
Alternation-Trading Proofs, Linear Programming,
and Lower Bounds

Ryan Williams∗

Institute for Advanced Study

Abstract

A fertile area of recent research has demonstrated concretepolynomial time lower bounds for solving
natural hard problems on restricted computational models.Among these problems are Satisfiability, Vertex
Cover, Hamilton Path, MOD6-SAT, Majority-of-Majority-SAT, and Tautologies, to namea few. The proofs
of these lower bounds follow a certain proof-by-contradiction strategy, which we call “resource-trading” or
“alternation-trading.” An important open problem is to determine how powerful such proofs can possibly
be.

We propose a methodology for studying these proofs that makes them amenable to both formal analysis
and automated theorem proving. Formalizing the framework,we prove that the search for better lower
bounds can often be turned into a problem of solving a large series of linear programming instances. We
implement a small-scale theorem prover and report surprising results, which allow us to extract new human-
readable time lower bounds for several problems. We also usethe framework to prove concrete limitations
on the current techniques.

∗This material is based on work supported in part by NSF grant CCR-0122581 at CMU, and NSF grant CCF-0832797 at Princeton
University/IAS. Any opinions, findings and conclusions or recommendations expressed are those of the author.
Email: ryanw@ias.edu .

1 Introduction

This work is concerned with proving new limitations on computers by exploiting their capabilities. Many
known lower bounds for natural problems follow a pattern that we call aresource-trading scheme. Informally
speaking, the scheme uses four basic steps:

(1) Assume a hard problemΠ can be solved innc time with resourcesR. (Let’s abbreviate the class of such
problems asR[nc].) We wish to obtain a contradiction. For example,R[nc] may beDTISP[nc, poly(log n)],
the set of problems solvable innc time and poly(log n) space, andΠ may be satisfiability (SAT).

(2) Prove aSpeedup Lemmathat “trades time for resources”, whereR[t] is shown to be in a classS[o(t)], for
a more powerful resourceS and polynomialst. For example,S[t] may be the class of problems solvable by
alternating machines in timet. Nepomnjascii [Nep70] showed that poly(log n) space algorithms running in
nk time can be simulated by aΣk machine (usingk alternations) inÕ(n) time.

(3) Prove aSlowdown Lemmathat “trades resources for time”, whereS[t] is shown to be inR[td], for small
d ≥ 1. This typically uses the assumption thatΠ ∈ R[nc]. For example, if SAT has annc time, poly(log n)
space algorithm, then (by a strong form of the Cook-Levin theorem) it follows thatNTIME[t] hastc+o(1) time,
poly(log t) space algorithms, and consequentlyΣkTIME[t] hastc

k+o(1) time, poly(log t) space algorithms.

(4) Combine (2) and (3) to showC[t] ⊆ C[t1−ε], for someε > 0 and complexity classC[t], implying a
contradiction with a hierarchy theorem forC. For example, if SAT has annc time, poly(log n) space algorithm,
thenΣ2TIME[t] ⊆ DTISP[tc

2+o(1), poly(log t)] ⊆ Π2TIME[tc
2/2], where the first inclusion holds by (3) and

the second holds by (2). This contradicts the alternating time hierarchy ifc2 < 2. The above is then
√

2−ε

lower bound of Lipton and Viglas [LV99].

This scheme has been applied in many settings, dating back tothe 70’s. A partial list includes:
Time Versus Space.Hopcroft, Paul, and Valiant [HPV77] proved thatSPACE[n] * DTIME[o(n log n)] for
multitape Turing machines, by proving the “speedup lemma” thatDTIME[t] ⊆ SPACE[t/ log t] and invoking
diagonalization. (Their result was also extended to general models [PR81, HLMW86].)

Determinism vs Nondeterminism for Multitape TMs. A celebrated result of Paul-Pippenger-Szemeredi-
Trotter [PPST83] is thatNTIME[n] 6= DTIME[n] for multitape Turing machines. The key component in the
proof is the “speedup lemma” thatDTIME[t] ⊆ Σ4TIME[t/ log∗ t] in the multitape setting.

Deterministic and Nondeterministic Space-Bounded Algorithms. Our model is a random access machine
using small space (n/(log n)c, n1−ε, andno(1) are typical values). The time lower bounds are for tradi-
tionalNP-complete problems and problems higher in the polynomial hierarchy [Kan84, For97, LV99, FvM00,
FLvMV05, Wil06, Wil08]. The best known deterministic time lower bound for solving SAT withno(1) space
algorithms isn2 cos(π/7)−o(1) ≥ n1.801 [Wil08]. The bound also holds for the counting problem MODm-SAT
wherem is a composite that is not a prime power. For nondeterministic algorithms usingno(1) space, the best
known time lower bound known for naturalco-NP problems (such as TAUTOLOGY) has beenn

√
2−o(1), by

Fortnow and Van Melkebeek [FvM00].

Probabilistic and Quantum Space-Bounded Algorithms. Allender et al. [AKRRV01] showed that Maj-
Maj-SAT requiresn1+Ω(1) time to solve on unbounded error machines that usen1−ε space, forε > 0. Diehl
and Van Melkebeek [DvM06] proved that fork ≥ 2, k-QBF requiresΩ(nk−o(1)) time with randomized two-
sided error algorithms usingno(1) space. Viola [Vio07] has shown that 3-QBF requiresn1+Ω(1) time on Turing
machines with a random access input tape and two-way read-write access to a random bit tape. Van Melkebeek
and Watson [vMW07, vM07] have shown how to adapt the result ofAdlemanet al. [ADH97] thatBQP ⊆ PP

to extend Allenderet al. to a time lower bound for solving Maj-Maj-SAT with quantum algorithms.

1

General Multidimensional TMs. This model has read-only random access to its input, anno(1) read-write
store, and read-write access to ad-dimensional tape for a fixedd ≥ 1. This model generalizes several others,
and is the most powerful (and physically realistic) model known where we still know non-trivial time lower
bounds for SAT. Multidimensional TMs have been studied for many years; for instance, [Lou80, PR81, Gri82,
Kan83, MS87, LL90, vMR05, Wil06] proved lower bounds for solving problems in this model, and the best

bound for SAT is essentiallyΩ(n
√

(d+2)/(d+1)) time in thed-dimensional case.

The lower bound proofs of the above type have been typicallyad hoc, making it hard to build intuition about
them. One gets a sense that the space of all possible proofs might be difficult to systematically study.

1.1 Main Results

We introduce a methodology for reasoning about resource-trading proofs that is also practically implementable
for finding short proofs. We argue that for almost all known resource-trading lower bounds, the proofs can be
reformulated in a way that the search for new lower bounds becomes a feasible problem that computers can
help attack.1 Informally, the “hard work” in proofs can often be replaced by a series of linear programming
problems. Furthermore the framework allows us to prove limitations on what can be proved. These limitations
are important since some components of these proofs do not relativize in some sense (cf. Appendix A).

In this paper, this approach is applied in several scenarios. In all cases, the resource being “traded” is
alternations, so for the purposes of this work we call the proofs alternation-trading.

Deterministic Time-Space Lower Bounds for SAT and Beyond.Aided by results of a computer program,
we show that any algorithm solving SAT int(n) time ands(n) space must havet · s ≥ Ω(n2 cos(π/7)−o(1)).
Previously, the best known result wast · s ≥ Ω(n1.573) [FLvMV05]. It has been conjectured that the current
framework sufficed to prove an2−o(1) time lower bound for SAT, against algorithms usingno(1) space.2 We
present strong evidence (from computer search) that the best known n2 cos(π/7)−o(1) lower bound [Wil08] is
already optimal for the framework. We show that it will be impossible to obtainn2 with the framework,
formalizing a conjecture of [FLvMV05].3 We also prove lower bounds on QBFk (quantified Boolean formulas
with at mostk quantifier blocks), showing it requiresΩ(nk+1−δk) time for no(1) space algorithms, where
δk < 0.2 andlimk→∞ δk = 0.4 These results appear also optimal for the current tools.

Nondeterministic Time-Space Lower Bounds for Tautologies. Adapting the methodology for this problem,
a computer program found a very short proof improving upon Fortnow and Van Melkebeek’s 8-year old bound.
Longer proofs suggested an interesting pattern. Formalizing it, we prove (on paper) ann41/3−o(1) ≥ n1.587

time lower bound, and experiments suggest optimality for the framework. After learning of our short proof,
Diehl and Van Melkebeek have proven a similar result [DvMW07]. We also show it is not possible to obtain
annφ time lower bound, whereφ = 1.618 . . . is the golden ratio. This is surprising since we have known for
some time [FvM00] that anφ lower bound is provable fordeterministicalgorithms.

Lower Bounds for Multidimensional TMs. Here the method uncovers highly regular behavior in the best
lower bound proofs, regardless of the dimension of the tape.Studying the output of a theorem prover, we
extract anΩ(nrd) time lower bound for thed-dimensional case, whererd ≥ 1 is the root of a particular quintic

1We note that combinatorial arguments such as Santhanam’s time-space lower bound for SAT on multitape Turing ma-
chines [San01] do not fall under the alternation-trading paradigm, but they are already known to have different limitations.

2I could not find an explicit reference for this conjecture, but I have received several referee reports in the past that state it. Also
cf. [LV99] in FOCS’99.

3That is, we formalize the statement: “...some complexity theorists feel that improving the golden ratio exponent beyond 2 would
require a breakthrough” in Section 8 of [FLvMV05].

4Note the QBFk results appeared in the author’s PhD thesis in 2007 but have been unpublished to date.

2

pd(x) with coefficients depending ond. For example,r1 ≈ 1.3009, r2 ≈ 1.1887, andr3 ≈ 1.1372. Again,
computer search suggests this is the best possible, and we prove that it is impossible to improve the bound for
d-dimensional TMs ton1+1/(d+1) with the current tools.

The above lower bounds hold for otherNP and co-NP-hard problems as well, since the only property
required is that every set inNTIME[n] (respectively,coNTIME[n]) has sufficiently efficient reductions to the
problem. Furthermore, we stress that this approach is not limited to the above scenarios, and can be applied
to the league of problems discussed in Van Melkebeek’s surveys [vM04, vM07]. This work promotes a new
methodology for proving lower bounds, where prospective lower-bounders formalize their proof rules, write a
program to test ideas and generate short proofs, then study the results and extrapolate new results.

1.2 Reduction to Linear Programming

The key to our formulation is that we separate thediscrete choicesin a lower bound proof from thereal-valued
choices. The discrete choices consist of the sequence of rules to apply in a proof, and which complexity class
C[t] to use in the proof by contradiction. We give several simplifications that greatly reduce the number of
necessary discrete choices, without loss of generality. Real-valued choices come from selectingt, as well as
parameters arising from rule applications. We prove that once the discrete choices are made, the remaining
real-valued problem can be expressed as an instance of linear programming. This makes it possible to search
for new proofs via computer, and it also gives us a formal handle on the limitations of these proofs.

One cannot easily search over all possible proofs, as the number of discrete choices is still∼ 2n/n3/2 for
proofs ofn lines (proportional to thenth Catalan number). Nevertheless it is quite feasible to search over
all 20+ line proofs. These searches already reveal highly regular patterns, indicating that certain strategies
will be most successful in proving lower bounds; in each casewe study, the resulting strategies are different.
Following the strategies, we establish new lower bound proofs. Finally, the patterns also suggest how to prove
limitations on the proof system.

Important Note: In the first 12 pages, we can only briefly describe the results and techniques. Please see the
Appendices for background information and more details.

2 Preliminaries

We assume familiarity with the basics of complexity, especially alternation [CKS81]. We use big-Ω notation in
the infinitely often sense, so statements like “SAT is not inO(nc) time” are equivalent to “SAT requiresΩ(nc)
time.” All functions are assumed to be constructible withinthe appropriate bounds. Our default computational
model is the random access machine, but particular variantsdo not affect the results.DTISP[t(n), s(n)] is the
class of languages accepted by a RAM running int(n) time ands(n) space, simultaneously. For convenience,
we defineDTS[t(n)] := DTISP[t(n)1+o(1), no(1)] to avoid negligibleo(1) factors.

To properly formalize alternation-trading proofs, we introduce notation for alternating complexity classes
which includeinput constraintsbetween alternations. These constraints are critical for the formalism. Define
(∃ f(n))bC to be the class of languages recognized by a machineN that, on inputx, writes af(n)1+o(1) bit
stringy nondeterministically, copies at mostnb+o(1) bits z of the tuple〈x, y〉 deterministically (inO(nb+o(1))
time), then feedsz as input to a machine from classC. We refer to this behavior by saying that theclassC is
constrained tonb input. Define(∃ f(n))C := (∃ f(n))max{1,(log f(n))/(log n)}C. That is, the default input length
is assumed to beO(f(n)1+o(1)+n1+o(1)). The class(∀ f(n))bC is defined similarly (with co-nondeterminism).
We say that the existential and universal phases of an alternating computation arequantifier blocks, to reflect
the notation. Hence a machine of the class(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1] with Qi ∈

3

{∃,∀} means that the input to the computation starting at theith quantifier block is of lengthnbi+o(1) for all
i = 1, . . . , k, and the input to theDTS computation has lengthnbk+1+o(1). (Of course, the first quantifier block
always has an input of lengthn.) It is important to keep track of the input lengths to quantifier blocks, since
several lower bounds rely on the fact that these inputs can besmall in certain interesting cases.

For readers new to this area, we strongly encourage them to read Appendix A,A Short Introduction to
Time-Space Lower Bounds.

3 Time-Space Lower Bounds for SAT

Our study begins with polynomial time-space lower bounds for NTIME[n] problems such as SAT. We shall
describe the approach in some detail here; the other settings assume knowledge of this section. We begin with a
formalization of the alternation-trading framework. Alternation-trading proofs apply a sequence of “speedup”
and “slowdown” lemmas in some order, with the goal of reaching a contradiction by a time hierarchy theorem.
We formalize alternation-trading proofs forDTS classes as follows:5

Definition 3.1 Let c > 1. Analternation-trading proof forc is a list of complexity classes of the form:

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1], (1)

wherek ≥ 0, Qi ∈ {∃,∀}, Qi 6= Qi+1, ai > 0, andbi ≥ 1, for all i. (Whenk = 0, the class is deterministic.)
The items of the list are calledlines of the proof. Each line is obtained from the previous line by applying
either aspeedup ruleor a slowdown rule. More precisely, if theith line is

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1],

then the(i + 1)st line has one of three possible forms:

1. (Speedup Rule 0)(Qk nx)max{x,1}(Qk+1 n0)1DTS[nak+1−x], whenk = 0 andx ∈ (0, ak+1).6

2. (Speedup Rule 1)(Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x})max{x,bk+1}(Qk+1 n0)bk+1DTS[nak+1−x],
for k > 0 and anyx ∈ (0, ak+1).

3. (Speedup Rule 2)(Q1 na1)b2 · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n0)bk+1DTS[nak+1−x], for
k > 0 and anyx ∈ (0, ak+1).

4. (Slowdown Rule)(Q1 na1)b2(Q2 na2) · · ·bk−1 (Qk−1 nak−1)bkDTS[nc·max{ak+1,ak,bk,bk+1}], for k > 0.

An alternation-trading proofshows(NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2) if its first line isA1 and its last
line isA2.

The definition comes directly from the statements of the Speedup Lemma (Lemma A.1) and Slowdown
Lemma (Lemma A.2) for space-bounded computations. (Note the n0 in the Speedup Lemma corresponds
to log n ≤ no(1), which is negligible.) Speedup Rules 0, 1, and 2 can be easilyverified to be syntactic
formulations of the Speedup Lemma, where theDTS part of the sped-up computation only reads two guessed

5This formalization hasimplicitly appeared in prior work, but not to the degree that we investigate in this paper.
6Please note that the(k + 1)th quantifier isn0 in order to account for theO(log n) size of the quantifier.

4

configurations—so the input it reads is different from the input read by the innermost quantifier block. For
instance, Speedup Rule 1 holds, since

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1]

⊆ (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk nx)max{bk+1,x}(Qk+1 n0)bk+1DTS[nak+1]

⊆ (Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x})max{bk+1,x}(Qk+1 n0)bk+1DTS[nak+1].

Rule 2 is akin to Rule 1, except that it uses opposite quantifiers in its invocation of the Speedup Lemma. The
Slowdown Rule works analogously to Lemma A.2. It follows that alternation-trading proofs are sound.

Note Speedup Rules 0 and 2 add two quantifier blocks, Speedup Rule 1 adds only one quantifier, and all
three rules introduce a parameterx. By considering “normal form” proofs (defined in the next section), we
can show that Rule 2 can always be replaced by applications ofRule 1. For a proof, cf. Appendix C. For this
reason we just refer tothe Speedup Rule, depending on which of Rule 0 or Rule 1 applies.
A Normal Form. Define any class of the form in (1) to besimple. Define classesA1 andA2 to becomplemen-
tary if A1 is the class of complements of languages inA2. Every known (model-independent) time-space lower
bound for SAT shows “NTIME[n] ⊆ DTS[nc] implies A1 ⊆ A2”, for some complementary simple classes
A1 andA2, contradicting a time hierarchy (cf. Theorem A.2). A similar claim holds for nondeterministic
time-space lower bounds against tautologies (which proveNTIME[n] ⊆ coNTS[nc] impliesA1 ⊆ A2), for d-
dimensional machine lower bounds solving SAT (which proveNTIME[n] ⊆ DTIMEd[n

c] impliesA1 ⊆ A2),
and for other problems.

We now introduce anormal formfor alternation-trading proofs. We show that any lower bound provable
with complementary simple classes can also be established with a normal form proof. This simplification
greatly reduces the degrees of freedom in a proof, as we no longer have to worry aboutwhichcomplementary
simple classes to choose for the contradiction.

Definition 3.2 Letc ≥ 1. An alternation-trading proof forc is in normal formif (a) the first and last lines are
DTS[na] andDTS[na′

] respectively, for somea ≥ a′, and (b) no other lines areDTS classes.

We show that a normal form proof forc implies thatNTIME[n] * DTS[nc].

Lemma 3.1 Let c ≥ 1. If there is an alternation-trading proof forc in normal form having at least two lines,
thenNTIME[n] * DTS[nc].

Theorem 3.1 Let A1 andA2 be complementary. If there is an alternation-trading proofP for c that shows
(NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2), then there is a normal form proof forc, of length at most that ofP .

Proofs of Lemma 3.1 and Theorem 3.1 can be found in Appendix D.The important consequence is that we
only need to focus on normal form proofs in a proof search. Forthe remainder of this section, we assume that
all alternation-trading proofs under discussion are in normal form.
Proof Annotations. Different lower bound proofs can result in quite different sequences of speedups and
slowdowns. Aproof annotationrepresents such a sequence.

Definition 3.3 A proof annotationfor an alternation-trading proof ofℓ lines is the(ℓ − 1)-bit vectorA where
for all i = 1, . . . , ℓ− 1, A[i] = 1 (respectively,A[i] = 0) if the ith line applies a Speedup Rule (respectively, a
Slowdown Rule).

An (ℓ−1)-bit proof annotation corresponds to a “strategy” for anℓ-line proof. For a normal form alternation-
trading proof withℓ lines, it is not hard to show that its annotationA must haveA[1] = 1, A[ℓ − 2] = 0, and

5

A[ℓ − 1] = 0. The number of possible proof annotations is closely related to the number of well-balanced
strings over parentheses. Recall that thekth Catalan number isC(k) = 1

k+1

(
2k
k

)
. A well-known fact states

that the number of well-balanced strings of length2k is C(k).

Proposition 1 Let ℓ > 3 be even. The number of possible annotations for proofs ofℓ lines isC(ℓ/2 − 1).

Hence the number of possible annotations for proofs ofℓ lines isΘ(2ℓ/ℓ3/2). Note that an annotationdoes
not determine a proof entirely, as there are other parameters. (The problem of determining optimal values for
these parameters is tackled in the next section.) To illustrate the annotation concept, we give four examples.

• Lipton-Viglas’ n
√

2 lower bound [LV99] (from the Introduction) has the annotation [1, 0, 0].

• Then1.6004 bound of theShort Introduction(cf. Appendix A) corresponds to[1, 1, 0, 0, 1, 0, 0].

• Thenφ bound of Fortnow-Van Melkebeek [FvM00] is an inductive proof, corresponding to an infinite
sequence of annotations. In normal form, the sequence is:[1, 0, 0], [1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0], . . .

• Then2 cos(π/7) bound [Wil08] has two stages of induction. LetA = 1, 0, 1, 0, . . . , 1, 0, 0, where the ‘. . .’
contain any number of repetitions. The sequence is[A], [1, A,A], [1, 1, A,A, A], [1, 1, 1, A,A, A,A], . . .

That is, the proof performs many speedups, then a sequence ofmany slowdown-speedup alternations,
then two consecutive slowdowns, repeating this until all the quantifiers have been removed.

3.1 Translation To Linear Programming

Given a (normal form) proof annotation, how can we determinethe best proof possible with it? The obstacles
are (a) the runtimes of the first and lastDTS classes of the proof are free parameters, and (b) each application
of a Speedup Rule introduces a parameterxi. We now show how to reduce an annotationA andc > 1 to
a linear program that is feasible if and only if there is an alternation-trading proof ofNTIME[n] * DTS[nc]
with annotationA. More precisely, the problem of setting parameters can be viewed as an arithmetic circuit
evaluation where the circuit hasmax gates, addition gates, and input gates that multiply their input byc. Such
circuits can be evaluated using a linear program (cf. [Der72]) that minimizes the sum of the gate values.

Let A be an annotation ofℓ − 1 bits, and letm be the maximum number of quantifier blocks in a line ofA;
notem is easily computed in linear time. The target LP has variables ai,j, bi,j, andxi, for all i = 0, . . . , ℓ − 1
andj = 1, . . . ,m. The variablesai,j represent the runtime exponent of thejth quantifier block in the class on
the ith line, bi,j is the input exponent to thejth quantifier block of the class on theith line, and for all linesi
that use a Speedup Rule,xi is the choice ofx in the Speedup Rule. For example:

• If the kth line of a proof isDTS[na], the corresponding constraints are
ak,1 = a, bk,1 = 1, (∀k > 0) ak,i = bk,i = 0.

• If the kth line of a proof is(∃ na′

)bDTS[na], then the constraints are
ak,0 = a, bk,1 = b, ak,1 = a′, bk,1 = 1, (∀k > 1) ak,i = bk,i = 0.

The objective is to minimize
∑

i,j(ai,j + bi,j) +
∑

i xi. The LP constraints depend on the lines of the
annotation, as follows.

Initial Constraints. For the0th and(ℓ − 1)th lines we havea0,1 ≥ aℓ−1,1, as well as

a0,1 ≥ 1, b0,1 = 1, (∀ k > 1) a0,k = b0,k = 0, and aℓ,1 ≥ 1, bℓ,1 = 1, (∀k > 1) aℓ,k = bℓ,k = 0,

6

representingDTS[na0,1] andDTS[naℓ−1,0], respectively. The 1st line of a proof always applies Speedup Rule
1, having the form(Q1n

x)max{x,1}(Q2 n0)1DTS[na−x]. So the constraints for the 1st line are:

a1,1 = a0,1 − x1, b1,1 = 1, a1,2 = 0, b1,2 ≥ x1, b1,2 ≥ 1, a1,3 = x3, b1,3 = 1,
(∀ k : 4 ≤ k ≤ m) a1,k = b1,k = 0.

The below constraint sets simulate the Speedup and SlowdownRules:

Speedup Rule Constraints.For theith line wherei > 1 andA[i] = 1, the constraints are

ai,1 ≥ 1, ai,1 ≥ ai−1,1 − xi, bi,1 = bi−1,1, ai,2 = 0, bi,2 ≥ xi, bi,2 ≥ bi−1,1, ai,3 ≥ ai−1,2,
ai,3 ≥ xi, bi,3 ≥ bi−1,2, (∀ k : 4 ≤ k ≤ m) ai,k = ai−1,k−1, bi,k = bi−1,k−1.

These constraints express that· · · b2(Q2 na2)b1DTS[na1] in the(i − 1)th line is replaced with

· · · b2(Q2 nmax{a2,x})max{x,b1}(Q1 n0)b1DTS[nmax{a1−x,1}]

in theith line, whereQ1 is opposite toQ2.
Slowdown Rule Constraints.For theith line whereA[i] = 0, the constraints are

ai,1 ≥ c · ai−1,1, ai,1 ≥ c · ai−1,2, ai,1 ≥ c · bi−1,1, ai,1 ≥ c · bi−1,2, bi,1 = bi−1,2

(∀ k : 2 ≤ k ≤ m − 1) ai,k = ai−1,k+1, bi,k = bi−1,k+1, ai,m = bi,m = 0.

These express the replacement of· · · b2(Q1n
a2)b1DTS[na1] in the(i − 1)th line with

· · · b2DTS[nc·max{a1,a2,b1,b2}]

in theith line.
This concludes the description of the linear program. To findthe largestc that still yields a feasible LP, we

can simply binary search for it. The following theorem summarizes the above discussion.

Theorem 3.2 Given a proof annotation ofn lines, the best possible lower bound proof following the annota-
tion can be determined up ton digits of precision, inpoly(n) time.

Proof Search Results.Following the above formulation, we wrote proof search routines in Maple. Millions
of proof annotations were tried, including all those of previous work, with no success beyond the2 cos(π/7)
exponent. The best lower bounds followed a highly regular pattern. For a424 line annotation following the
pattern, the optimal exponent was only in the interval[1.80175, 1.8018). For more details, cf. Appendix E.
One interesting sequence of annotations from the pattern is

1k11000(10)0(10)20 · · · (10)k0,

for k ≥ 2. One can prove that this sequence cannot yield any lower bound better than2 cos(π/7).

Theorem 3.3 In the limit (ask → ∞), the maximum lower bound provable with the sequence of annotations
1k11000(10)0(10)20(10)30 · · · (10)k0 for k ≥ 0 is that SAT cannot be solved inO(n2 cos(π/7)−o(1)) time and
no(1) space.

A similar argument applies to all other annotations found bycomputer. We are led to:

7

Conjecture 3.1 There is no alternation-trading proof thatNTIME[n] * DTS[nc], for anyc > 2 cos(π/7).

Proving the above conjecture seems currently out of reach. We can give a partial result:

Theorem 3.4 There is no alternation-trading proof thatNTIME[n] * DTS[n2].

A proof is in Appendix F. At a high level, the proof argues thatany minimum length proof of a quadratic
lower bound could be shortened, giving a contradiction.

Good News.Despite the bad news above, the theorem prover did give us enough insight to prove a new lower
bound ofΩ(n2 cos(π/7)−o(1)) on the time-space product of algorithms solving SAT. Also, these results have also
been generalized to quantified Boolean formulas, leading tonew lower bounds. For more, cf. Appendices B
and M, respectively.

4 Nondeterministic Time-Space Lower Bounds for Tautologies

The problem of proving nondeterministic time-space lower bounds forco-NP has also been studied. Fortnow
and Van Melkebeek [FvM00] proved that TAUTOLOGY requiresΩ(n

√
2−o(1)) time on a nondeterministicno(1)

space RAM. However, since their initial result, no further improvements had been made. We show how to
extend the approach of the previous section to this problem,and find that the best proof annotations look quite
different. Here the approach turns out to be successful in finding new proofs.

4.1 The Framework and Linear Programming Translation

Similar to the classDTS, setNTS[na] := NTISP[na, no(1)] andcoNTS[na] := coNTISP[na, no(1)] for brevity.
As in the previous lower bound setting, there are Speedup andSlowdown rules that are applied in some way
that contradicts a time hierarchy, although the rules are somewhat different here. In the following, letQ be a
string of quantifier blocks, soQ = (Q1 na1)b2 · · · (Qk−1 nak−1).

Lemma 4.1 (Speedup) Forb ≥ 1, a ≥ 1, x ≥ 0, ands ≥ 0,

QbNTISP[na, ns] ⊆ Qb(∃ nx+s)max{b,x+s}(∀ log n)max{b,s}NTISP[na−x, ns].

In particular for s = o(1) we haveNTS[na] ⊆ (∃ nx)max{1,x}(∀ log n)1NTS[na−x].

Proof. The proof is analogous to Lemma A.1 (the Speedup Lemma forDTISP). 2

Lemma 4.2 (Slowdown) IfTAUTOLOGY is in NTS[nc] then

1. Qb(∃ nak)bk+1NTS[nak+1] ⊆ QbcoNTS[nc·max{ak ,ak+1,bk+1,b}],

2. Qb(∀ nak)bk+1coNTS[nak+1] ⊆ QbNTS[nc·max{ak ,ak+1,bk+1,b}],

3. Qb(∃ nak)bk+1coNTS[nak+1] ⊆ Qb(∃ nak)bk+1NTS[nc·max{ak+1,bk+1}], and

4. Qb(∀ nak)bk+1NTS[nak+1] ⊆ Qb(∀ nak)bk+1coNTS[nc·max{ak+1,bk+1}].

8

The proofs are omitted and are left to the interested reader.To obtain contradictions, one uses the alternating
time hierarchy (Theorem A.2) just as in the deterministic case. The above lemmas immediately lead to a
natural definition ofalternation-trading proof thatcoNTIME[n] ⊆ NTS[nc] =⇒ A1 ⊆ A2, for classesA1 and
A2. Another way to yield a contradiction uses a result similar to Lemma 3.1, which showed thatNTIME[n] ⊆
DTS[nc] impliesDTS[na] * DTS[na′

] for a > a′.

Lemma 4.3 If coNTIME[n] ⊆ NTS[nc] thenNTS[na] * coNTS[na′

] for a > a′.

This lemma can be used to motivate a definition ofnormal form proof, and prove that any alternation-trading
proof can be converted into normal form.

Definition 4.1 Let c ≥ 1. An alternation-trading proof that(coNTIME[n] ⊆ NTS[nc] =⇒ A1 ⊆ A2) is in
normal formif (1) A1 = NTS[na], A2 = coNTS[na′

], for somea ≥ a′, and (2) no other lines areNTS or
coNTS classes.

Example. If TAUTOLOGY ∈ NTS[nc] thencoNTIME[n] ⊆ NTS[nc+o(1)] by Theorem A.1, soNTS[n2] ⊆
(∃ n)1(∀ log n)1NTS[n] by Lemma 4.1 (NTISP Speedup). Applying Lemma 4.2 (NTISP Slowdown) thrice,
(∃ n)1(∀ log n)1NTS[n] ⊆ (∃ n)1(∀ log n)1coNTS[nc] ⊆ (∃ n)1NTS[nc2] ⊆ coNTS[nc3]. Whenc < 3

√
2 ≈

1.25, NTS[na] ⊆ coNTS[na′

] for somea > a′, which contradicts Lemma 4.3.

Lemma 4.4 Let c ≥ 1. If there is an alternation-trading proof that(coNTIME[n] ⊆ NTS[nc] =⇒ A1 ⊆ A2)
in normal form, and the proof has at least two lines, thencoNTIME[n] * NTS[nc].

Theorem 4.1 Let A1 and A2 be simple and complementary. If there is an alternation-trading proofP that
(NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2), then there is a normal form proof forc, of length at most that ofP .

One can also define proof annotations for this setting. The vectors corresponding to valid annotations change
due to differences in the rules. For example, note[1, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0], and[1, 0, 1, 0, 0, 0, 0] are valid
annotations for this setting, the first being the annotationfor the above example. From the Speedup and Slow-
down Lemmas given above, observe that the operations on exponents are againmax, +, and multiplication
by c. Hence the translation of annotations to linear programming follows a similar strategy as before: we
define variablesai,j, bi,j, xi for all lines i and possible quantifier blocksj, replace components of the form
max{a, a′} = a′′ with a′′ ≥ a, a′′ ≥ a′, then minimize

∑
ai,j + bi,j + xi.

4.2 Proof Search Results, a Time Lower Bound, and a Limitation

The structure of good lower bound proofs for the “TAUTOLOGY versusNTISP” problem turned out to be
different from those for the “SAT versusDTISP” problem. The program uncovered interesting new results.
For one, Fortnow and Van Melkebeek’s

√
2 lower bound is not optimal; the best 11-line proof already gives a

1.419 exponent. For more details, cf. Appendix G. From experiments, we found annotationsA1, A2, A3, A4

(all optimal for their number of lines) with the property that Ai+1 = [1, Ai, Ai, 0]. This naturally suggests a
proof by induction where the induction hypothesis is applied twice. We arrived at the following.

Theorem 4.2 TAUTOLOGY requiresn
3√4−o(1) time for nondeterministic algorithms usingno(1) space.

The proof is in Appendix H; it is an induction corresponding to an infinite sequence of annotations. The
theorem’s annotations and parameter settings for the first four steps of the induction are precisely those chosen
by the search program forA1, A2, A3, andA4; in this sense, the formal proof corresponds with the best results

9

from computer search. As experiments indicated that the sequenceA1, A2, A3, etc. is essentially the best one
can do, we believe the lower bound is optimal for this framework.

Conjecture 4.1 There is no alternation trading proof thatcoNTIME[n] * NTS[nc], for anyc > 3
√

4.

Some interesting limitation can be proved for alternation-trading proofs. Namely, unlike the case of time
lower bounds for SAT, no golden ratio lower bound can be achieved in this setting. The proof is in Appendix I.

Theorem 4.3 There is no alternation trading proof thatcoNTIME[n] * NTS[nc], for anyc ≥ φ ≈ 1.618.

5 Lower Bounds for Multidimensional TMs

Next, we consider lower bounds for a multidimensional machine model, which subsumes both the small-space
random access model and off-line one-tape Turing machine models. Our approach yields new lower bounds
here as well. To recall, the machine model has a read-only/random-access input tape, a read-write/random
access storage ofno(1) bits, and ad-dimensional tape that is read-write with sequential (two-way) access.

5.1 The Framework and Linear Programming Translation

DefineDTIMEd[t(n)] to be the class of languages recognized byd-dimensional one-tape machines inO(t(n))
time. Lower bound proofs for these machines have different structure from the first two: one speedup rule
simulates ad-dimensional machine by a nondeterministic (or co-nondeterministic) machine with a small space
bound. More precisely, letQ represent a string of quantifier blocks, soQ = (Q1 na1)b2 · · · (Qk nak−1).

Lemma 5.1 (DTIMEd to DTISP) LetQk+1 ∈ {∃,∀}. Then for all0 < s ≤ a andb ≥ 1,
QbDTIMEd[n

a] ⊆ Qb(Qk+1n
a−s)max{a−s,b}DTISP[na, nds].

The proof of Lemma 5.1 guesses a short crossing sequence thatdivides the tape intons blocks, each of
which can be simulated inO(nds) space, cf. [MS87, vMR05]. We omit its proof here.

Lemma 5.1 lets us use the Speedup Lemma for space-bounded machines (Lemma A.1) to prove class inclu-
sions. Another Slowdown Lemma is required; its proof follows the lines of earlier results. Again, letQ be a
string of quantifier blocks.

Lemma 5.2 (Slowdown forDTIMEd) SupposeNTIME[n] ⊆ DTIMEd[n
c]. Then forai, bi ≥ 1, e ≤ ak+1,

Qbk(Qk+1 nak)bk+1DTIMEd[n
ak+1] ⊆ QbkDTIMEd[n

c·max{bk,bk+1,ak,ak+1}], and
Qbk(Qk+1 nak)bk+1DTISP[nak+1 , ne] ⊆ QbkDTIMEd[n

c·max{bk,bk+1,ak,ak+1}].

We also use a standard time hierarchy theorem:

Lemma 5.3 For a > a′, DTIMEd[n
a] * DTIMEd[n

a′

].

Example. In 1983, Kannan [Kan83] proved thatNTIME[n] * DTIME1[n
4
√

3/2], using a weaker version of
Lemma 5.1. Reproducing his argument:

DTIME1[n
3/2] ⊆ (∃ n)DTISP[n3/2, n1/2] by DTIME1 to DTISP (Lemma 5.1)

⊆ (∃ n)(∀ log n)DTISP[n, n1/2] by the Speedup Lemma forDTISP (Lemma A.1)

⊆ (∃ n)DTIME1[n
c] by the Slowdown Lemma forDTIMEd (Lemma 5.2)

⊆ DTIME1[n
c2] by Slowdown forDTIMEd

10

A contradiction follows fromc <
√

3/2 and Lemma 5.3. But SAT∈ DTIME1[n
c] implies NTIME[n] ⊆

DTIME1[n
c+o(1)] (Theorem A.1), so SAT cannot be solved inO(n

√
3/2−ε) time on a 1-D TM. This is the SAT

lower bound proved by Van Melkebeek and Raz [vMR05].
Corresponding notions of alternation-trading proofs and annotations can be defined here as well. The simple

classes here have either aDTISP[t, s] or DTIMEd[t] phase at the end of their descriptions. There are two
possible Speedup Lemmas for a class with aDTISP phase: one introduces only a single quantifier, and another
introduces two. However, just as before, we can prove the second Speedup is unnecessary. Hence the proof
annotations for this setting can be bit vectors, for the two rules applicable at each step. If the deterministic
class is aDTIMEd class, a “speedup” means that we apply theDTIMEd to DTISP Lemma. If the deterministic
class isDTISP, a “speedup” means that we apply the Speedup Lemma. For example, the annotation for above
example is[1, 1, 0, 0]. The structure of valid proof annotations changes accordingly.

One can also define a normal form proof that begins withDTIMEd[n
a] and ends withDTIMEd[n

a′

], where
a′ ≤ a. Such proofs imply lower bounds due to Lemma 5.3. Every alternation-trading lower bound proof
againstDTIMEd has a corresponding normal form proof, by an argument analogous to Theorem 4.1. Finally,
the translation to linear programming is similar, except that new variablessi are introduced for the space
exponent of theDTISP class in linei (for all relevanti). Thesesi are additional free parameters.

5.2 Time Lower Bound and Proof Limitation

The best annotation found (for all dimensionsd) was the 66 line annotation

[1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0],

which leads to proofs thatNTIME[n] is not in any ofDTIME1[n
1.3009], DTIME2[n

1.1875], andDTIME3[n
1.1343].

In fact, all the best annotations found had the form[1 1 1 (0 1 1)k 0 (0 1 1)ℓ 0 0]. (More details are in Ap-
pendix J.) The annotations suggest a proof where one has an inductive lemma capturing the(0 1 1)∗ behavior,
then applies the lemma twice to a proof of six more lines. Thisstrategy leads to:

Theorem 5.1 SAT /∈ DTIMEd[n
c], for all c < rd whererd ≥ 1 is a root of

pd(x) = (2d+1)(d+1)2x5 −2(d+1)(2d+1)x4 −d2x3 +2(d+1)x2 − ((2d+1)(d+1)2 +1)x+d(d+1).

The proof is in Appendix K. It establishes an inductive Speedup Lemma that efficiently simulatesDTIMEd

in Σ2TIME assumingNTIME[n] ⊆ DTIMEd[n
c], then applies the lemma twice in the lower bound proof. We

again conjecture that the above lower bound is optimal for alternation-trading proofs. We can prove that no
n1+1/d lower bound is possible ford-dimensional TMs. The proof is in Appendix L.

Theorem 5.2 There is no alternation trading proof that SAT/∈ DTIMEd[n
c], for anyc ≥ 1 + 1/d.

6 Discussion

We introduced a methodology for reasoning about lower bounds in the alternation-trading framework. This
gives an elegant and general way to attack lower bound problems via computer, and lets us establish concrete
limitations on known techniques. We now have a better understanding of what these techniques can and cannot
do, and a tool for addressing future problems. Previously, the problem of setting parameters to get a good lower
bound was an highly technical exercise. This work should reduce the load on further research: once a new

11

speedup or slowdown lemma is found, one only needs to find the relevant linear programming formulation to
begin understanding its power. We end with two open problems.

1. Establish tight limitations for alternation-trading proofs. That is, show that the best possible alternation-
trading proofs match the ones we have provided. Empirical results are sometimes met with skepticism,
so it is critical to verify the limitations with formal proof. We have managed to prove non-trivial limita-
tions, and it seems likely that the ideas in those can be extended.

2. Discover ingredients that add signficantly to the framework. Here there are several possible avenues.
One is to find new separation results that lead to new contradictions. Another is to find improved Speedup
and/or Slowdown Lemmas. The Slowdown Lemmas are the “blandest” of the ingredients, in that they
are the most elementary (and they relativize). For instance, it may be possible to give an better Speedup
Lemma by proving thatDTS is containedinfinitely oftenin a faster alternating time class, and use an
almost-everywheretime hierarchy [GHS91, ABHH93] to obtain a contradiction.

Finally, combinatorial methods have led to several impressive time-space lower bounds. For example,
Ajtai [Ajt02] and Beameet al. [BJS01] have proven time-space lower bounds for branching programs;
Gurevich and Shelah [GS88] gave a problem inNTISP[n, log n] but notDTISP[n1+a, nb]) whenb +
2a < 1/2. Is it possible to incorporate combinatorial methods into the alternation-trading framework?

7 Acknowledgements

I am grateful to Dieter van Melkebeek, Ryan O’Donnell, Manuel Blum, and Steven Rudich for their invaluable
feedback on my PhD thesis, which included some preliminary results on this work. I also thank Scott Aaronson
for useful discussions about irrelativization, and anonymous referees for their comments.

References

[ADH97] L. Adleman, J. DeMarrais, and M. Huang. Quantum computability. SIAM Journal on Computing
26:1524-1540, 1997.

[ABHH93] E. Allender, R. Beigel, U. Hertrampf, and S. Homer.Almost-Everywhere Complexity Hierarchies
for Nondeterministic Time.Theor. Comput. Sci.115(2):225–241, 1993.

[AKRRV01] E. Allender, M. Koucky, D. Ronneburger, S. Roy, and V. Vinay. Time-Space Tradeoffs in the
Counting Hierarchy. InProceedings of IEEE Conference on Computational Complexity (CCC), 295–
302, 2001.

[Ajt02] M. Ajtai. Determinism versus Nondeterminism for Linear Time RAMs with Memory Restrictions.J.
Computer and System Sciences65:2–37, 2002.

[BJS01] P. Beame, T. S. Jayram, and M. E. Saks. Time-Space Tradeoffs for Branching Programs.J. Computer
and System Sciences63(4):542–572, 2001.

[CKS81] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation.JACM28(1):114–133, 1981.

[Coo88] S. A. Cook. Short Propositional Formulas RepresentNondeterministic Computations.Information
Processing Letters26(5): 269-270, 1988.

12

[Der72] C. Derman.Finite State Markov Decision Processes.Academic Press, 1972.

[DvM06] S. Diehl and D. van Melkebeek. Time-Space Lower Bounds for the Polynomial-Time Hierarchy on
Randomized Machines.SIAM J. Computing36: 563-594, 2006.

[DvMW07] S. Diehl, D. van Melkebeek, and R. Williams. An Improved Time-Space Lower Bound for Tau-
tologies. Manuscript, 2007.

[Fis74] M. J. Fischer. Lecture Notes on Network Complexity.Yale Technical Report 1104, June 1974.
URL: http://cs-www.cs.yale.edu/homes/fischer/pubs/tr1104 .ps.gz

[For97] L. Fortnow. Nondeterministic Polynomial Time Versus Nondeterministic Logarithmic Space: Time-
Space Tradeoffs for Satisfiability. InProceedings of IEEE Conference on Computational Complexity
(CCC), 52–60, 1997.

[FvM00] L. Fortnow and D. van Melkebeek. Time-Space Tradeoffs for Nondeterministic Computation. In
Proceedings of IEEE Conference on Computational Complexity (CCC), 2–13, 2000.

[FLvMV05] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-Space Lower Bounds for Satisfi-
ability. JACM52(6):835–865, 2005.

[GHS91] J. G. Geske, D. T. Huynh, and J. I. Seiferas. A Note on Almost-Everywhere-Complex Sets and
Separating Deterministic-Time-Complexity Classes.Inf. Comput.92(1):97–104, 1991.

[Gri82] D. Yu. Grigor’ev. Time complexity of multidimensional Turing machines.J. Mathematical Sciences
20(4):2290–2295, 1982.

[GS88] Y. Gurevich and S. Shelah. Nondeterministic Linear-Time Tasks May Require Substantially Nonlinear
Deterministic Time in the Case of Sublinear Work Space.JACM37(3):674–687, 1990.

[HLMW86] J. Y. Halpern, M. C. Loui, A. R. Meyer, and D. Weise. On Time versus Space III.Mathematical
Systems Theory19(1):13–28, 1986.

[HPV77] J. Hopcroft, W. Paul, and L. Valiant. On time versus space.JACM24(2):332–337, 1977.

[Kan83] R. Kannan. Alternation and the power of nondeterminism. In Proceedings of ACM Symposium on
Theory of Computing (STOC), 344–346, 1983.

[Kan84] R. Kannan. Towards Separating Nondeterminism fromDeterminism.Mathematical Systems Theory
17(1):29–45, 1984.

[LV99] R. J. Lipton and A. Viglas. On the Complexity of SAT. InProceedings of IEEE Symposium on Foun-
dations of Computer Science (FOCS), 459–464, 1999.

[LL90] M. Liskiewicz and K. Lorys. Fast Simulations of Time-Bounded One-Tape Turing Machines by
Space-Bounded Ones.SIAM J. Computing19(3):511–521, 1990.

[Lou80] M. C. Loui. Simulations among multidimensional Turing machines. Ph.D. Thesis, Massachusetts
Institute of Technology TR-242, 1980.

[MS87] W. Maass and A. Schorr. Speed-Up of Turing Machines with One Work Tape and a Two-Way Input
Tape.SIAM J. Computing16(1):195–202, 1987.

13

[vM04] D. van Melkebeek. Time-Space Lower Bounds for NP-Complete Problems. In G. Paun, G. Rozenberg,
and A. Salomaa (eds.),Current Trends in Theoretical Computer Science265–291, World Scientific,
2004.

[vM07] D. van Melkebeek. A Survey of Lower Bounds for Satisfiability and Related Problems. To appear in
Foundations and Trends in Theoretical Computer Science, 2007.

[vMR05] D. van Melkebeek and R. Raz. A Time Lower Bound for Satisfiability. Theoretical Computer Sci-
ence348(2-3):311–320, 2005.

[vMW07] D. van Melkebeek and T. Watson. A quantum time-spacelower bound for the counting hierarchy.
Technical Report 1600, Department of Computer Sciences, University of Wisconsin-Madison, 2007.

[Nep70] V. Nepomnjascii. Rudimentary predicates and Turing calculations.Soviet Math. Doklady11:1462–
1465, 1970.

[PR81] W. Paul and R. Reischuk. On time versus space II.J. Computer and System Sciences22:312–327,
1981.

[PPST83] W. Paul, N. Pippenger, E. Szemeredi, and W. Trotter. On determinism versus nondeterminism and
related problems. InProceedings of IEEE Symposium on Foundations of Computer Science (FOCS),
429–438, 1983.

[PF79] N. Pippenger and M. J. Fischer. Relations Among Complexity Measures.JACM26(2):361–381, 1979.

[San01] R. Santhanam. Lower bounds on the complexity of recognizing SAT by Turing machines.Information
Processing Letters79(5):243–247, 2001.

[Sch78] C. Schnorr. Satisfiability is quasilinear completein NQL. JACM25(1):136–145, 1978.

[Tou01] I. Tourlakis. Time-Space Tradeoffs for SAT on Nonuniform Machines.J. Computer and System Sci-
ences63(2):268–287, 2001.

[Vio07] E. Viola. On approximate majority and probabilistic time. InProceedings of the 22th IEEE Confer-
ence on Computational Complexity (CCC), 2007.

[Wil06] R. Williams. Inductive Time-Space Lower Bounds forSAT and Related Problems.J. Computational
Complexity15:433–470, 2006.

[Wil07] R. Williams. Algorithms and Resource Requirementsfor Fundamental Problems. Ph.D. Thesis,
Carnegie Mellon University, CMU-CS-07-147, August 2007.

[Wil08] R. Williams. Time-Space Tradeoffs for CountingNP Solutions Modulo Integers.J. Computational
Complexity17(2), 2008.

14

Guide to the Appendices

• Appendix A is a short introduction to the techniques used in this work and related ones.

• Appendix B proves that for any timet and spaces SAT algorithm,ts = Ω(nc) for all c < 2 cos(π/7).

• Appendix C proves that Speedup Rule 2 is redundant, i.e., it can be simulated by Speedup Rule 1 in the
proof system.

• Appendix D proves some properties that allow us to restrict ourselves to considering normal form proofs.

• Appendix E analyzes results of a computer proof search for SAT time-space lower bounds.

• Appendix F proves that no quadratic time lower bound for SAT in theno(1) space setting can be proved
with alternation-trading proofs.

• Appendix G analyzes results of a computer proof search for Tautology time-space lower bounds (on
nondeterministic machines).

• Appendix H proves an
3√4 time lower bound, based on results of Appendix F.

• Appendix I proves that annφ ≈ n1.618 time lower bound for Tautology is not possible.

• Appendix J analyzes results of a computer proof search for SAT lower bounds on multidimensional
TMs.

• Appendix K proves lower bounds based on the results of Appendix I.

• Appendix L proves that ann1+1/d time lower bound for SAT ond-dimensional TMs is not possible with
alternation-trading.

• Appendix M proves new lower bounds for QBFk, inspired by the results of computer searches.

15

A A Short Introduction to Time-Space Lower Bounds

Here we give a brief overview of the tools that have been used to prove time-space tradeoff lower bounds.
We focus on deterministic time lower bounds for satisfiability for algorithms usingno(1) space, as the other
relevant lower bound problems use analogous tools and theno(1) space case is especially simple to work with.

It is known that satisfiability of Boolean formulas in conjunctive normal form (SAT) is a complete problem
under tight reductions for a small nondeterministic complexity class. DefineNQL asnondeterministic quasi-
linear time, i.e.

NQL :=
⋃

c≥0

NTIME[n · (log n)c] = NTIME[n · poly(log n)].

Theorem A.1 (Cook [Coo88], Schnorr [Sch78], Tourlakis [Tou01], Fortnow et al. [FLvMV05]) SAT isNQL-
complete, under reductions in quasi-linear time andO(log n) space simultaneously, for both multitape and
random access machine models. Moreover, each bit of the reduction can be computed inO(poly(log n)) time
andO(log n) space in both machine models.

Let C[t(n)] represent a timet(n) complexity class under one of the three models:

• deterministic RAM using timet andto(1) space,

• co-nondeterministic RAM using timet andto(1) space,

• d-dimensional Turing machine using timet.

The above theorem implies that ifNTIME[n] * C[t], then SAT/∈ C[t], modulo polylogarithmic factors.

Corollary A.1 If NTIME[n] * C[t(n)], then there is ak > 0 such that SAT/∈ C[t(n) · (log t(n))k].

Hence we want to proveNTIME[n] * C[nc] for a large constantc > 1. For the purposes of time lower
bounds for small space algorithms, we work withC[nc] = DTS[nc] = DTISP[nc, no(1)]. Van Melkebeek and
Raz [vMR05] observed that a similar corollary holds for any problemΠ such that SAT reduces toΠ under
highly efficient reductions,e.g.VERTEX COVER, HAMILTON PATH, 3-SAT, and MAX -2-SAT. It follows that
identical time lower bounds hold for these problems as well.

Speedups, Slowdowns, and Contradictions. Given that our goal is to proveNTIME[n] * DTS[nc], how
can we go about this? In an alternation-trading proof, we assume thatNTIME[n] ⊆ DTS[nc] and attempt to
establish a contradiction, by applying two lemmas in such a way that a time hierarchy is violated. One lemma
(called the “speedup lemma”) takes aDTS[t] class and places it in an alternating class with runtimeo(t); the
other (called the “slowdown lemma”) takes an alternating class with runtimet and places it in a class with one
less alternation and runtimeO(tc).

Lemma A.1 (Speedup Lemma)Leta ≥ 1, e ≥ 0 and0 ≤ x ≤ a. Then

DTISP[na, ne] ⊆ (Q1 nx+e)max{1,x+e}(Q2 log n)max{1,e}DTISP[na−x, ne],

for Qi ∈ {∃,∀} whereQ1 6= Q2. In particular,

DTS[na] ⊆ (Q1 nx)max{1,x}(Q2 log n)1DTS[na−x].

16

Proof. Let M be a random access machine usingna time andne space. To get a simulation ofM having type
(∃ nx+e)max{1,x+e}(∀ log n)max{1,e}DTISP[na−x, ne], the simulationN(x) existentially guesses a sequence
of configurationsC1, . . . , Cnx of M(x). It then appends the initial configuration to the beginning of the
sequence and the accepting configuration to the end of the sequence. ThenN(x) universally guesses ai ∈
{0, . . . , nx}, erases all configurations exceptCi andCi+1, then simulatesM(x) starting fromCi, accepting if
and only if theCi+1 is reached withinna−x steps. It is easy to see that the simulation is correct. The input
constraints on the quantifier blocks are satisfied, since after the universal guess, the input is onlyx, Ci, and
Ci+1, which is of sizen + 2ne ≤ nmax{1,e}+o(1). 2

The Speedup Lemma dates back to work of Nepomnjascii [Nep70]and Kannan [Kan84]. Note that in the
above alternating simulation, the input to the finalDTISP computation is linear inn + ne, regardless of the
choice ofx. This is a surprisingly subtle property that is exploited heavily in alternation-trading proofs. The
Slowdown Lemma is the following folklore result:

Lemma A.2 (Slowdown Lemma) Leta ≥ 1, e ≥ 0, a′ ≥ 0, andb ≥ 1. If NTIME[n] ⊆ DTISP[nc, ne], then
for bothQ ∈ {∃,∀},

(Q na′

)bDTIME[na] ⊆ DTISP[nc·max{a,a′,b}, ne·max{a,a′,b}].

In particular, if NTIME[n] ⊆ DTS[nc], then

(Q na′

)bDTIME[na] ⊆ DTS[nc·max{a,a′,b}].

Proof. Let L be a problem in(Q na′

)bDTIME[na], and letA be an algorithm satisfyingL(A) = L. On
an inputx of lengthn, A guesses a stringy of lengthna′+o(1), then feeds annb+o(1) bit string z to A′(z),
whereA′ is a deterministic algorithm that runs inna time. SinceNTIME[n] ⊆ DTISP[nc, ne] andDTISP

is closed under complement, by padding we haveNTIME[p(n)] ∪ coNTIME[p(n)] ⊆ DTISP[p(n)c, p(n)e]
for polynomialsp(n) ≥ n. ThereforeA can be simulated with a deterministic algorithmB. Since the total
runtime ofA is na′+o(1) + nb+o(1) + na, the runtime ofB is nc·max{a,a′,b}+o(1) and the space usage is similar.
2

The final component of an alternation-trading proof is a timehierarchy theorem, the most general of which
is the following, provable by a simple diagonalization.

Theorem A.2 (Alternating Time Hierarchy) For k ≥ 0, for all Qi ∈ {∃,∀}, a′i > ai ≥ 1, andb′i ≥ bi ≥ 1,

(Q1 na1)b2 · · ·bk (Qk nak)bk+1DTS[nak+1] * (R1 na′

1)b
′

2 · · ·b′k (Rk na′

k)b
′

k+1DTS[na′

k+1],

whereRi ∈ {∃,∀} andRi 6= Qi.

Remark 1 Are alternation-trading proofs relativizing? The Slowdown Lemma relativizes, but the Speedup
Lemma does not relativize in most oracle models, for the simple reason that the original machine runs longer
than the (sped-up) host machine, and can therefore ask longer queries. This is typically the case. For example,
the proof thatNTIME[n] 6= DTIME[n] is non-relativizing, since a powerful enough oracle makes the two
classes equal. Therefore, we consider alternation-trading proofs to be in that rare class of non-relativizing
and non-naturalizing lower bounds (but acknowledge that our belief is not unanimously held).

17

Two Instructive Examples. In order to understand alternation-trading proofs, it is necessary to consider
some examples. The art behind their construction consists of finding the proper sequence of rules to apply, and
the right settings of the parameterx in the Speedup Lemma.

1. In FOCS’99, Lipton and Viglas proved that SAT cannot be solved by algorithms running inn
√

2−ε

time andno(1) space, for allε > 0. Their proof can be summarized as follows: by Theorem A.1, the
assumption that there is such a SAT algorithm implies thatNTIME[n] ⊆ DTS[nc] with c2 < 2. Then

(∃ n2/c2)(∀ n2/c2)DTS[n2/c2] ⊆ (∃ n2/c2)DTS[n2/c] (Slowdown Lemma)

⊆ DTS[n2] (Slowdown Lemma)

⊆ (∀ n)(∃ log n)DTS[n] (Speedup Lemma, withx = 1).

But (∃ n2/c2)(∀ n2/c2)DTS[n2/c2] ⊆ (∀ n)(∃ log n)DTS[n] contradicts Theorem A.2. In fact, one can
show that ifc2 = 2, we still have a contradiction withNTIME[n] ⊆ DTS[nc], so theε can be removed
from the previous statement and state that SAT cannot be solved inn

√
2 time andno(1) exactly.7

2. Improving on the previous example, one can show SAT/∈ DTS[n1.6004]. If NTIME[n] ⊆ DTS[nc] and√
2 ≤ c < 2, then by applying the Speedup and Slowdown Lemmas appropriately, one can derive:

DTS[nc2/2+2] ⊆ (∃ nc2/2)(∀ log n)DTS[n2]

⊆ (∃ nc2/2)(∀ log n)(∀ n)(∃ log n)DTS[n]

= (∃ nc2/2)(∀ n)(∃ log n)DTS[n]

⊆ (∃ nc2/2)(∀ n)DTS[nc]

⊆ (∃ nc2/2)DTS[nc2]

⊆ (∃ nc2/2)(∃ nc2/2)(∀ log n)DTS[nc2/2]

= (∃ nc2/2)(∀ log n)DTS[nc2/2]

⊆ (∃ nc2/2)DTS[nc3/2]

⊆ DTS[nc4/2]

Whenc2/2 + 2 > c4/2 (which happens ifc < 1.6004), we haveDTS[na] ⊆ DTS[na′

] for somea > a′.
Notice that we do not know ifDTS[na] * DTS[na′

] whena′ > a, as the space bounds on both sides
of the inequality are the same. However one can still show by atranslation argument (similar to the
footnote) that eitherDTS[na] * DTS[na′

] or NTIME[n] * DTS[nc], concluding the proof.

While the second example is more clever in structure, a more interesting fact is that the proof was found by
a computer program. By “found”, we mean that the program applied the Speedup and Slowdown Lemmas in
precisely the same order and the same parameter settings, having only minimum knowledge of these Lemmas
along with a way to check the validity of the parameters. Moreover, the program verified that the above is the
best possiblealternation-trading proof that applies the Speedup and Slowdown Lemmas for at most7 times. A
precise definition of “alternation-trading proof” is givenin Section 3.

7SupposeNTIME[n] ⊆ DTS[nc] andΣ2TIME[n] ⊆ Π2TIME[n1+o(1)]. The first assumption, along with the Speedup and
Slowdown Lemmas, implies that for everyk there’s aK satisfyingΣ2TIME[nk] ⊆ NTIME[nkc] ⊆ ΣKTIME[n]. But the second
assumption implies thatΣKTIME[n] = Σ2TIME[n1+o(1)]. HenceΣ2TIME[nk] ⊆ Σ2TIME[n1+o(1)], which contradicts the time
hierarchy forΣ2TIME.

18

B New Lower Bound on the Time-Space Product for SAT8

Using Lemma A.1 in its full generality, it is possible to adapt our linear programming framework to prove time
lower bounds for SAT for any fixed space boundnδ, whereδ ∈ (0, 1). Trying a range of values forδ, we found
that for each of them, the optimal annotations for theno(1) space setting also appeared to be optimal forevery
space boundnδ. The following table gives time-space pairs for which our theorem prover has shown that no
SAT algorithm can satisfy both time and space requirements simultaneously.

Time Space
n1.06 n.9

n1.17 n.75

n1.24 n.666

n1.36 n.5

n1.51 n.333

n1.58 n.25

n1.7 n.1

n1.75 n.05

Based on this table, it is natural to conjecture that the time-space product for any algorithm solving SAT is
at leastΩ(n2 cos(π/7)) ≥ Ω(n1.801), and the product is minimized when the space is as small as possible. In
the below, we establish the conjecture. To the best of our knowledge, the previously best known bound on the
time-space product was onlyΩ(n1.573) [FLvMV05]. While the proof annotations in the below are analogous
to the2 cos(π/7) bound (as suggested by the experiments), the parameter settings in the proof rely a great deal
on our study of the theorem prover’s output.

Theorem B.1 Let t(n) ands(n) be bounded above by polynomials. Any algorithm solving SAT in timet and
spaces requirest · s = Ω(n2 cos(π/7)−ε) for all ε > 0.

Proof. Suppose SAT is solved in timet = nc and spaces = nd, with c + d ≤ 2 cos(π/7). Of course
we must havec ≥ 1, and sod ≤ 1 − 2 cos(π/7) < 1. By Theorem A.1, it follows thatNTIME[n] ⊆
DTISP[nc+o(1), nd+o(1)].

Define the sequencesc1 := 2 − d, ck+1 := c+ck
c+d , andd1 := d, dk+1 :=

d·ck+1

c . It is easy to see thatck ≥ c
for all k, and that the sequences{ck} and{dk} are monotone nondecreasing forc + d ≤ 2 andd < 1.

First we prove that for allk,

DTISP[nck , ndk] ⊆ (∃ n1+o(1))(∀ log n)DTISP[n1+o(1), nd+o(1)]. (2)

By the Speedup Lemma,

DTISP[nc1, nd1+o(1)] = DTISP[n2−d, nd+o(1)] ⊆ (∃ n1+o(1))(∀ log n)DTISP[n, nd+o(1)].

For the inductive step, we have the following (subtle) series of inclusions:

DTISP[nck+1, ndk+1+o(1)] ⊆ (∃ n1+o(1))(∀ log n)DTISP[nck+1−(1−dk+1), ndk+1+o(1)] (Speedup)

= (∃ n1+o(1))(∀ log n)DTISP[nck/c, ndk+1+o(1)] (def. ofck+1, & ck ≥ c)

⊆ (∃ n1+o(1))DTISP[nck+o(1), ndk+o(1)] (Slowdown & def. ofdk)

⊆ (∃ n1+o(1))(∀ log n)DTISP[n1+o(1), nd+o(1)] (by induction).

8A early version of the work in this section was reported in theauthor’s PhD thesis in 2007.

19

The sequence{ck} converges toc∞ = c/(c − 1 + d), hence{dk} converges tod∞ = d/(c − 1 + d). (Note
we havec ≥ c − 1 + d, sinced ≤ 1.) Therefore for allc′ < c∞, d′ < d∞,

DTISP[nc′ , nd′] ⊆ (∃ n1+o(1))(∀ log n)DTISP[n1+o(1), nd+o(1)]. (3)

Note if c2 ≤ ck for anyk, we already obtain a contradiction: for sufficiently larget, we have

NTIME[tck/c] ⊆ DTISP[tck , tdk] ⊆ (∃ t1+o(1))(∀ log n)DTISP[t1+o(1), td+o(1)] ⊆ NTIME[tc],

where the first inclusion follows from Slowdown, the second from eq.(2), and the third from Slowdown.
From these containments, one can derive a time hierarchy style contradiction, along the lines of Lemma 3.1.
Therefore we may assume thatc2 > ck for all k.

Equation (3) can be combined with another inductive argument to produce a contradiction. In particular, for
all k andℓ,

DTISP[ncℓ−kdℓ+
∑k

i=1(c2/cℓ)
i
, ndℓ] ⊆ (∃ n(c2/cℓ)

k
)(∀ log n)DTISP[n(c2/cℓ)

k+o(1), nd(c2/cℓ)
k+o(1)]. (4)

The proof of equation (4) is very similar in structure to Lemma 6.8 in [Wil08]. For completeness, we give
the sequence of inclusions to derive it. Whenk = 1, for arbitraryℓ we have

DTISP[ncℓ+(c2/cℓ)−dℓ , ndℓ] ⊆ (∃ nc2/cℓ)(∀ log n)1DTISP[ncℓ, ndℓ] (Speedup)

⊆ (∃ nc2/cℓ)(∀ log n)1(∀ n1+o(1))(∃ log n)DTISP[n1+o(1), nd+o(1)] (Eq. (2))

⊆ (∃ nc2/cℓ)(∀ n1+o(1))DTISP[nc+o(1), nd+o(1)] (Slowdown)

⊆ (∃ nc2/cℓ)DTISP[nc2+o(1), ndc+o(1)] (Slowdown; notecℓ ≥ c soc ≥ c2/cℓ)

⊆ (∃ nc2/cℓ)(∃ nc2/cℓ)(∀ log n)DTISP[nc2/cℓ+o(1), ndc2/cℓ+o(1)] (Eq. (2))

= (∃ nc2/cℓ)(∀ log n)DTISP[nc2/cℓ+o(1), ndc2/cℓ+o(1)].

For the inductive step, we have

DTISP[ncℓ−kdℓ+
∑k

i=1(c2/cℓ)
i
, ndℓ]

⊆ (∃ n(c2/cℓ)
k
)(∀ log n)DTISP[ncℓ−(k−1)dℓ+

∑k−1
i=1 (c2/cℓ)

i+o(1), ndℓ] (Speedup)

⊆ (∃ n(c2/cℓ)
k
)(∀ log n)(∀ n(c2/cℓ)

k−1
)(∃ log n)DTISP[n(c2/cℓ)

k−1+o(1), nd(c2/cℓ)
k−1+o(1)] (Induction)

⊆ (∃ n(c2/cℓ)
k
)(∀ log n)(∀ n(c2/cℓ)

k−1
)DTISP[nc(c2/cℓ)

k−1+o(1), nd(c2/cℓ)
k−1+o(1)] (Slowdown)

⊆ (∃ n(c2/cℓ)
k
)DTISP[nc2(c2/cℓ)

k−1+o(1), ndc(c2/cℓ)
k−1+o(1)] (Slowdown)

⊆ (∃ n(c2/cℓ)
k
)(∃ n(c2/cℓ)

k
)(∀ log n)DTISP[n(c2/cℓ)

k+o(1), nd(c2/cℓ)
k+o(1)] (Eq. (2))

= (∃ n(c2/cℓ)
k
)(∀ log n)DTISP[n(c2/cℓ)

k+o(1), nd(c2/cℓ)
k+o(1)]

Now, for sufficiently larget(n) ≥ n we have

NTIME[t(cℓ−kdℓ+
∑k

i=1(c
2/cℓ)

i)/c]

⊆ DTISP[tcℓ−kdℓ+
∑k

i=1(c
2/cℓ)

i+o(1), ndℓ] (Slowdown)

⊆ (∃ t(c
2/cℓ)

k
)(∀ log n)DTISP[t(c

2/cℓ)
k+o(1), nd(c2/cℓ)

k+o(1)] (Eq. (4))

⊆ (∃ t(c
2/cℓ)

k
)DTISP[tc(c

2/cℓ)
k+o(1), nd(c2/cℓ)

k+o(1)] (Slowdown)

⊆ NTIME[tc(c
2/cℓ)

k+o(1)].

20

A contradiction with the nondeterministic time hierarchy follows, when

cℓ − kdℓ +

k∑

i=1

(c2/cℓ)
i < c2(c2/cℓ)

k. (5)

Finally, we claim that whenc + d < 2 cos(π/7), inequality (5) holds for sufficiently largek and ℓ. The
theorem follows immediately from this claim. To see why the claim is true, we analyze the case wherek and
ℓ grow unboundedly and use the fact that the underlying sequences are monotone nondecreasing. Rewrite the
inequality into the form

cℓ − kdℓ

(c2/cℓ)k
+

k∑

i=1

(c2/cℓ)
i−k < c2. (6)

As k → ∞, the first term on the LHS vanishes sincec2 > cℓ for all ℓ. The second term converges to 1
1−cℓ/c2

.

Now asℓ → ∞, cℓ → c∞ = c/(c − 1 + d). Hence in the limit, inequality (5) becomes

0 +
1

1 − 1
c(c−1+d)

< c2 ⇐⇒ 1 < c2 − c2

c2 − c + dc
⇐⇒ c2 − c + dc < c2(c2 − c + dc) − c2

⇐⇒ c − 1 + d < c(c2 − c + dc) − c ⇐⇒ 2c − 1 + d < c3 − c2 + dc2 ⇐⇒ 0 < c3 − c2 + dc2 − 2c + 1 − d.

It remains to show that the bivariate polynomialp(x, y) = x3 −x2 − 2x+ 1+ y(x2 − 1) is greater than0 over
all points(x, y) wherex + y > 2 cos(π/7). Wheny = 0, p(x) = 0 over the rangex ∈ [1,∞] precisely when
x = 2cos(π/7), andp(x) > 0 for all x < 2 cos(π/7). But for all y > 0 andx > 1, the resulting polynomial
strictly dominatesp(x, 0) and we also havep(x, y) > 0 for anyx + y < 2 cos(π/7).

2

C Speedup Rule 2 is Redundant

To prove this we first need a lemma relating theai’s andbi’s of an alternating class.

Definition C.1 A class(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1] is orderly if it is either (a) a
DTS[na] class, or (b) for alli = 1, . . . , k, ai ≤ bi+1.

Lemma C.1 SupposeA1 is orderly. Then every alternation-trading proof beginning with A1 consists of only
orderly classes.

Proof. Induction on the number of lines. The base case is trivial. The induction hypothesis is that theℓth line,

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1],

is orderly. For the(ℓ + 1)th line, we consider the rules in turn:

• (Speedup Rule 0) Clearly(Qk nx)max{x,1}(Qk+1 n0)1DTS[nak+1−x] is orderly.

• (Speedup Rule 1) Suppose the line is

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x})max{x,bk+1}(Qk+1 n0)bk+1DTS[nak+1−x].

Thenak ≤ bk+1 by the induction hypothesis, somax{ak, x} ≤ max{x, bk+1}, 1 ≤ bk+1, thus the class
is orderly.

21

• (Speedup Rule 2) This case is clear, as the line is:

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n0)bk+1DTS[nak+1−x].

• (Slowdown Rule) Obvious, given the hypothesis.

This concludes all the cases. 2

Lemma C.2 Let A1 be orderly. For every alternation-trading proof thatNTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆
A2, there is another alternation-trading proof of the same implication that does not use Speedup Rule 2.

Proof. Consider a proofP that applies Speedup Rule 2 at some line. The line has the form

A = (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n0)bk+1DTS[nak+1−x].

We consider two cases:

1. If x ≤ ak, thenx ≤ bk+1 by Lemma C.1. By applying Speedup Rule 2, one obtains

A = (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n0)bk+1DTS[nak+1−x]

= (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nx)bk+1(Qk+2 n0)bk+1DTS[nak+1−x].

If we instead apply Speedup Rule 1 withx′ = x, the class is

B = (Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x′})max{x′,bk+1}(Qk+1 n0)bk+1DTS[nak+1−x′

]

= (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 n0)bk+1DTS[nak+1−x].

Then by applying Speedup Rule 1 withx′ = 0, the above class is in

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 n0)bk+1(Qk+2 n0)bk+1DTS[nak+1−x].

It is clear thatB ⊆ A: every parameter inB is at most the corresponding parameter inA. Thus any
inclusion derived with Rule 2 could only be made stronger by applying Rule 1 twice instead.

2. If x ≥ ak, then Speedup Rule 2 gives

A = (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n0)bk+1DTS[nak+1−x].

Speedup Rule 1 withx′ = ak gives

B = (Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak,x′})max{x′,bk+1}(Qk+1 n0)bk+1DTS[nak+1−x′

].

= (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 n0)bk+1DTS[nak+1−ak].

where we used the fact thatx′ = ak ≤ bk+1 (Lemma C.1). Applying Speedup Rule 1 again with
x′ = x − ak, B is contained in

(Q1 na1)b2 · · ·bk (Qk nak)bk+1(Qk+1 nmax{x−ak,1})max{x−ak ,bk+1}(Qk+2 n0)bk+1DTS[nak+1−x].

Again, observeB ⊆ A in this case, and every parameter inB is at most the corresponding parameter in
A.

This completes the proof. 2

As a consequence, Speedup Rule 2 is not necessary for normal form proofs.

Theorem C.1 For every alternation-trading proof ofNTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2 in normal form,
there is another alternation-trading proof of the same thatdoes not use Speedup Rule 2.

Proof. By Lemma C.1, every normal form alternation-trading proof is orderly. So by Lemma C.2, there is an
equivalent alternation-trading proof that does not use Speedup Rule 2. 2

22

D Proofs of Normal Form Properties

Here we establish Lemma 3.1 and Theorem 3.1, which show that it suffices to consider alternation-trading
proofs written in normal form:

Lemma 3.1Let c ≥ 1. If there is an alternation-trading proof forc in normal form having at least two lines,
thenNTIME[n] * DTS[nc].

Proof. Let P be an alternation-trading proof forc in normal form. We consider two cases.

• Supposea > a′. In this case,NTIME[n] ⊆ DTS[nc] impliesDTS[na] ⊆ DTS[na−δ] for someδ > 0.
By translation,DTS[na] ⊆ DTS[na−δ] implies

DTS[na2/(a−δ)] ⊆ DTS[na] ⊆ DTS[na−δ],

andDTS[na·(a/(a−δ))i
] ⊆ DTS[na−δ] for all i ≥ 0. Sinceδ > 0, this impliesDTS[nL] ⊆ DTS[na−δ]

for all L ≥ a − δ. Therefore, ifNTIME[n] ⊆ DTS[nc] then for allL ≥ a,

NTIME[nL] ⊆ DTS[nLc] ⊆ DTS[na−δ] ⊆ coNTIME[na−δ],

a contradiction to the time hierarchy (Theorem A.2).

• Supposea = a′. Let A be a line inP with a positive number of alternations. (Such a line must exist
sinceP has at least two lines.) The proofP proves thatNTIME[n] ⊆ DTS[nc] impliesDTS[na] ⊆ A ⊆
DTS[na′

], soA = DTS[na].

SinceDTS[na] is closed under complement,

A = A′, (7)

whereA′ is the complement ofA. Without loss of generality, assumeA = (∃ nδ)B andA′ = (∀ nδ)B′

for someδ > 0 and complementary classesB andB′. Clearly,

A′ = (∀ nδ)A′ andA = (∃ nδ)A. (8)

Now consider the classDTS[nδ⌈k
δ
⌉] ⊇ DTS[nk], for arbitraryk ≥ 1. By the Speedup Lemma (Lemma A.1)

and the fact thatDTS[nε] ⊆ A′ for someε > 0,

DTS[nk] ⊆ DTS[nδ⌈k
δ
⌉] ⊆ (∃ nδ)(∀ nδ) · · · (∃ nδ)(∀ nδ)

︸ ︷︷ ︸

⌈k/δ⌉

A′.

Applying equations (7) and (8), we have

(∃ nδ)(∀ nδ) · · · (∃ nδ)(∀ nδ)A′

= (∃ nδ)(∀ nδ) · · · (∃ nδ)A′

= (∃ nδ)(∀ nδ) · · · (∃ nδ)A

= (∃ nδ)(∀ nδ) · · ·A
= · · · = (∃ nδ)(∀ nδ)A′ = (∃ nδ)A′ = (∃ nδ)A = A.

23

ThereforeDTS[nk] ⊆ A, for everyk ≥ 1. HenceNP ⊆ DTS[nO(1), no(1)] ⊆ A. But by applying a
slowdown step for a finite number of times toA, there is an alternation-trading proof thatA ⊆ DTS[nK]
for a constantK. It follows that NP ⊆ A ⊆ DTS[nK] ⊆ coNTIME[nK], contradicting the time
hierarchy (Theorem A.2). SoNTIME[n] * DTS[nc] in this case as well.

2

Theorem 3.1Let A1 and A2 be complementary. If there is an alternation-trading proofP for c that shows
(NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2), then there is a normal form proof forc, of length at most that ofP .

Proof. Consider an alternation-trading proofP for c, written as

P = A1, C1, . . . , Ck, A2.

Define thedual proofP ’ by
P ′ = A2,¬C1, . . . ,¬Ck, A1,

where the notation¬C denotes the unique complementary simple class forC, i.e. every ‘∀’ in C is replaced
with ‘∃’, and vice-versa. Note thatP ′ is an alternation-trading proof if and only ifP is one.

Since the quantifiers of the first and last line ofP are different, note there there must be a lineCi = DTS[na]
for somea.

• Suppose there is only one deterministic class inP ; call it Ci. Then

P ′′ = Ci, Ci+1, . . . Ck, A2,¬C1, . . . ,¬Ci

is also an alternation-trading proof, obtained by piecing together the appropriate lines fromP andP ′.
However,Ci = ¬Ci, sinceDTS[na] is closed under complement. HenceP ′′ is in normal form: its first
and last lines areDTS classes, and no intermediate class is aDTS class.

• Suppose there arek ≥ 2 differentDTS classes inP . Write P as

P = A1, . . . ,DTS[na1], . . . ,DTS[na2], . . . , . . . ,DTS[nak], . . . , A2.

There are two cases:

- If there is ani ∈ [k] satisfyingai ≥ ai+1, we are done: letP ′′ to be the sequence of lines from
DTS[nai] andDTS[nai+1], and this is in normal form.

- If ai < ai+1 for everyi, then setP ′′ = DTS[nak], . . . , A2, . . . ,DTS[na1], where the classes in the
first “. . .” in P ′′ are taken directly fromP , and the classes in the second “. . .” in P ′′ are obtained
by taking the linesA2, . . . ,DTS[na1] in P ′. P ′′ is in normal form sinceak > a1.

2

E Experimental Results: Time-Space Lower Bounds for SAT

We wrote a program that given a proof annotation generates the relevant linear programming instance, solves
it, then prints the proof in human-readable form. For proof annotations exceeding 100 lines, we used the

24

lp solve package to solve the corresponding linear program.9 We also wrote heuristic search routines that
try to derive new proofs from old ones. One program starts with a queue of annotations, pulls the head of the
queue, and then tries all possible ways to add at most four bits to the annotation. If the resulting lower bound
from the new annotation increases, the new annotation is added to the queue. Interestingly, this simple strategy
generated all the optimal lower bounds that were found by exhaustive search, and more.

First we verified all the previously known lower bounds, suchas then2 cos(π/7) bound. In some cases, we
found better settings of the parameters than had been found in the past, but no proof better thann2 cos(π/7).
Then we searched the space of proof annotations, looking forinteresting patterns. For all evenk = 2, . . . , 26,
we exhaustively searched over all valid proof annotations with k lines. The best proof annotations for each
k are given in the below table. Fork > 26 we have not exhaustively searched all proofs, but instead used a
heuristic search as described above; these rows of the tableare marked with an asterisk. For rows with multiple
annotations, we checked the annotations to two more decimalplaces to further verify that the obtained lower
bounds are likely the same. The∆ of a row is the difference between the exponent of that row andthe exponent
of the previous row.

#Lines Best Proof Annotation(s) L.B. ∆
4 [1, 0, 0] 1.4142 0
6 [1, 0, 1, 0, 0] 1.5213 0.1071

[1, 1, 0, 0, 0]
8 [1, 1, 0, 0, 1, 0, 0] 1.6004 0.0791
10 [1, 1, 0, 0, 1, 0, 1, 0, 0] 1.633315 0.032915

[1, 1, 0, 1, 0, 0, 1, 0, 0]
[1, 1, 1, 0, 0, 0, 1, 0, 0]

12 [1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0] 1.6635 0.0302
14 [1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.6871 0.0236
16 [1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.699676 0.012576

[1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0]
[1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0]

18 [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.7121 0.0125
20 [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.7232 0.0111
22 [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7322 0.0090
24 [1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.737851 0.005651

[1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0]
[1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0]

26 [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7437 0.005849
28* [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7491 0.0054
30* [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7537 0.0046
32* [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0] 1.7577 0.0040
34* [1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0] 1.760632 0.002932

[1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]
[1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]

We observe that the proofs produced by the annotations in thetable have strong similarities to those in the
2 cos(π/7) lower bound. For example, the best 14-line proof (proving anΩ(n1.6871) lower bound) looks like:

0, DTS[nˆ5.275587925]
1, (E nˆ1.853485593)(A nˆ1.)DTS[nˆ3.422102331]
2, (E nˆ1.853485593)(A nˆ1.422102331)(E nˆ1.)DTS[nˆ2.00 0000001]

9The lp solve package is an open source simplex-based linear programmingsolver. It is maintained by a community on Yahoo
Groups:http://groups.yahoo.com/group/lp solve .

25

3, (E nˆ1.853485593)(A nˆ1.422102331)(E nˆ1.000000001)(A nˆ1.000000000)DTS[nˆ1.]
4, (E nˆ1.853485593)(A nˆ1.422102331)(E nˆ1.000000001)D TS[nˆ1.687100000]
5, (E nˆ1.853485593)(A nˆ1.422102331)DTS[nˆ2.846306408]
6, (E nˆ1.853485593)(A nˆ1.423153204)(E nˆ1.000000000)D TS[nˆ1.423153204]
7, (E nˆ1.853485593)(A nˆ1.423153204)DTS[nˆ2.401001771]
8, (E nˆ1.853485593)DTS[nˆ4.050730087]
9, (E nˆ1.853485593)(A nˆ1.000000000)DTS[nˆ2.197244494]
10, (E nˆ1.853485593)DTS[nˆ3.706971186]
11, (E nˆ1.853485593)(A nˆ1.000000000)DTS[nˆ1.85348559 3]
12, (E nˆ1.853485593)DTS[nˆ3.127015544]
13, DTS[nˆ5.275587925]

Looking closely at the table, there is a strong correlation between later rows of the table and earlier ones.
For example, there is a tie for best annotation at 10, 16, 24, and 34 lines, among three annotations that differ
only in three of their bits. To develop a greater understanding of what is happening, let us introduce some
abbreviations in the annotation. Where an annotation contains the string(1 0)k 0, we put the symbolk, for
k ≥ 1. Where an annotation contains the string11000, we just put0. The following table emerges:

#Lines Best Proof Annotation(s) L.B. ∆
4 1 1.4142 0
6 2 1.5213 0.1071

0
8 1 2 1.6004 0.0791
10 1 1 2 1.633315 0.032915

1 2 1
1 0 1

12 1 11 1 1 1.6635 0.0302
14 1 11 1 2 1.6871 0.0236
16 1 11 2 2 1.699676 0.012576

1 12 1 2
1 10 1 2

18 1 1 11 1 1 2 1.7121 0.0125
20 1 1 11 1 2 2 1.7232 0.0111
22 1 1 11 1 2 3 1.7322 0.0090
24 1 1 11 2 2 3 1.737851 0.005651

1 1 12 1 2 3
1 1 10 1 2 3

26 1 1 1 11 1 1 2 3 1.7437 0.005849
28* 1 1 1 11 1 2 2 3 1.7491 0.0054
30* 1 1 1 11 1 2 3 3 1.7537 0.0046
32* 1 1 1 11 1 2 3 4 1.7577 0.0040
34* 1 1 1 11 2 2 3 4 1.760632 0.002932

1 1 1 12 1 2 3 4
1 1 1 10 1 2 3 4

For an optimal annotation that ends with a non-zerok, a longer optimal annotation can be obtained by adding
either ak or k+1 to the end, and a1 at the beginning. (There are of course some restrictions– there are no more
than three consecutive1’s, no more than two consecutive2’s, etc.) While we do not yet know how toprove
that all of the best proofs must have this behavior, it seems extraordinarily unlikely that this pattern deviates at
some later point.

26

The table suggests that we examine proof annotations of the form1 · · · 1 0 1 2 3 4 · · ·. Unfortunately these
annotations do not lead to an improvement. To illustrate, for the 424 line proof annotation denoted by

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 · · · 17 18 19,

experiments withlp solve revealed that the optimal exponent is only in the interval[1.80175, 1.8018).
These results (along with the fact that any annotation in theabove formprovablycan yield no better than a
2 cos(π/7) exponent, cf. Theorem 3.3) point strongly to the conjecturethat there is no alternation-trading
proof thatNTIME[n] * DTS[nc], for anyc > 2 cos(π/7) ≈ 1.8019.

F Proof of Theorem 3.4: No Quadratic Lower Bound

In their paper showing that SAT cannot be solved inO(nφ) time andno(1) space, Fortnowet al. [FLvMV05]
write that “some complexity theorists feel that improving the golden ratio exponent beyond 2 would require a
breakthrough.” Here we give a formal proof of this sentiment. Although the proof is simple, we believe it is
important as a formalization of a folklore conjecture.

Theorem 3.4There is no alternation-trading proof ofNTIME[n] * DTS[n2].

Proof. (Sketch) Suppose there is such a proof, and letA be a minimum length annotation in normal form for
it. We claim thatA can be made shorter, yet the resulting LP is still feasible ifthe original LP was feasible.

First we observe that every normal form annotation containsa sequence1, 0. Normal form annotations
can be put in 1-1 correspondence with strings of balanced parentheses of the form(x) , wherex is an non-
empty balanced parentheses string. The first speedup in a proof corresponds to((, as it introduces two
quantifiers, all other speedup applications correspond to a(, and a slowdown correponds to a) . For example,
(()) corresponds to[1, 0, 0]. Since there is always an adjacent parentheses pair() in any string of balanced
parentheses, there must also be some occurrence of1, 0 in a valid proof annotation. If this1, 0 can be removed
from A without changing the feasibility of the underlying linear program, the claim is proved.

The two lines in the proof corresponding to the sequence1, 0 (including the previous line) have the form:

· · ·bk−1 (Qk−1 nak−1)bk(Qk nak)bk+1DTS[nak+1] (9)

· · ·bk−1 (Qk−1 nak−1)bk(Qk nmax{x,ak})max{x,bk+1}(Qk+1 log n0)bk+1DTS[nak+1−x] (10)

· · ·bk−1 (Qk−1 nak−1)bk(Qk nmax{x,ak})max{x,bk+1}DTS[nmax{c(ak+1−x),cx,cbk+1}] (11)

Every parameter in the class (11) is at least the corresponding parameter in the class (9), except for possibly
the runtime of theDTS computation. Hence ifak+1 ≤ c(ak+1 − x), or ak+1 ≤ cx, or ak+1 ≤ cbk+1, then
1, 0 could be removed without changing the feasibility of the LP.However, if bothak+1 > c(ak+1 − x) and
ak+1 > cx, then2ak+1 > c(ak+1 − x) + cx, a contradiction whenc ≥ 2. 2

G Experimental Results: Lower Bounds for Nondeterministic Algorithms
Solving Tautologies

Below is a table of results found by exhaustive search over valid annotations.

27

#Lines Best Proof Annotation(s) L.B.
5 [1, 0, 0, 0] 1.323
8 [1, 1, 0, 0, 0, 0, 0] 1.380

[1, 0, 1, 0, 0, 0, 0]
11 [1, 1, 0, 0, 0, 1, 0, 0, 0, 0] 1.419
14 [1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] 1.433

[1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]

17 [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0] 1.445
[1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

20 [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 1.455
[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]
[1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

23 [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]1.465

As one can see, the structure of good lower bound proofs for the “TAUTOLOGY versusNTISP” problem
turns out to be different from those for the “SAT versusDTISP” problem. Taken from the program, the best
11-line proof reads:

0, NTS[nˆ4.788956584]
1, (E nˆ2.369956583)(A nˆ1.)NTS[nˆ2.419]
2, (E nˆ2.369956583)(A nˆ1.)(E nˆ1.419)(A nˆ1.)NTS[nˆ1.]
3, (E nˆ2.369956583)(A nˆ1.)(E nˆ1.419)(A nˆ1.)coNTS[nˆ1 .419]
4, (E nˆ2.369956583)(A nˆ1.)(E nˆ1.419)NTS[nˆ2.01356100 0]
5, (E nˆ2.369956583)(A nˆ1.)coNTS[nˆ2.857243059]
6, (E nˆ2.369956583)(A nˆ2.378351877)(E nˆ1.)coNTS[nˆ1. 181167036]
7, (E nˆ2.369956583)(A nˆ2.378351877)(E nˆ1.)NTS[nˆ1.67 6076023]
8, (E nˆ2.369956583)(A nˆ2.378351877)coNTS[nˆ2.3783518 77]
9, (E nˆ2.369956583)NTS[nˆ3.374881314]
10, coNTS[nˆ4.788956584]

Note how larger annotations are composed of smaller ones: for example,[1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] is
[1, A7, A4, 0], whereA4 andA7 are optimal annotations for four and seven lines. In particular, observe that
three optimal annotations from the table have a distinctivepattern, namely

[1, 0, 0, 0], [1, 1, 0, 0, 0, 1, 0, 0, 0, 0], and[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0].

The pattern suggests that we look for an inductive proof where an induction hypothesis is applied twice in the
inductive step. The next annotation in the pattern would be

[1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

a 47-line annotation that gives a1.49 exponent. A heuristic search found the above 47-line annotation, and no
other annotations found (with at most 47 lines) attained a lower bound of that quality. For many line numbers
ℓ, heuristic search found a large number ofℓ-line proof annotations that achieve the same lower bound. For
example, there are eight such annotations of 26 lines. Each optimal annotation found could be written as a
concatenation of smaller optimal annotations along with anadditional1 and0.

28

H Proof of Theorem 4.2: The Nondeterministic Time-Space Lower Bound

To prove Theorem 4.2, we use an inductive lemma. For a given constantc ≥ 1, define the sequencex1 := 1,
x2 := c, xk := c3(xk−1)

2/(
∑k−1

i=1 xi).

Lemma H.1 If coNTIME[n] ⊆ NTS[nc] and c2(xk)
2 ≥ ∑k

i=1 xi, then for all k ≥ 2, NTS[n
∑k

i=1 xi] ⊆
(∃ nxk)(∀ nxk)coNTS[nxk].

In the following, we do not specify the inputs to quantifier blocks, except where absolutely necessary for the
argument.
Proof. For k = 2 we haveNTS[nc+1] ⊆ (∃ nc)(∀ log n)NTS[n] ⊆ (∃ nc)(∀ log n)coNTS[nc]. Note that
c2(xk)

2 ≥ ∑k
i=1 xi impliesxk+1 ≥ 1. By induction we have that

NTS[n
∑k+1

i=1 xi] ⊆ (∃ nxk+1)(∀ log n)1 NTS[n
∑k

i=1 xi] (Speedup)

⊆ (∃ nxk+1)(∀ log n)1(∃ nxk)(∀ nxk)coNTS[nxk] (by Induction Hypothesis)

⊆ (∃ nxk+1)(∀ log n)1(∃ nxk)NTS[ncxk] (Slowdown)

⊆ (∃ nxk+1)(∀ log n)1coNTS[nc2xk] (Slowdown)

⊆ (∃ nxk+1)(∀ log n)1(∀ nc2(xk)2/(
∑

i xi))(∃ nc2(xk)2/(
∑

i xi))NTS[nc2(xk)2/(
∑

i xi)]

(Induction Hypothesis, and Assumption)

⊆ (∃ nxk+1)(∀ log n)1(∀ nc2(xk)2/(
∑

i xi))coNTS[nc3(xk)2/(
∑

i xi)] (Slowdown)

⊆ (∃ nxk+1)(∀ nxk+1)coNTS[nxk+1].

2

Note the lemma indeed applies its induction hypothesis twice, as suggested by experiments. The lower
bound proof for tautologies can now be derived.
Proof of Theorem 4.2. AssumecoNTIME[n] ⊆ NTS[nc]. Supposeℓ is the smallest integer satisfying
c2(xℓ)

2 <
∑ℓ

i=1 xi. Note thatc2(x2)
2 = c4 ≥ c + 1 = x1 + x2 for c > 1.2207, which we know holds due

to Fortnow and Van Melkebeek. Thereforeℓ ≥ 3. By Lemma H.1 and the Slowdown Lemma, for everyk < ℓ
we have

NTS[n
∑k

i=1 xi] ⊆ (∃ nxk)(∀ nxk)coNTS[nxk] ⊆ coNTS[nc2xk]. (12)

Define the sequencesk := (
∑k

i=1 xi)/xk = 1 +
∑k−1

i=1 xi/xk. By induction one can show thatsk = 1 +
(sk−1)

2/c3, and that this sequence is increasing.
The inclusion (12) says that a contradiction is obtained with Lemma 4.3 whenc2 ≤ sk. Hence ifc2 ≤

sℓ−1, we have a contradiction with Lemma 4.3 (theNTS versuscoNTS hierarchy). However, we know that
c2xℓ <

∑ℓ
i=1 xi/xℓ andc2xℓ−1 ≥ ∑ℓ−1

i=1 xi/xℓ−1, by our choice ofℓ. Taken together, the two inequalities are
equivalent to the conditionxℓ+1 < c ≤ xℓ. With algebra manipulation and the fact thatc3 > c + 1 (which
holds forc > 1.33), one can show that this condition impliesc2 ≤ sℓ−1. Hence no suchℓ exists.

Now suppose instead thatc2(xk)
2 ≥ ∑k

i=1 xi, for all k. Then inclusion (12) holds for allk. For whichc
can we obtainc2 ≤ sk, for sufficiently largek? Either the sequence{sk} is unbounded (in which case we are
done, as the inequality holds for allc) or it has a limit point. In the latter case, we haves∞ = 1 + s2

∞/c3. The
polynomialp(x) = 1 + x2/c3 − x has rootsx = c · (c2/2 ±

√

(c4 − 4c)/2). Whenc = 41/3, this root is
imaginary, therefores∞ would be imaginary, a contradiction. It follows thatc < 41/3. 2

29

I No Golden Ratio Lower Bound for Solving Tautologies With Nondetermin-
ism

Here we prove that there is no alternation trading proof thatcoNTIME[n] * NTS[nc], for anyc ≥ φ ≈ 1.618,
the golden ratio.
Proof. (Sketch) Suppose there is a proof thatcoNTIME[n] * NTS[nc] with c ≥ φ, and letA be a normal
form annotation for it, of minimum length. First, observe that every valid annotation contains the sequence
1, 0, 0 in it, for if every occurrence of1, 0 was followed by a1, the proof could not possibly be in normal form.
(In particular, when a speedup rule and slowdown rule are applied to a simple classA, the resulting classA′

hasmorequantifiers thanA, in this setting.) Therefore1, 0, 0 must occur somewhere in the proof.
Next, we show that any subsequence1, 0, 0 can be removed fromA, and the resulting LP will still be feasible

for the constantc. This implies a contradiction.
Consider the four lines in a prospective proof corresponding to the sequence1, 0, 0, where we include the

line before the three rules are applied. The first line is one of four possibilities:

· · ·b′ (∃na′

)bNTS[na], · · ·b′ (∀na′

)bcoNTS[na], · · ·b′ (∃na′

)bcoNTS[na], or · · ·b′ (∀na′

)bNTS[na].

The first two cases are symmetric to each other, as are the lasttwo cases, so it suffices for us to consider
· · ·b′ (∃na′

)bNTS[na] and· · ·b′ (∃na′

)bcoNTS[na].
In the first case, the four lines have the form:

· · ·b′ (∃na′

)bNTS[na] (13)

· · ·b′ (∃ nmax{a′,x})max{b,x}(∀ log n)bNTS[na−x] (14)

· · ·b′ (∃ nmax{a′,x})max{b,x}(∀ log n)bcoNTS[nmax{c(a−x),cb}] (15)

· · ·b′ (∃ nmax{a′,x})max{b,x}NTS[nmax{c2(a−x),c2b,cx}] (16)

Observe that each parameter in class (16) is at least the corresponding parameter in class (13), except for
possibly the runtime of theNTS computation. However, if any one ofa ≤ c2(a−x), a ≤ c2b, or a ≤ cx hold,
then the above lines can be removed from the proof, and the optimal assignment to the parameters would only
be larger. So supposea > c2(a − x), a > cb, anda > cx. Thenc2a < a + c2x < a + ca, implying that
c2 < (1 + c), or c(c − 1) < 1. Forc ≥ φ, this is a contradiction.

One can argue similarly for the second case. There the four lines have the form:

· · ·b′ (∃na′

)bcoNTS[na] (17)

· · ·b′ (∃ na′

)b(∀ nx)max{x,b}(∃ log n)bcoNTS[na−x] (18)

· · ·b′ (∃ na′

)b(∀ nx)max{x,b}(∃ log n)bNTS[nmax{c(a−x),cb}] (19)

(∃ na′

)b(∀ nx)max{x,b}coNTS[nmax{c2(a−x),c2b,cx}] (20)

Using an argument similar to the above, class (20) contains class (17) whenc ≥ φ, so removing the above
lines can only improve the optimum setting of the parameters. 2

30

J Experimental Results: Lower Bounds for Multidimensional TMs Solving
SAT

For 1-dimensional machines, a summary of lower bounds foundby the LP-based theorem prover is given in the
below table. Unlike the previous two cases, the optimal bounds attained by optimal proofs have non-monotonic
behavior (with respect to length) at first. Perhaps surprisingly, the table looks the same for the 2-dimensional
and 3-dimensional cases, albeit with smaller lower bound exponents.

#Lines Best Proof Annotation(s) L.B.
5 [1, 1, 0, 0] 1.224
6 [1, 1, 0, 1, 0]
7 [1, 1, 1, 0, 0, 0] 1.201

8,9 [1, 1, 0, 1, 1, 0, 0], [1, 1, 0, 1, 1, 0, 1, 0] 1.262
10 [1, 1, 1, 0, 0, 1, 1, 0, 0] 1.261

11, 12 [1, 1, 0, 1, 1, 0, 1, 1, 0, 0], [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0] 1.274
13 [1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0] 1.277

14, 15 [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0],[1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,0, 1, 0] 1.278
16, 17 [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0], [1, 1, 1, 0, 1, 1, 0, 0, 1,1, 0, 1, 1, 0, 1, 0] 1.287

19 [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0] 1.292
25 [1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0] 1.297
28 [1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,0, 0] 1.298

A subset of the optimal annotations have the form

A = [1 (1 1 0)k 0 (1 1 0)ℓ 0],

for integersk, ℓ. (In fact those that do not can be written in this way.) In other words,0 0 occurs exactly twice.
Might it be that for longer proofs there are optimal annotations with three occurrences of0 0? As before, we
used a heuristic search to investigate. The search uncovered more interesting annotations, but all of the best
had the form ofA above. For instance, the best 25 line proof was:

0, DTIME1[nˆ1.751958454]
1, (E nˆ1.)DTISP[nˆ1.751958454,nˆ.7519608720]
2, (E nˆ1.040108911)(A nˆ1.)DTISP[nˆ1.463810415,nˆ.751 9608720]
3, (E nˆ1.040108911)(A nˆ1.)(E nˆ1.)DTISP[nˆ1.215771287 ,nˆ.7519608720]
4, (E nˆ1.040108911)(A nˆ1.)DTIME1[nˆ1.577881470]
5, (E nˆ1.040108911)(A nˆ1.)DTISP[nˆ1.577881470,nˆ.577 8814720]
6, (E nˆ1.040108911)(A nˆ1.)(E nˆ1.)DTISP[nˆ1.155762944 ,nˆ.5778814720]
7, (E nˆ1.040108911)(A nˆ1.)DTIME1[nˆ1.5]
8, (E nˆ1.040108911)(A nˆ1.)DTISP[nˆ1.5,nˆ.5]
9, (E nˆ1.040108911)(A nˆ1.)(E nˆ1.)DTISP[nˆ1.,nˆ.5]
10, (E nˆ1.040108911)(A nˆ1.)DTIME1[nˆ1.297844000]
11, (E nˆ1.040108911)DTIME1[nˆ1.684399048]
12, (E nˆ1.040108909)DTISP[nˆ1.684399048,nˆ.644290139 4]
13, (E nˆ1.040108909)(A nˆ1.)DTISP[nˆ1.288580278,nˆ.64 42901394]
14, (E nˆ1.040108909)DTIME1[nˆ1.672376183]
15, (E nˆ1.040108909)DTISP[nˆ1.672376183,nˆ.632267273 9]
16, (E nˆ1.040108909)(A nˆ1.)DTISP[nˆ1.264534548,nˆ.63 22672739]

31

17, (E nˆ1.040108909)DTIME1[nˆ1.641168576]
18, (E nˆ1.040108909)DTISP[nˆ1.641168576,nˆ.601059666 9]
19, (E nˆ1.040108911)(A nˆ1.)DTISP[nˆ1.202119332,nˆ.60 10596669]
20, (E nˆ1.040108911)DTIME1[nˆ1.560163362]
21, (E nˆ1.040108911)DTISP[nˆ1.560163362,nˆ.520054453 3]
22, (E nˆ1.040108908)(A nˆ1.)DTISP[nˆ1.040108908,nˆ.52 00544533]
23, (E nˆ1.040108908)DTIME1[nˆ1.349899105]
24, DTIME1[nˆ1.751958454]

K Proof of Theorem 5.1: Thed-Dimensional TM Lower Bound

Here we prove that SAT cannot be solved by a Turing machine with random access to its input and sequential
access to ad-dimensional tape, inO(nrd) time, whererd ≥ 1 is a root of the polynomial

pd(x) = (2d+1)(d+1)2x5 −2(d+1)(2d+1)x4 −d2x3 +2(d+1)x2 − ((2d+1)(d+1)2 +1)x+d(d+1).

As corollaries, SAT/∈ DTIME1[n
1.3009], SAT /∈ DTIME2[n

1.1887], and SAT/∈ DTIME3[n
1.1372].

Before we prove Theorem 5.1, we first give an inductive lemma.Let c ≥ 1, and define the sequence
e1 := (d + 2)/(d + 1), ek+1 := 1 + ek

c(d+1) .

Lemma K.1 SupposeNTIME[n] ⊆ DTIMEd[n
c]. Then for allk ≥ 1,

DTIMEd[n
ek] ⊆ (∃ n)(∀ log n)DTISP[n, nd/(d+1)].

Proof. Whenk = 1,

DTIMEd[n
ek] ⊆ (∃ n)DTISP[n(d+2)/(d+1), n.5] ⊆ (∃ n)(∀ log n)DTISP[n, nd/(d+1)],

by Lemma 5.1 (DTIMEd to DTISP) and Lemma A.1 (DTISP Speedup), respectively. For the inductive step,

DTIMEd[n
1+

ek
c(d+1)] ⊆ (∃ n)DTISP[n

1+
ek

c(d+1) , n
ek

c(d+1)] (DTIMEd to DTISP)

⊆ (∃ n)(∀ log n)DTISP[nek/c, n
ek

c(d+1)] (Speedup)

⊆ (∃ n)DTIMEd[n
ek] (DTIMEd Slowdown)

⊆ (∃ n)(∃ n)(∀ log n)DTISP[n, nd/(d+1)] = (∃ n)(∀ log n)DTISP[n, nd/(d+1)],

where the last containment holds by induction. 2

Note the proof annotations for the derivations in the above lemma have the form(1 1 0)k−1 1 1.

Corollary K.1 For all ε > 0 and c ≥ 1, if NTIME[n] ⊆ DTIMEd[n
c] then DTIMEd[n

1+ 1
c(d+1)−1

−ε
] ⊆

(∃ n)(∀ log n)DTISP[n, nd/(d+1)].

Proof. For e < 1 + 1
c(d+1)−1 , we havee < 1 + e

c(d+1)−1 . The sequencesk = 1 +
sk−1

c(d+1)−1 converges to

η = 1 + 1
c(d+1)−1 for all c ≥ 1. (Notee = 1 + e/(c(d + 1)) impliese = 1 + 1

c(d+1)−1 .) So for anye∗ < η, by

settinge = (d + 1)/(d + 2) and observingDTIMEd[n
(d+1)/(d+2)] ⊆ (∃ n)(∀ log n)DTISP[n, nd/(d+1)], one

can apply Lemma K.1 a constant number of times to get that the same containment holds forDTIMEd[n
e∗].2

32

Intuitively, the corollary says that as we make stronger assumptions about how quickly SAT can be solved on
ad-dimensional one-tape TM, then we can place more ofDTIMEd[n

O(1)] in (∃ n)(∀ log n)DTISP[n, nd/(d+1)],
whenc < (d + 2)/(d + 1). We can now prove the lower bound.
Proof of Theorem 5.1. Let a ≥ 1 be a parameter. Then

DTIMEd[n
a] ⊆ (∃ n)DTISP[na, nd(a−1)] (DTIMEd to DTISP)

⊆ (∃ nx+d(a−1))x+d(a−1)(∀ log n)1DTISP[na−x, nd(a−1)] (Speedup)

wherex is a parameter satisfyingc ≥ x + d(a − 1) ≥ 1. By Speedup, the above class is in

(∃ nx+d(a−1))x+d(a−1)(∀ n(1−d(a−1))+d(a−1))1(∃ log n)1DTISP[na−x−(1−d(a−1)), nd(a−1)]

= (∃ nx+d(a−1))x+d(a−1)(∀ n1)1(∃ log n)1DTISP[na−x−(1−d(a−1)), nd(a−1)]

⊆ (∃ nx+d(a−1))x+d(a−1)(∀ n1)1DTIMEd[n
c(a−x−(1−d(a−1)))] (Slowdown),

assuming (for the moment) that1 − d(a − 1) ≥ 0. Suppose thata andx satisfyc(a − x − (1 − d(a − 1))) =
c((d + 1)(a− 1)− x) ≥ 1 + 1

c(d+1)−1 − ε, for someε > 0. Applying Corollary K.1, the above is contained in

(∃ nx+d(a−1))(∀ n)(∃ log n)DTISP[n1, nd/(d+1)] ⊆ (∃ nx+d(a−1))(∀ n)DTISP[nc, nd/(d+1)] (Slowdown)

⊆ (∃ nx+d(a−1))x+d(a−1)DTIMEd[n
c2], (Slowdown)

sincec ≥ x + d(a − 1). Now supposea andc satisfyc2/(x + d(a − 1)) = 1 + 1/(c(d + 1) − 1) − ε. Then
Corollary K.1 can be applied again, obtaining the class

(∃ nx+d(a−1))(∀ n)DTISP[n(x+d(a−1)), n(x+d(a−1))· d
d+1] ⊆ (∃ nx+d(a−1))DTIMEd[n

c(x+d(a−1))] (Slowdown)

⊆ DTIMEd[n
c2(x+d(a−1))]. (Slowdown).

Settinga = c2(x + d(a − 1)) yields a contradiction with Lemma 5.3. Observe that a proof annotation for the
above has the form[1 (1 1 0)k 0 (1 1 0)ℓ 0]. The analysis introduced three parameters (c, a, x) along with
three equations to satisfy:

a = c2(x + d(a − 1)), c(a − x − d(a − 1) + 1) = 1 +
1

c(d + 1) − 1
,

c2

x + d(a − 1)
= 1 +

1

c(d + 1) − 1
.

Adding the constraint thatc ≥ 1, a solution to this system also satisfies the constraintsc ≥ x + d(a − 1) ≥ 1
(and therefore1 − d(a − 1) ≥ 0) that arose in the analysis. With substantial algebraic manipulation, one can
show thatc ≥ 1 satisfying the equations is the unique root (greater than1) of the quintic

pd(x) = (2d+1)(d+1)2x5 −2(d+1)(2d+1)x4 −d2x3 +2(d+1)x2 − ((2d+1)(d+1)2 +1)x+d(d+1).

For anyr < c, we can finda, x, andε > 0 satisfyingr(d(a − 1) − x) = 1 + 1/(r(d + 1) − 1) − ε,
a = r2(x + d(a − 1)), andr2/(x + d(a − 1)) = 1 + 1/(r(d + 1) − 1) − ε. This completes the proof. 2

L No n
1+1/(d+1) Lower Bound for Solving SAT With d-Dimensional Machines

Proof. (Sketch) Proof by minimal counterexample. Suppose there isan alternation-trading proof that
NTIME[n] * DTIMEd[n

d] with c ≥ 1 + 1/(d + 1), and letA be a normal form annotation. We may as-
sume that|A| > 4, otherwise the only annotation is[1, 1, 0, 0] which we know does not yield the result. First,

33

we prove that in this setting, every sequence0, 1, 0 in a normal form annotation can be replaced with just0, 0.
After a slowdown, the deterministic portion of a class isDTIMEd, therefore0, 1, 0 produces the lines:

· · ·b′ (∃na′

)bDTIMEd[n
a] (21)

· · ·b′ (∃ na′,a−s})max{b,a−s}DTISP[na, nds] (22)

· · ·b′ DTIMEd[n
max{cb,ca−cs,ca′,ca,cds}], (23)

but this gives no improvement over applying the sequence0, 0 sinceca − cs ≤ ca.
So without loss of generality, every1 in an annotation can be assumed to occur adjacent to another1. Once

we have removed0, 1, 0, the proof annotations can be placed in 1-1 correspondence with strings of balanced
parentheses of the form(x) , as in Theorem 3.4. Every run ofk 1’s corresponds tok − 1 open parentheses,
and every0 corresponds to a closed parenthesis. Hence there is a sequence1, 1, 0, 0 in a proof annotation, as
this corresponds to the substring()) , which must occur in a string of the form(x) wherex is not the empty
string.

Finally, we claim that ifc ≥ (d + 2)/(d + 1), then1, 1, 0, 0 can be replaced with just0, corresponding to
) . To prove this, one examines the outcome of four lines where two speedups and two slowdowns are applied,
then argues that whenc ≥ (d + 2)/(d + 1), the resulting constants are no better than the case where one
slowdown is applied. There are two cases to analyze: one where the first line has aDTISP class and one where
the first line has aDTIMEd class. The reasoning follows the style of Theorems 3.4 and I but is much more
technical in nature, so we omit its derivation here. 2

M Lower Bounds for QBFk
10

As first observed by Fortnow and Van Melkebeek [FvM00], the alternation-trading scheme for lower bounds
against nondeterminism extends naturally to lower bounds against alternating computations. SinceAP =
PSPACE [CKS81], it follows thatATIME[n] * DTISP[nk, no(1)] for everyk ≥ 1.11 So we already have a
polynomial time lower bound for the quantified Boolean formula problem (QBF) in the small space setting.

How large can lower bounds for quantified Boolean formulas be, when the number of quantifier blocks is a
fixed constant? Define QBFk to be the problem of solving a QBF withk quantifier blocks (i.e. deciding the
truth ofΣk andΠk sentences in first-order Boolean logic). Building on Fortnow and Van Melkebeek [FvM00]
who proved that QBFk requiresΩ(nk−ε) time onno(1)-space machines, we prove time lower bounds for QBFk

of the formΩ(nk+1−εk) on the same model, where{εk} is a decreasing sequence such thatlimk→∞ εk = 0.
We use the fact that QBFk is “robustly complete” in the appropriate sense, then showΣkTIME[n] * DTS[nc]
for certainc > k by proving a series of class containments. Let us recall the completness result of Fortnowet
al.:

Theorem M.1 (Fortnow-Lipton-Van Melkebeek-Viglas [FLvMV 05]) For all k ≥ 1, QBFk is robustly com-
plete forΣkQL∪ΠkQL. In particular, there is a quasi-linear reduction from an arbitrary language in the class
to QBFk, where an arbitrary bit of the reduction can be computed in polylogarithmic time.

We can modify the LP framework for SAT lower bounds to obtain asimilar LP framework for QBFk lower
bounds: only the Slowdown Rule differs, as its application removes two quantifiers instead of just one. Doing

10A preliminary version of the work in this section was reported in the author’s PhD thesis in 2007. Also cf. [vM07], Section4.2,
for an overview of the result.

11Otherwise,SPACE[n] ⊆ ATIME[n2] ⊆ SPACE[no(1)], contradicting the space hierarchy theorem.

34

so, we wrote a program for proving QBFk time lower bounds, which produced proofs that closely resembled
the below argument.

Theorem M.2 For all k ≥ 1, QBFk requiresΩ(nc) time onno(1) space RAMs, wherec3/k− c2−2c+k < 0.

Note this result generalizes the2 cos(π/7) lower bound for SAT. The remainder of this section proves The-
orem M.2, which was partly inspired by some short proofs generated by our theorem prover.The main tool we
use is the following.

Theorem M.3 (Conditional Speedup for the Polynomial Hierarchy) If ΣkTIME[n] ⊆ DTS[nc] for some
c > k, then for alld satisfyingc ≤ d < c

c−k , DTS[nd] ⊆ Σk+1TIME[n1+o(1)] ∩ Πk+1TIME[n1+o(1)].

Proof. Similar to the proof of the Conditional Speedup Theorem in [Wil08]. We show thatDTS[nd] ⊆
Σk+1TIME[n1+o(1)]∩Πk+1TIME[n1+o(1)] impliesDTS[n1+dk/c] ⊆ Σk+1TIME[n1+o(1)]∩Πk+1TIME[n1+o(1)].
This process converges whend = 1 + dk/c, or d = c/(c − k).

The Speedup Lemma (Lemma A.1) implies that

DTS[n1+dk/c] ⊆ (∃ n)(∀ log n)DTS[ndk/c, no(1)].

Applying speedup fork more times,

DTS[n1+dk/c] ⊆ (∃ n)(∀ log n) (∀ nd/c) · · · (Q nd/c)
︸ ︷︷ ︸

k−1

(¬Q log n)DTS[nd/c]

for someQ ∈ {∃,∀}, where¬Q is opposite toQ. SinceΣkTIME[n] ⊆ DTS[nc],

(∃ n) (∀ nd/c) · · · (Q nd/c)(¬Q log n)
︸ ︷︷ ︸

k

DTS[nd/c] ⊆ (∃ n)DTS[nd].

Finally, sinceDTS[nd] ⊆ Σk+1TIME[n1+o(1)] ∩ Πk+1TIME[n1+o(1)],

(∃ n)DTS[nd] ⊆ Σk+1TIME[n1+o(1)].

An analogous argument impliesDTS[n1+dk/c] ⊆ Πk+1TIME[n1+o(1)]. 2

Theorem M.4 If ΣkTIME[n] ⊆ DTS[nc], then for allℓ ≥ 1 andd satisfyingc ≤ d < c/(c − k),

DTS[n
d+

∑ℓ
i=1

(
c2

dk

)i

] ⊆ Σk+1TIME[n

(
c2

dk

)ℓ
+o(1)

] ∩ Πk+1TIME[n

(
c2

dk

)ℓ
+o(1)

].

Proof. Induction onℓ. The caseℓ = 0 is immediate, by the previous theorem. For the inductive step, suppose

DTS[n
d+

∑ℓ
i=1

(
c2

dk

)i

] ⊆ Σk+1TIME[n

(
c2

dk

)ℓ
+o(1)

]. First, the Speedup Lemma implies

DTS[n
d+

∑ℓ+1
i=1

(
c2

dk

)i

] ⊆ (∃ n

(
c2

dk

)ℓ+1

)(∀ log n)DTS[n
d+

∑ℓ
i=1

(
c2

dk

)i

],

where the input to theDTS part has lengthn + 2no(1). By the induction hypothesis, the above is contained in

(∃ n

(
c2

dk

)ℓ+1

)(∀ log n)Πk+1TIME[n

(
c2

dk

)ℓ
+o(1)

].

35

Applying ΣkTIME[n] ⊆ DTS[nc] to theΣk part of theΠk+1TIME class, the above lies in

(∃ n

(
c2

dk

)ℓ+1

)(∀ log n)(∀ n

(
c2

dk

)ℓ

)DTS[n
c
(

c2

dk

)ℓ

].

If c < k, we already have a contradiction, becauseΣkTIME[nk] ⊆ DTS[nkc] ⊆ ΠkTIME[nc] (this follows
from applying the Speedup Lemma,k times).

If c ≥ k, the above class is contained in

(∃ n

(
c2

dk

)ℓ+1

)(∀ log n)(∀ n

(
c2

dk

)ℓ

)ΠkTIME[n
c
k
·
(

c2

dk

)ℓ
+o(1)

] = (∃ n

(
c2

dk

)ℓ+1

)ΠkTIME[n
c
k
·
(

c2

dk

)ℓ
+o(1)

].

Note (c2

dk)ℓ+1 ≤ c
k · (c2

dk)ℓ, becaused ≥ c. Invoking the assumptionΣkTIME[n] ⊆ DTS[nc] again results in
the class

(∃ n

(
c2

dk

)ℓ+1

)DTS[n
c2

k
·
(

c2

dk

)ℓ

].

Finally, sinced(c2

dk)ℓ+1 = c2

k · (c2

dk)ℓ, Theorem M.3 applies, and the above class is in

(∃ n

(
c2

dk

)ℓ+1

)Σk+1TIME[n
c2

dk
·
(

c2

dk

)ℓ
+o(1)

] = Σk+1TIME[n

(
c2

dk

)ℓ+1
+o(1)

].

An analogous argument proves the containment forΠk+1TIME[n

(
c2

dk

)ℓ+1
+o(1)

]. 2

Let Kℓ = d +
∑ℓ

i=1

(
c2

dk

)i
, for ℓ ≥ 1. We claim (the proof is not hard) that

(
c2

dk

)ℓ

≤ Kℓ

(

1 − dk

c2
− εℓ

)

,

for a small constantεℓ > 0 satisfyinglimℓ→∞ εℓ = 0. We deduce the chain:

Σk+1TIME[nKℓ] ⊆ (∃ nKℓ)DTS[ncKℓ]

⊆ (∃ nKℓ)ΣkTIME[n(c/k)Kℓ] ⊆ DTS[n(c2/k)Kℓ] ⊆ Πk+1TIME[n(c2/k)Kℓ(1− dk
c2

−εℓ)].

For sufficiently largeKℓ, a contradiction is reached whenc2/k(1 − (dk)/(c2)) < 1. Recalling thatd <
c/(c − k), the condition simplifies topk(c) = c3/k − c2 − 2c + k < 0.

For concrete bounds, cf. Table 1. As the evidence suggests, at least one root of the polynomialpk gradually
approachesk + 1 ask increases unboundedly; hence the lower bound exponent for QBFk approachesk + 1.

Proposition 2 limk→∞ pk(k + 1) = 0. In particular, for all k, pk(k + 1 − 1/k) < 0 andpk(k + 1) > 0.

Proof. Algebraic manipulation givespk(k + 1) = 1/k > 0 andpk(k + 1− 1/k) = 3/k3 − 1− 1/k− 1/k2 −
1/k4 < −1/k4 < 0, for all k ≥ 1. 2

36

Problem Time Lower Bound Exponent
SAT n1.801

QBF2 n2.903

QBF3 n3.942

QBF4 n4.962

QBF10 n10.991

QBF100 n100.999902

Table 1:Time lower bounds for QBFk on small space RAMs.

37

