduces two
guantifiers, all other speedup applications correspond tcaad a slowdown correponds tQ aFor example,
(0) corresponds tfl, 0,0]. Since there is always an adjacent parentheseg)pam any string of balanced
parentheses, there must also be some occurreric® @f a valid proof annotation. If thi$, 0 can be removed
from A without changing the feasibility of the underlying lineapgram, the claim is proved.

The two lines in the proof corresponding to the sequdnégincluding the previous line) have the form:

Coubea (Qk—l nak—l)bk(Qk nak)karl DTS[nak+l] 9)
b (ka—l nak—l)bk (ka nmax{m,ak})max{m,bk+1}(Qk+1 log nO)bk+1 DTS[nak+1—m] (10)
CLbe— (Qk—l nak—l)bk (ka nmax{x,ak})max{x,karl}DTs[nmax{c(akJrl—x),cx,ckarl}] (11)

Every parameter in the class (11) is at least the correspgrirameter in the class (9), except for possibly
the runtime of theDTS computation. Hence ifix1 < c¢(ags1 — x), Orags1 < cx, Of agpry < cbgy1, then
1,0 could be removed without changing the feasibility of the HBwever, if bothay1 > c(ag+1 — =) and
ax+1 > cx, then2ay1 > c(ag+1 — =) + cz, a contradiction when > 2. O

G Experimental Results: Lower Bounds for Nondeterministic Algorithms
Solving Tautologies

Below is a table of results found by exhaustive search ovat sanotations.
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#Lines Best Proof Annotation(s) L.B.
5 [1,0,0,0] 1.323
8 [1,1,0,0,0,0,0] 1.380

[1,0,1,0,0,0,0]

11 [1,1,0,0,0,1,0,0,0,0] 1.419
14 [1,1,21,0,0,0,0,0,1,0,0,0,0] 1.433
[1,1,0,1,0,0,0,0,1,0,0,0,0]
[1,1,0,0,0,1,1,0,0,0,0,0,0]
[1,1,0,0,0,1,0,1,0,0,0,0,0]

17 [1,1,1,0001000,0,1,0,0,0,0] 1.445
[1,2,0,0,0,2,2,0,0,0,1,0,0,0,0,0]

20 [1,1,1,0,0,010,0,0,0,1,1,0,0,0,0,0,0] | 1.455
[1,1,1,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0]
[1,1,100000110001,0,0,0,0,0]
[1,1,0,1,0,000,1,10,0,0,1,0,0,0,0,0]

23 [1,1,1,0,0,0100001,1000,1,0,0,0,0/0].465

As one can see, the structure of good lower bound proofs ®fTauTOLOGY versusNTISP” problem
turns out to be different from those for the “SAT verddi$ISP” problem. Taken from the program, the best
11-line proof reads:

, NTS[n"4.788956584]

, (E n"2.369956583)(A n"1.)NTS[n"2.419]

, (E n"2.369956583)(A n"1.)(E n"1.419)(A n"1.)NTS[n"1.]

, (E n"2.369956583)(A n"1.)(E n"1.419)(A n"1.)coNTS[n"1 419]

, (E n"2.369956583)(A n"1.)(E n"1.419)NTS[n"2.01356100 0]

, (E n"2.369956583)(A n"1.)coNTS[n"2.857243059]

, (E n"2.369956583)(A n"2.378351877)(E n"1.)coNTS[n"1. 181167036]
, (E n"2.369956583)(A n"2.378351877)(E n"1.)NTS[n"1.67 6076023]
, (E n"2.369956583)(A n"2.378351877)coNTS[n"2.3783518 77]

, (E n"2.369956583)NTS[n"3.374881314]

0, coNTS[n"4.788956584]

0
1
2
3
4
5
6
7
8
9
1
Note how larger annotations are composed of smaller onegxémple,[1,1,1,0,0,0,0,0,1,0,0,0,0] is
[1, A7, Ay, 0], where A, and A; are optimal annotations for four and seven lines. In pdaicwbserve that
three optimal annotations from the table have a distingiattern, namely

[1707 07 0]7 [17 17 07 07 07 1707 07 07 0]7 and[17 17 1707 07 07 1707 07 07 07 17 17 07 07 07 17 07 07 07 07 O]'

The pattern suggests that we look for an inductive proof e/aerinduction hypothesis is applied twice in the
inductive step. The next annotation in the pattern would be

[1,1,1,1,0,
1,1,1,0

b b A

0,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,
0,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0],

a 47-line annotation that givesial9 exponent. A heuristic search found the above 47-line atinateand no
other annotations found (with at most 47 lines) attainedaeetdoound of that quality. For many line numbers
£, heuristic search found a large number/dine proof annotations that achieve the same lower boumd. F
example, there are eight such annotations of 26 lines. Epiimal annotation found could be written as a
concatenation of smaller optimal annotations along witldditionall ando0.
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H Proof of Theorem 4.2: The Nondeterministic Time-Space Lowr Bound

To prove Theorem 4.2, we use an inductive lemma. For a givastantc > 1, define the sequencg := 1,
T 1= C, T} i= c3(wk_1)2/(2f:_11 x;).

LemmaH.1 If coNTIME[n] C NTS[n<] and ¢(zx)? > S°F | a4, then for allk > 2, NTS[pXi=1%i] C
(3 n"r) (¥ n®* )coNTS[n"*].

In the following, we do not specify the inputs to quantifiendks, except where absolutely necessary for the
argument.
Proof. Fork = 2 we haveNTS[nct1] C (3 n¢)(V logn)NTS[n] C (3 n°)(V logn)coNTS[n]. Note that
A (zp)? > Zle x; impliesz; > 1. By induction we have that

NTS[n i1 =] (3 n+1)(Y logn)* NTS[ =171 (Speedup)

(3 n" +1)(Y logn)' (3 n™) (¥ n")coNTS[n"*] (by Induction Hypothesis)
(3 n+1)(V logn)' (3 n®)NTS[n*] (Slowdown)

(3 n*+1)(¥ log n)'coNTS[n<#*] (Slowdown)

(3 n®+1)(V log n) (¥ n @)/ (s 20)) (3 @) /(s 2 )N TS [ (@k)*/ (2 )]

N 1NN NN

(Induction Hypothesis, and Assumption)
(3 n"k+1)(Y logn)! (¥ e @)/ (2 xi))coNTS[ncfi(“)Q/(Zi 7] (Slowdown)
(I n®++1)(V n"F+1)coNTS[nk+1].

N 1N

a

Note the lemma indeed applies its induction hypothesisewas suggested by experiments. The lower
bound proof for tautologies can now be derived.
Proof of Theorem 4.2. AssumecoNTIME[n| C NTS[n¢|. Suppose is the smallest integer satisfying
A(x0)? < Y, 2. Note thatc?(z9)2 = ¢ > ¢+ 1 = 21 + x for ¢ > 1.2207, which we know holds due
to Fortnow and Van Melkebeek. Therefdre> 3. By Lemma H.1 and the Slowdown Lemma, for evéry: ¢
we have
NTS[nEi=12] C (3 n®)(¥ n®*)coNTS[n™*] C coNTS[ne"#]. (12)

Define the sequencg, := (Z Cix) T =1+ Z "~ x;/z;. By induction one can show thaj, = 1 +
(sk_1)?/c3, and that this sequence is increasing.

The inclusion (12) says that a contradiction is obtainechwigmma 4.3 when? < s;,. Hence ifc? <
s¢_1, we have a contradiction with Lemma 4.3 (tN&'S versuscoNTS hierarchy). However, we know that
Aay < Zle x;/xe andcx,_ > Zf;ll x;/x¢—1, by our choice of. Taken together, the two inequalities are
equivalent to the conditiom,,; < ¢ < x,. With algebra manipulation and the fact thdt> ¢ + 1 (which
holds forc > 1.33), one can show that this condition implies< s,_;. Hence no such exists.

Now suppose instead that(z;)? > Zle x;, for all k. Then inclusion (12) holds for ak. For whichc
can we obtain? < s, for sufficiently largek? Either the sequendg;} is unbounded (in which case we are
done, as the inequality holds for &)l or it has a limit point. In the latter case we havg = 1+ s2_/c®. The
polynomial p(z) = 1 4 x2/c® — x has rootsz = ¢ - (¢?/2 £+ /(c* — 4¢)/2). Whenc = 41/3, this root is
imaginary, therefore., would be imaginary, a contradlctlon It foIIows that< 41/3,

29



| No Golden Ratio Lower Bound for Solving Tautologies With Nandetermin-
Ism

Here we prove that there is no alternation trading proof¢bBfTIME[n] € NTS[n¢], for anyc > ¢ ~ 1.618,
the golden ratio.
Proof. (Sketch) Suppose there is a proof thaNTIME[n] ¢ NTS[n¢] with ¢ > ¢, and letA be a normal
form annotation for it, of minimum length. First, observemlevery valid annotation contains the sequence
1,0,0in it, for if every occurrence of, 0 was followed by &, the proof could not possibly be in normal form.
(In particular, when a speedup rule and slowdown rule aréieappp a simple classi, the resulting classl’
hasmorequantifiers thar, in this setting.) Thereforg, 0,0 must occur somewhere in the proof.

Next, we show that any subsequeric8, 0 can be removed fror, and the resulting LP will still be feasible
for the constant. This implies a contradiction.

Consider the four lines in a prospective proof correspandinthe sequenceg, 0,0, where we include the
line before the three rules are applied. The first line is drfewr possibilities:

Y (@nPNTS[], - (vn®)PcoNTS[n%], ---¥ (3n)PcoNTS[n%, or ---¥ (¥n® )’ NTS[n.

The first two cases are symmetric to each other, as are théwlastases, so it suffices for us to consider
Y (3n%)’NTS[n%] and- - ¥ (3n%)’coNTS[n?].
In the first case, the four lines have the form:

Y (3 )PNTS[n] (13)

b (3 prancda’ e ymax{b, Z’}(v log n)’NTS[n" "] (14)
LY (E] max{a’, x})max{b x}(v log n) CONTS[ max{c(a—z cb}] (15)
(3 pmax{a’, m})max{b :B}NTs[ max{c2(a—z) 2bc:v}] (16)

Observe that each parameter in class (16) is at least thespamding parameter in class (13), except for
possibly the runtime of thHTS computation. However, if any one af< ¢?(a — z), a < ¢?b, ora < cz hold,
then the above lines can be removed from the proof, and th@algssignment to the parameters would only
be larger. So suppose > c¢*(a — x), a > ¢, anda > cx. Thenc?a < a + ®x < a + ca, implying that

2 < (14¢),orc(c—1) < 1. Forc > ¢, this is a contradiction.
One can argue similarly for the second case. There the foes have the form:

Y (3n )b coNTS[n?] (17)

Y (3 n® )b (v prymexde, b}(a log n)’coNTS[n® ] (18)

b (El na’)b( x)max{:c b}(;] logn) NTS[ max{c(a—=z cb}] (19)
]

(Eln )b(\vx nm)max{m b}CONTS[ max{c?(a—x),c?b,cx} (20)

Using an argument similar to the above, class (20) contdass ¢17) wherr > ¢, so removing the above
lines can only improve the optimum setting of the parameters O
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J Experimental Results: Lower Bounds for Multidimensional TMs Solving
SAT

For 1-dimensional machines, a summary of lower bounds foyrile LP-based theorem prover is given in the
below table. Unlike the previous two cases, the optimal dewattained by optimal proofs have non-monotonic
behavior (with respect to length) at first. Perhaps summlgj the table looks the same for the 2-dimensional
and 3-dimensional cases, albeit with smaller lower bounbe&nts.

#Lines Best Proof Annotation(s) L.B.
5 [1,1,0,0] 1.224
6 [1,1,0,1,0]
7 [1,1,1,0,0,0] 1.201
8,9 [1,1,0,1,1,0,0],[2,2,0,1,1,0,1,0] 1.262
10 [1,1,1,0,0,1,1,0,0] 1.261
11,12 [1,1,0,1,21,0,1,1,0,0],[2,2,0,1,1,0,1,1,0,1,0] 1.274
13 [1,1,2,0,0,1,1,0,1,1,0,0] 1.277
14,15 [1,2,0,2,1,0,2,21,0,1,1,0,0],[1,1,0,1,1,0,1,1,0,10,11, O] 1.278
16,17 [1,1,1,0,1,1,0,0,1,1,0,1,1,0,0],[1,1,1,0,1,1,0,Q,10,1,1,0, 1, 0] 1.287
19 [1,2,2,0,1,21,0,0,1,1,0,1,1,0,1,1,0,0] 1.292
25 [1,1,10,1,1,0,1,10,0,1,1,0,1,1,0,1,1,0,1,1,0,0] 1.297
28 [1,1,1,0,1,1,0,1,1,0,1,1,0,0,1,1,0,1,1,0,1,1,0, 0, 0] 1.298

A subset of the optimal annotations have the form
A=[1(110)%0(110)"0],

for integersk, ¢. (In fact those that do not can be written in this way.) In otherds,0 0 occurs exactly twice.
Might it be that for longer proofs there are optimal annaiagi with three occurrences ©f0? As before, we
used a heuristic search to investigate. The search uncbwenee interesting annotations, but all of the best
had the form ofA above. For instance, the best 25 line proof was:

(E n"1.040108911)(A n"1.)DTIME1[n"1.5]

(E n"1.040108911)(A n"1.)DTISP[n"1.5,n".5]

, (E n"1.040108911)(A n"1.)(E n"1.)DTISP[n"1.,n".5]
10, (E n"1.040108911)(A n"1.)DTIME1[n"1.297844000]
11, (E n"1.040108911)DTIME1[n"1.684399048]

0, DTIME1[n"1.751958454]

1, (E n"1.)DTISP[n"1.751958454,n".7519608720]

2, (E n"1.040108911)(A n"1.)DTISP[n"1.463810415,n".751 9608720]

3, (E n"1.040108911)(A n"1.)(E n"1.)DTISP[n"1.215771287 N".7519608720]
4, (E n"1.040108911)(A n"1.)DTIME1[n"1.577881470]

5, (E n"1.040108911)(A n"1.)DTISP[n"1.577881470,n".577 8814720]

6, (E n"1.040108911)(A n"1.)(E n"1.)DTISP[n"1.155762944 ,N".5778814720]
;

8

9

12, (E n"1.040108909)DTISP[n"1.684399048,n".644290139 4]

13, (E n"1.040108909)(A n"1.)DTISP[n"1.288580278,n".64 42901394]
14, (E n"1.040108909)DTIME1[n"1.672376183]

15, (E n"1.040108909)DTISP[n"1.672376183,n".632267273 9]

16, (E n"1.040108909)(A n"1.)DTISP[n"1.264534548,n".63 22672739]
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17, (E n"1.040108909)DTIME1[n"1.641168576]

18, (E n"1.040108909)DTISP[n"1.641168576,n".601059666 9]

19, (E n"1.040108911)(A n"1.)DTISP[n"1.202119332,n".60 10596669]
20, (E n"1.040108911)DTIME1[n"1.560163362]

21, (E n"1.040108911)DTISP[n"1.560163362,n".520054453 3]

22, (E n"1.040108908)(A n"1.)DTISP[n"1.040108908,n".52 00544533]

23, (E n"1.040108908)DTIME1[n"1.349899105]
24, DTIME1[n"1.751958454]
K Proof of Theorem 5.1: Thed-Dimensional TM Lower Bound

Here we prove that SAT cannot be solved by a Turing machine reitdom access to its input and sequential
access to d-dimensional tape, iW(n"?) time, wherery > 1 is a root of the polynomial

pa(x) = (2d+1)(d+1)%25 —2(d+1)(2d 4+ 1)z* — d*23 +2(d+1)2® — ((2d+1)(d+1)> + D)z +d(d+1).

As corollaries, SAT¢ DTIME;[n!3099], SAT ¢ DTIME,[n!187], and SAT¢ DTIME;[n!1372].
Before we prove Theorem 5.1, we first give an inductive lemrhat ¢ > 1, and define the sequence

Lemma K.1 SupposeTIME[n] C DTIME4[n]. Then for allk > 1,
DTIMEy[n®] € (3n)(V logn)DTISP[n, n® (1],
Proof. Whenk =1,
DTIMEy[n*] C (3 n)DTISP[n!F/ () 5] C (3 n)(V logn)DTISP[n, n/ (1],

by Lemma5.1DTIME, to DTISP) and Lemma A.1DTISP Speedup), respectively. For the inductive step,

I+ ks oty i
DTIMEg4[n "e@D] C (In)DTISP[n <@+ ne@+n] (DTIME, to DTISP)
C  (3n)(Y logn)DTISP[ne/¢,n=@ 1] (Speedup)
C (I n)DTIME4[n“*] (DTIME,; Slowdown)
C (3n)(3n)(Y logn)DTISP[n, n¥ (@] = (3 n)(V log n)DTISP[n, n®/ (@+1)],
where the last containment holds by induction. O

Note the proof annotations for the derivations in the abewenha have the forrfil 1 0)*=* 1 1.

Corollary K.1 For all ¢ > 0 andc¢ > 1, if NTIME[n] C DTIME,4[n¢] then DTIMEd[an(d;Ufl_‘E] -
(3n)(V logn)DTISP[n, n®/(@+1)],

Proof. Fore <1+ ﬁ we havee < 1 + ﬁ. The sequence, = 1 + W converges to
n=1+ (d+l) 7 forallc > 1. (Notee = 1 +¢/(c(d + 1)) impliese = 1 + (dT .) So for anye* < n, by

settinge = (d + 1)/(d + 2) and observin® TIME4[n(4+1D/(d+2)] C (3 n)(V logn)DTISP[n, n¥(4+1)], one
can apply Lemma K.1 a constant number of times to get thataime containment holds f@TIME [n¢"].O
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Intuitively, the corollary says that as we make strongeuggions about how quickly SAT can be solved on
ad-dimensional one-tape TM, then we can place mo@BIME ;[n°M] in (371)(V log n)DTISP[n, nd/(@+1)],
whenc < (d +2)/(d + 1). We can now prove the lower bound.

Proof of Theorem 5.1. Leta > 1 be a parameter. Then

DTIME [n?] (3 n)DTISP[n®, n¥ 1] (DTIME, to DTISP)

-
Cc  (3nrrdlabyr+da=1)y 16g0) DTISP[n~*, n4@=1] (Speedup)
wherex is a parameter satisfying> = + d(a — 1) > 1. By Speedup, the above class is in
(E| n:c-l—d(a—l))x-i-d(a—l) (V n(l—d(a—l))-i—d(a—l) )1(3 log n)lDTlsp[na—x—(l—d(a—l)) 7 nd(a—l)]
_ (El nm—i—d(a—l))m—i-d(a—l) (V nl)l(zl log TL)IDTlSP[na_m_(l_d(a_l)),nd(a_l)]
C (3 n:c-l—d(a—l))x-i—d(a—l)(v nl)lD-I-lMEd[nc(a—x—(l—d(a—l)))] (Slowdown)

assuming (for the moment) that- d(a — 1) > 0. Suppose that andz satisfyc(a —x — (1 — d(a — 1))) =
c((d+1)(a—1)—x) > 1+ W — ¢, for somes > 0. Applying Corollary K.1, the above is contained in

(3 n®+r DY ) (3 logn)DTISP[R!, nd/(@+1)] (3 n= =DV n)DTISP[n®, n¥ @] (Slowdown)

(3 petdla-D)e+da-DDTIME, ("], (Slowdown)

N 1N

sincec > x + d(a — 1). Now suppose andc satisfyc?/(z + d(a — 1)) = 1+ 1/(c(d + 1) — 1) — e. Then
Corollary K.1 can be applied again, obtaining the class

d

(3 n= =Dy (y p)DTISP[p(#tdle—1) pletdla-D)5) ¢ (3 p2tde=D))DTIME,[nc@+de=1)] (Slowdown)
C DTIMEy[n¢ @ +da=1)]  (Slowdown)

Settinga = c%(z + d(a — 1)) yields a contradiction with Lemma 5.3. Observe that a proofogation for the
above has the fornfil (1 1 0)* 0 (1 1 0)* 0]. The analysis introduced three parameteys:( =) along with
three equations to satisfy:

1 ? 1

a=cetda-1) ca—r—da-1)+1) =1+ e, ooe Ty = Ty

Adding the constraint that > 1, a solution to this system also satisfies the constraiptsr + d(a — 1) > 1
(and thereford — d(a — 1) > 0) that arose in the analysis. With substantial algebraicipugation, one can
show thatc > 1 satisfying the equations is the unique root (greater thaof the quintic

pa(r) = (2d+1)(d+1)%2® = 2(d+1)(2d + 1)z* — d*z® + 2(d+ 1)2? — (2d+1)(d+1)* + D)z +d(d+1).
For anyr < ¢, we can finda, z, ande > 0 satisfyingr(d(a — 1) —z) = 1+ 1/(r(d +1) — 1) — ¢,
a=7r%(x+d(a—1)),andr?/(x +d(a — 1)) =1+ 1/(r(d + 1) — 1) — &. This completes the proof. O

L No n!*t/(@1) ower Bound for Solving SAT With d-Dimensional Machines

Proof.  (Sketch) Proof by minimal counterexample. Suppose themnigslternation-trading proof that
NTIME[n] € DTIME4[n4] with ¢ > 1+ 1/(d + 1), and letA be a normal form annotation. We may as-
sume thatA| > 4, otherwise the only annotation [is, 1, 0, 0] which we know does not yield the result. First,
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we prove that in this setting, every sequeficé, 0 in a normal form annotation can be replaced with just
After a slowdown, the deterministic portion of a clas®iEIME,, thereforel, 1,0 produces the lines:

Y (3n) DTIME,[n] (21)
LY (3 na’,a—s})max{b,a—s}DTISP[na’ ndS] (22)
LY DTIME, [nmax{cb,ca—cs,ca’,ca,cds}]’ (23)

but this gives no improvement over applying the sequénesinceca — cs < ca.

So without loss of generality, evetyin an annotation can be assumed to occur adjacent to anotfdsrce
we have removed, 1, 0, the proof annotations can be placed in 1-1 correspondeitbestiings of balanced
parentheses of the forfnz) , as in Theorem 3.4. Every run &f1’s corresponds t& — 1 open parentheses,
and evenry0 corresponds to a closed parenthesis. Hence there is a sequén0, 0 in a proof annotation, as
this corresponds to the substrifjy , which must occur in a string of the forfnr) wherex is not the empty
string.

Finally, we claim that ifc > (d + 2)/(d + 1), then1,1,0,0 can be replaced with just corresponding to
) . To prove this, one examines the outcome of four lines wheoespeedups and two slowdowns are applied,
then argues that when > (d + 2)/(d + 1), the resulting constants are no better than the case where on
slowdown is applied. There are two cases to analyze: oneathefirst line has BTISP class and one where
the first line has DTIME, class. The reasoning follows the style of Theorems 3.4 and isomuch more
technical in nature, so we omit its derivation here. O

M Lower Bounds for QBF, 1°

As first observed by Forthow and Van Melkebeek [FvMO0Q], theraktion-trading scheme for lower bounds
against nondeterminism extends naturally to lower bourg#snat alternating computations. Sind® =
PSPACE [CKS81], it follows thatATIME[n] ¢ DTISP[n*, n°M)] for everyk > 1.} So we already have a
polynomial time lower bound for the quantified Boolean fotanproblem (QBF) in the small space setting.
How large can lower bounds for quantified Boolean formulasadeen the number of quantifier blocks is a
fixed constant? Define QBRo be the problem of solving a QBF withquantifier blocksi(e. deciding the
truth of £;, andl1, sentences in first-order Boolean logic). Building on Fortramd Van Melkebeek [FYMO0O]
who proved that QBFrequiresQ(n*—¢) time onn°(1)-space machines, we prove time lower bounds for QBF
of the formQ(n**+1=4+) on the same model, whefe, } is a decreasing sequence such thaj, ... ¢, = 0.
We use the fact that QBHs “robustly complete” in the appropriate sense, then shgWIME[n] ¢ DTS[n‘]
for certainc > k by proving a series of class containments. Let us recall thepbetness result of Fortnogt
al.:

Theorem M.1 (Fortnow-Lipton-Van Melkebeek-Viglas [FLvMV 05]) Forall £ > 1, QBF, is robustly com-
plete for¥; QLUT,QL. In particular, there is a quasi-linear reduction from ankérary language in the class
to QBF,, where an arbitrary bit of the reduction can be computed itylegarithmic time.

We can modify the LP framework for SAT lower bounds to obtasirailar LP framework for QBE lower
bounds: only the Slowdown Rule differs, as its applicatiemoves two quantifiers instead of just one. Doing

1A preliminary version of the work in this section was repdrie the author’'s PhD thesis in 2007. Also cf. [vM07], Sectib8,
for an overview of the result.
10therwise SPACE[n] C ATIME[r?] C SPACE[n°(M], contradicting the space hierarchy theorem.
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S0, we wrote a program for proving QBEme lower bounds, which produced proofs that closely rdded
the below argument.

Theorem M.2 For all k > 1, QBF, requiresQ(n°) time onn°(!) space RAMs, whek€ /k — ¢? — 2c+ k < 0.

Note this result generalizes tBeos(7/7) lower bound for SAT. The remainder of this section proves-The
orem M.2, which was partly inspired by some short proofs ¢gee by our theorem prover. The main tool we
use is the following.

Theorem M.3 (Conditional Speedup for the Polynomial Hierachy) If ¥, TIME[n] C DTS[n¢] for some
¢ > k, then for alld satisfyinge < d < =%, DTS[n4] C %411 TIME[R! W] A My TIME[R!+oW)].

Proof.  Similar to the proof of the Conditional Speedup Theorem inl(@]. We show thatDTS[n?] C
Y 1 TIME[R'ToM]NMN, . TIME[p' oM ] impliesDTS[n!+4+/¢] € ¥, 1 TIME[n!t°M]NMN, 1 TIME[p+e(M)],
This process converges whén= 1+ dk/c, ord = ¢/(c — k).

The Speedup Lemma (Lemma A.1) implies that

DTS[n'*%/¢] C (3 n)(V logn)DTS[n/¢ noM].
Applying speedup fok more times,

DTS[n'* /€] C (3 n)(V logn) (¥ n¥€)--- (Q n¥°)(=Q log n)DTS[n¥*]

k-1

for some@ € {3, V}, where—Q is opposite ta. SinceX; TIME[n] C DTS[n,

(3n) (v n¥e) .. (Q n¥)(~Q logn) DTS[n¥¢] C (In)DTS[nY).
k

Finally, sinceDTS[n?] C Y441 TIME[R' M) N My TIME[p! ()],
(3n)DTS[nY C Ty TIME[p! o],
An analogous argument impli&TS[n!*+%/¢] C M, TIME[n!*+o(M]. 0

Theorem M.4 If £, TIME[n| C DTS[n¢], then for all¢ > 1 andd satisfyingc < d < ¢/(c — k),

4 2 @ 2 ¢ 2 £
pTs[p == (%) ) ¢ v, TMER ) 0] A, TiMER () 0

Proof. Induction on/. The cas€ = 0 is immediate, by the previous theorem. For the inductivp, stappose
£ 2 g 2 ¢
DTS[ndJFZi:l(@) | C ZkHTIME[n(E) +°(1)]. First, the Speedup Lemma implies

2

i 01 ani
DTl =5 (7)) ¢ @nl®) (v 10g m)D TS () |

)

where the input to th®TS part has lengtiw + 2n°(). By the induction hypothesis, the above is contained in

2

£+1 14
@nl®) 1ogn)nk+1T|ME[n(£> ol
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Applying X TIME[n] C DTS[n¢| to theX, part of thell,; TIME class, the above lies in

& 2 &

(3 n(dkyﬂ)(v logn)(V n(ﬁy)DTS[nc(;i)[].

If ¢ < k, we already have a contradiction, becadsd IME[n*] C DTS[n*] C M TIME[n] (this follows
from applying the Speedup Lemniatimes).
If ¢ > k, the above class is contained in

02 ¢

(3 n(ﬁ)éﬂ)(v log n) (V¥ n(d_i)

2 2 2

. (2)\¢ 2\ 6+ . P
mmept () 0] = @) mimep () o)

Note(%)“rl <z (%)’3, becausel > c. Invoking the assumptiol; TIME[n] C DTS[n¢| again results in
the class

o2 ¢t 2 [2\*¢
3 n(ﬁ) )DTS[nT'(%) -
Finally, sinced(%:)! = < . ()¢, Theorem M.3 applies, and the above class s in

c? e,

41 P e
(3 o) )11 TIME[n () +o(l)) _ Zk+1T|ME[n(‘Ti> Foll)y

c2 2+1
An analogous argument proves the containmenﬂt@thME[n(ﬁ> +°(1)]. O
Let K, =d+ Zle (g—Z)Z, for ¢ > 1. We claim (the proof is not hard) that

2\* dk
- < -
(&) <w (-G -=).

for a small constant, > 0 satisfyinglim,_.., ¢, = 0. We deduce the chain:

Y1 TIME[RE] C (3 nf)DTS[nEe
C (3K, TIME[R/PKe] € DTS[R(/PKe] C My g TIME[R(C /WK —e0),

For sufficiently largek,, a contradiction is reached wheh/k(1 — (dk)/(c?)) < 1. Recalling thatd <
c/(c — k), the condition simplifies tpy(c) = 3 /k — ¢ — 2c + k < 0.

For concrete bounds, cf. Table 1. As the evidence suggedtssh one root of the polynomiga}, gradually
approacheg + 1 ask increases unboundedly; hence the lower bound exponentH6f, @pproacheg + 1.

Proposition 2 limy_,~ px(k + 1) = 0. In particular, for all k, pi(k +1 —1/k) < 0andpg(k + 1) > 0.

Proof. Algebraic manipulation gives,(k +1) = 1/k > 0 andpy(k+1—1/k) = 3/k®> —1—-1/k—1/k? —
1/k* < —1/k* <0, forall k > 1. 0

36



Problem | Time Lower Bound Exponent
SAT n 1801
QBF2 n2.903
QBF3 n3.942
QBF4 n4.962
QBF10 n10.991
QBF, 7, T00.999902

Table 1:Time lower bounds for QBF, on small space RAMSs.
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