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Abstract

A fertile area of recent research has demonstrated concrete polynomial time lower bounds
for solving natural hard problems on restricted computational models. Among these problems
are Satisfiability, Vertex Cover, Hamilton Path, MOD6-SAT, Majority-of-Majority-SAT, and
Tautologies, to name a few. These lower bound proofs all follow a certain diagonalization-based
proof-by-contradiction strategy. A pressing open problem has been to determine how powerful
such proofs can possibly be.

We propose an automated theorem-proving methodology for studying these lower bound
problems. In particular, we prove that the search for better lower bounds can often be turned
into a problem of solving a large series of linear programming instances. We describe an im-
plementation of a small-scale theorem prover and discover surprising experimental results. In
some settings, our program provides strong evidence that the best known lower bound proofs
are already optimal for the current framework, contradicting the consensus intuition; in others,
the program guides us to improved lower bounds where none had been known for years.
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1 Introduction

In this work, we show how to prove new limitations on computers by exploiting their capabilities.

Many time lower bounds for hard problems follow a certain pattern that we call a resource-trading

scheme. At an abstract level, the scheme consists of diagonalization-style arguments that use four

basic steps:

1. Assume a hard problem Π can be solved in nc time with resources R. (Let’s abbreviate the

class of such problems as R[nc].) We wish to obtain a contradiction. For example, R could

represent algorithms using poly(log n) space, and Π could be the satisfiability problem.

2. Prove a Speedup Lemma that “trades time for resources”, where R[t] is shown to be in a

class S[o(t)], for a more powerful resource S. For example, S could represent alternating

Turing machines. Fortnow-Van Melkebeek [FvM00] showed that poly(log n) space algorithms

running in nk time can be simulated by a Σk machine in Õ(n) time.

3. Prove a Slowdown Lemma that “trades resources for time”, where S[t] is shown to be in R[td],

for small d ≥ 1. A slowdown typically uses the assumption that Π is in R[nc]. For example,

if Sat has an nc time, poly(log n) space algorithm, then all of NTIME[t] has tc+o(1) time,

poly(log t) space algorithms, and as a consequence ΣkTIME[t] has tc
k+o(1) time, poly(log t)

space algorithms.

4. Combine (2) and (3) to show C[t] ⊆ C[t1−ε], for some ε > 0 and complexity class C parameter-

ized by t, implying a contradiction with a time hierarchy theorem for C. For example, we can

derive Σ2TIME[t] ⊆ DTISP[tc
2+o(1),poly(log t)] ⊆ Π2TIME[tc

2/2],1 where the first inclusion

holds by (3) and the second holds by (2). This contradicts the alternating time hierarchy if

c2 < 2. The above is the n
√

2−ε lower bound of Lipton and Viglas [LV99].

This scheme has been applied to prove lower bounds in a enormity of settings, dating back to

the seventies. A non-exhaustive list includes:

• Time Versus Space. Hopcroft, Paul, and Valiant [HPV77] proved that SPACE[n] *
DTIME[o(n log n)] for multitape Turing machines, by proving the “speedup lemma” that

DTIME[t(n)] ⊆ SPACE[t(n)/ log t(n)] and invoking a diagonalization argument. (Note their

result has since been extended to more general models of computation.)

• Determinism versus Nondeterminism with Multitape TMs. A celebrated result of

Paul-Pippenger-Szemeredi-Trotter [PPST83] shows that NTIME[n] ( DTIME[n(log∗ n)1/4]

in the multitape Turing machine setting. The key component of their proof is the “speedup

lemma” that DTIME[t] ⊆ Σ4TIME[t/ log∗ t], which exploits the limitations of sequential tapes.

• Deterministic and Nondeterministic Space-Bounded Algorithms. Here the model of

computation is a general purpose random access machine (determininstic or nondeterministic)

using small workspace (where n/poly(log n), n1−ε, and no(1) are the typical values) and the

time lower bounds are for solving satisfiability and other NP-complete problems, as well as

1
DTISP[t, s] is the class of sets recognizable by algorithms running in time t and space s, simultaneously.
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problems higher up in the polynomial hierarchy [Kan84, For97, LV99, FvM00, DvM06, Wil06,

Wil07a, vM07]. The best known deterministic time lower bound for solving satisfiability (and

similar NP-complete problems) with no(1) space algorithms is n2 cos(π/7)−o(1) ≥ n1.801 [Wil07a],

and the bound also holds for the counting problem MODm-Sat where m is a composite that

is not a prime power. For complete problems higher up the polytime hierarchy, k-QBF (the

problem of satisfying quantified Boolean formulas with at most k quantifier blocks) is known

to require Ω(nk+1−δk) time for deterministic no(1) space algorithms [Wil07b], where δk < 0.2

rapidly converges towards 0 as k grows. In the setting of nondeterministic algorithms using

no(1) space, the best known time lower bound known for natural co-NP problems (such as

Tautology) has been n
√

2−o(1), by Fortnow and Van Melkebeek [FvM00].

• Probabilistic and Quantum Space-Bounded Algorithms. Allender et al. [AKRRV01]

showed that Maj-Maj-Sat requires n1+Ω(1) time to solve on unbounded error machines that

use n1−ε space, for ε > 0. Diehl and Van Melkebeek [DvM06] proved that for k ≥ 2, k-

QBF requires Ω(nk−o(1)) time with randomized two-sided error algorithms using no(1) space.

Viola [Vio07] has shown that 3-QBF requires n1+Ω(1) time on Turing machines with a random

access input tape and two-way read-write access to a random bit tape. Van Melkebeek and

Watson [vMW07, vM07] have very recently shown how to adapt the result of Adleman et

al. [ADH97] that BQP ⊆ PP to extend Allender et al. to a time lower bound for solving

Maj-Maj-Sat with quantum algorithms.

• Hybrid One-Tape TMs. Here the model of interest has a random access both a read-only

input tape and a no(1) read-write store, along with read-write access to a sequential tape. As

this model generalizes both the widely studied off-line one-tape model and the no(1) space-

bounded RAM, it holds importance as the most powerful computational model known where

we can still prove non-trivial lower bounds for Sat. A series of work [Kan83, MS87, vMR05,

Wil06] has established time lower bounds for solving NTIME[n] problems in this model, the

best bound being Ω(n1.26) for Sat.

While the overall strategy behind these results is certainly principled, the proofs of lower bounds

under this framework have had an ad hoc feel. “Speedups” and “slowdowns” are often applied in

carefully contrived ways, making it hard for one to build intuition about the proofs. After gaining

experience with these problems, one gets a sense that the space of all possible proofs might be

difficult to systematically explore.

The primary contribution of this work is to develop a meta-proof framework for alternation-

trading proofs that is also practically implementable. We show that many proofs following the

above scheme can be reformulated in such a way that the search for new lower bounds becomes

a feasible problem that computers themselves can help us attack. Informally speaking, the “hard

work” in these lower bound arguments can often be replaced by an automated search that solves a

series of linear programming problems, each in polynomial time [Kha79, Kar84]. Additionally, the

formalization of alternation-trading proofs also allows us to prove meta-results about how proofs

relate to each other, and their limitations.
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1.1 Main Results

This paper is a case study that describes an automated theorem-proving approach to lower bounds

in three interesting scenarios. In all three cases, the resource being “traded” is that of alternations,

so for the purposes of this paper we say that the proof objects are alternation-trading proofs.

We formalize the components used in prior work and their relevant properties, with the following

results.

1. Deterministic Time-Space Lower Bounds for Satisfiability. For several years it has

been a folklore conjecture that one could use the current known tools to prove a quadratic

time lower bound for Sat, against algorithms using no(1) space. In Section 3, using a computer

program that searches over all possible alternation-trading proofs up to a fixed length, we give

empirical evidence that our time lower bound of n2 cos(π/7)−o(1) from previous work [Wil07a]

is already optimal for the current framework. Thus it appears we have exhausted the power

of existing techniques, and that the curious constant 2 cos(π/7) represents a challenging bar-

rier to further progress. With our formalism, we also give a simple meta-proof (sans com-

puter) that it will be impossible to push the lower bound to quadratic time with the current

alternation-trading proof framework.

2. Nondeterministic Time-Space Lower Bounds for Tautologies. Tailoring our computer

program to fit this setting (described in Section 4), it found a very short (eleven line) proof

that improves upon Fortnow-Van Melkebeek’s seven-year old bound, and the optimal proofs

found were strongly suggestive of a particular inductive pattern. Extrapolating from this

pattern, we are able to prove (on paper) that an n41/3−o(1) ≥ n1.587 time lower bound holds,

and this appears to be the best possible within the framework. After hearing of our eleven-

liner, Diehl and Van Melkebeek also found the same lower bound along with a generalization,

cf. [DvMW07]. Thus an automated theorem-proving approach can not only tell us when we

have reached a dead end, but it can also rapidly guide us towards new improvements.

3. Time Lower Bounds for Hybrid One-Tape TMs. In this setting (described in Sec-

tion 5), another adaptation of our automated approach uncovers highly regular behavior in

the optimal proofs. From the empirical results we readily extract an Ω(nr) time lower bound,

where r is the root of the polynomial 12x5 − 12x4 − x3 − 13x + 4x2 + 2 in the interval (1, 2).

Numerical approximations indicate that r ≈ 1.3009. Again, this appears to the best possible

with the current tools.

The lower bounds above also hold for many other natural NP-complete problems as well, since

the only property of satisfiability (or tautologies) required is that every set in NTIME[n] (respec-

tively, coNTIME[n]) has sufficiently efficient reductions to the problem. Also, the linear program-

ming approach is not limited to the above three lower bound scenarios; in principle, it can be

applied to the league of lower bound problems discussed in Van Melkebeek’s surveys [vM04, vM07].

We have chosen to present these particular cases because they are among the most interesting lower

bound settings, and the results illustrate a diversity of structure in alternation-trading proofs.

The key to our automated approach is that we separate the discrete choices in an alternation-

trading proof from the real-valued choices. Discrete choices consist of choosing whether to apply
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a speedup or slowdown at a given step, and which complexity class C[t] to try to use in the

contradiction. In all three cases above, we prove that one can restrict the number of possible

discrete choices that need to be made by writing proofs in a certain normal form. The significant

consequence of normal form is that it lets us consider a fixed type of class for C[t]. The real-valued

choices come from the choices of classes to prove a contradiction with, and the speedup step: one

must guess how to split up the runtime of a class using quantifiers. However, once all the discrete

choices are made, it turns out that with some care we can formulate the remaining real-valued

problem as an instance of linear programming, which can then be efficiently solved.

Unfortunately, we cannot efficiently search over all possible proofs, as the number of discrete

choices increases exponentially with the number of lines in the proof (the number is 2n/nΩ(1) for

n-line proofs, with small hidden constants). Still, with normal form simplifications and the linear

programming reduction, we can search a substantial portion of the proof space– it is a feasible task

to search over all proofs of up to 20-something lines for the best possible lower bounds. From clear

patterns found in those proofs, we can restrict the search space much further and look for longer

proofs using a heuristic search. For example, the best 424 line proof of a time lower bound for Sat

on no(1) space algorithms gives an Ω(n1.8018) time lower bound, matching the 2 cos(π/7) exponent

to within n0.0002.

2 Preliminaries

We assume familiarity with standard concepts in complexity theory [Pap94], especially alterna-

tion [CKS81]. Our default computational model is the random access machine, construed broadly;

the particular variants do not affect our results. All functions used to bound runtime and space

are assumed to be time constructible within the appropriate space bounds.

We also use some non-standard notation that turns out to be very useful in our formalization.

Recall that DTISP[t(n), s(n)] is the class of sets accepted by a RAM that runs in t(n) time and

s(n) space, simultaneously [BM78]. For convenience, we use the notation

DTS[t(n)] := DTISP[t(n)1+o(1), no(1)]

to avoid negligible o(1) factors in the exponent.

To properly formalize alternation-trading proofs, we introduce some notation for alternating

complexity classes which include input constraints between alternations. Define (∃ f(n))bC to be

the class of languages recognized by some machine N that, on input x, writes a f(n)1+o(1) bit string y

nondeterministically, copies at most nb+o(1) bits z of the tuple 〈x, y〉 deterministically (in O(nb+o(1))

time), and finally feeds z as input to a machine from class C. We refer to this behavior by saying that

the class C is constrained to nb input. We also define (∃ f(n))C := (∃ f(n))max{1,(log f(n))/(log n)}C;
that is, the default is nb ≤ O(f(n)1+o(1) + n1+o(1)). The class (∀ f(n))bC is defined similarly (with

respect to co-nondeterministic machines). We say that the existential and universal phases of an

alternating computation are quantifier blocks, to reflect the notation. When a machine recognizing a

language in class (∃ f(n))C is guessing the O(f(n)) bits, we say that it is in an existential quantifier.

Similarly, we define being in a universal quantifier for (∀ f(n))C.
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Therefore, an alternating class of the form

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1]

with Qi ∈ {∃,∀} means that the input to the computation starting at the ith quantifier block is

of length nbi+o(1) for all i = 1, . . . , k, and the input to the DTS computation has length nbk+1+o(1).

(Of course, the first quantifier block always has an input of length n.) It is crucial to keep track

of the input lengths to quantifier blocks, since the 2 cos(π/7) time lower bound and prior lower

bounds rely heavily on the fact that these inputs can be small in some cases.

2.1 A Very Short Introduction to Time-Space Lower Bounds

Here we give a brief overview of the tools that have been used to prove time-space tradeoff lower

bounds. For now we focus on deterministic time lower bounds for satisfiability for algorithms using

no(1) space, as the other relevant lower bound problems use analogous tools and the no(1) space

case is especially simple to work with.

A SAT Fact. It is known that satisfiability of Boolean formulas in conjunctive normal form

(Sat) is a complete problem under very tight reductions for a small nondeterministic complexity

class. Define NQL as “nondeterministic quasi-linear time”, i.e.

NQL :=
⋃

c≥0

NTIME[n · (log n)c] = NTIME[n · poly(log n)].

Theorem 2.1 (Cook [Coo88], Schnorr [Sch78], Tourlakis [Tou01], Fortnow et al. [FLvMV05])

Sat is NQL-complete, under reductions in quasi-linear time and O(log n) space simultaneously, for

both multitape and random access machine models. Moreover, each bit of the reduction can be

computed in O(poly(log n)) time and O(log n) space in both machine models.

Let C[t(n)] represent a time t(n) complexity class under one of the three models:

• deterministic RAM using time t and to(1) space,

• co-nondeterministic RAM using time t and to(1) space,

• hybrid one-tape Turing machine using time t.

The above theorem implies that if we can prove NTIME[n] * C[t], then Sat is not in C[t] modulo

polylogarithmic factors.

Corollary 2.1 If NTIME[n] * C[t(n)], then there is a c > 0 such that Sat is not contained in

C[t(n) · (log t(n))c].

Hence we want to prove NTIME[n] * C[nc] for a large constant c > 1. Van Melkebeek and Raz

observed that a similar corollary holds for any problem Π such that Sat reduces to Π under highly

efficient reductions, e.g. Vertex Cover, Hamilton Path, 3-SAT, and Max-2-Sat. It follows

that identical time lower bounds hold for these problems as well.
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Speedups, Slowdowns, and Contradictions. Given that our goal is to prove NTIME[n] *
DTS[nc], how can we go about this? In an alternation-trading proof, we assume that NTIME[n] ⊆
DTS[nc] and attempt to establish a contradiction, by applying two lemmas in such a way that

a time hierarchy is violated. One lemma (called the “speedup lemma”) takes a DTS[t] class and

places it in an alternating class with runtime o(t); the other (called the “slowdown lemma”) takes

an alternating class with runtime t and places it in a class with one less alternation and runtime

O(tc).

Lemma 2.1 (Speedup Lemma) Let a ≥ 1, e ≥ 0 and 0 ≤ x ≤ a. Then

DTISP[na, ne] ⊆ (Q1 nx+e)max{1,x+e}(Q2 log n)max{1,e}DTISP[na−x, ne],

for Qi ∈ {∃,∀} where Q1 6= Q2. In particular,

DTS[na] ⊆ (Q1 nx)max{1,x}(Q2 log n)1DTS[na−x].

Proof. Let M be a random access machine using na time and ne space. To get a simulation of M

having type (∃ nx+e)max{1,x+e}(∀ log n)max{1,e}DTISP[na−x, ne], the simulation N(x) existentially

guesses a sequence of configurations C1, . . . , Cnx of M(x). It then appends the initial configuration

to the beginning of the sequence and the accepting configuration to the end of the sequence. Then

N(x) universally guesses an integer i ∈ {0, . . . , nx}, erases all configurations except Ci and Ci+1,

then simulates M(x) starting from Ci, accepting if and only if the Ci+1 is reached within na−x

steps. It is easy to see that the simulation is correct. The input constraints on the quantifier blocks

are satisfied, since after the universal guess, the input is only x, Ci, and Ci+1, which is of size

n + 2ne ≤ nmax{1,e}+o(1). 2

The Speedup Lemma dates back to work of Nepomnjascii [Nep70] and Kannan [Kan84]. Note

that in the above alternating simulation, the input to the final DTISP computation is linear in

n+ne, regardless of the choice of x. This is a surprisingly subtle property that is exploited heavily

in alternation-trading proofs. The Slowdown Lemma is straightforward:

Lemma 2.2 (Slowdown Lemma) Let a ≥ 1, e ≥ 0, a′ ≥ 0, and b ≥ 1. If NTIME[n] ⊆
DTISP[nc, ne], then for both Q ∈ {∃,∀},

(Q na′

)bDTIME[na] ⊆ DTISP[nc·max{a,a′,b}, ne·max{a,a′,b}].

In particular, if NTIME[n] ⊆ DTS[nc], then

(Q na′

)bDTIME[na] ⊆ DTS[nc·max{a,a′,b}].

Proof. Let L be a problem in (Q na′

)bDTIME[na], and let A be an algorithm satisfying L(A) = L.

On an input x of length n, A guesses a string y of length na′+o(1), then feeds an nb+o(1) bit

string z to A′(z), where A′ is a deterministic algorithm that runs in na time. Since NTIME[n] ⊆
DTISP[nc, ne] and DTISP is closed under complement, by padding we have that NTIME[p(n)] ∪
coNTIME[p(n)] ⊆ DTISP[p(n)c, p(n)e] for polynomials p(n) ≥ n. Therefore A can be simulated by

a deterministic algorithm B. Since the total runtime of A is na′+o(1) + nb+o(1) + na, the runtime of

B is nc·max{a,a′,b}+o(1) and the space usage is similar. 2

The final component of an alternation-trading proof is a time hierarchy theorem, the most

general of which is the following, provable by a simple diagonalization.
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Theorem 2.2 (Alternating Time Hierarchy) For k ≥ 0, for all Qi ∈ {∃,∀}, a′i > ai ≥ 1, and

b′i > bi ≥ 1,

(Q1 na1)b2 · · ·bk (Qk nak)bk+1DTS[nak+1] * (R1 na′

1)b
′

2 · · ·b′k (Rk na′

k)b
′

k+1DTS[na′

k+1],

where Ri ∈ {∃,∀} and Ri 6= Qi.

Remark 1 Are alternation-trading proofs relativizing? The Slowdown Lemma clearly relativizes,

but the Speedup Lemma does not relativize in most oracle models, for the simple reason that the

original machine runs longer than the (sped-up) host machine, and can therefore ask longer queries.

This is typically the case in this area of work. For example, Paul-Pippenger-Szemeredi-Trotter’s

result that NTIME[n] 6= DTIME[n] is non-relativizing: a powerful enough oracle makes the two

classes equal. Therefore, we consider alternation-trading proofs to be in that rare genre of non-

relativizing and non-naturalizing lower bounds.2

Two Instructive Examples. In order to really understand alternation-trading proofs, it is

necessary to consider some examples. The art behind their construction consists of finding the

proper sequence of rules to apply, and the right settings of the parameter x in the Speedup Lemma.

1. In FOCS’99, Lipton and Viglas proved that Sat cannot be solved by algorithms running in

n
√

2−ε time and no(1) space, for all ε > 0. Their proof can be summarized as follows: by

Theorem 2.1, the assumption that there is such a Sat algorithm implies that NTIME[n] ⊆
DTS[nc] with c2 < 2. Then

(∃ n2/c2)(∀ n2/c2)DTS[n2/c2 ] ⊆ (∃ n2/c2)DTS[n2/c] (Slowdown Lemma)

⊆ DTS[n2] (Slowdown Lemma)

⊆ (∀ n)(∃ log n)DTS[n] (Speedup Lemma, withx = 1.

But (∃ n2/c2)(∀ n2/c2)DTS[n2/c2] ⊆ (∀ n)(∃ log n)DTS[n] contradicts Theorem 2.2. In fact,

one can show that if c2 = 2, we still have a contradiction with NTIME[n] ⊆ DTS[nc], so we

can remove the ε from our previous statement and state that Sat cannot be solved in n
√

2

time and no(1) exactly.3

2. Improving on the previous example, one can show Sat is not in DTS[n1.6004]. If NTIME[n] ⊆
DTS[nc] and

√
2 ≤ c < 2, then by applying the Speedup and Slowdown Lemmas appropriately,

2In fact, they are “non-algebrizing” as well.
3Suppose NTIME[n] ⊆ DTS[nc] and Σ2TIME[n] ⊆ Π2TIME[n1+o(1)]. The first assumption, along with the Speedup

and Slowdown Lemmas, implies that for every k there’s a K satisfying Σ2TIME[nk] ⊆ NTIME[nkc] ⊆ ΣKTIME[n].
But the second assumption implies that ΣKTIME[n] = Σ2TIME[n1+o(1)]. Hence Σ2TIME[nk] ⊆ Σ2TIME[n1+o(1)],
which contradicts the time hierarchy for Σ2TIME.
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one can derive:

DTS[nc2/2+2] ⊆ (∃ nc2/2)(∀ log n)DTS[n2]

⊆ (∃ nc2/2)(∀ log n)(∀ n)(∃ log n)DTS[n]

= (∃ nc2/2)(∀ n)(∃ log n)DTS[n]

⊆ (∃ nc2/2)(∀ n)DTS[nc]

⊆ (∃ nc2/2)DTS[nc2]

⊆ (∃ nc2/2)(∃ nc2/2)(∀ log n)DTS[nc2/2]

= (∃ nc2/2)(∀ log n)DTS[nc2/2]

⊆ (∃ nc2/2)DTS[nc3/2]

⊆ DTS[nc4/2]

Now, when c2/2 + 2 > c4/2 (which happens for c < 1.6004) we have DTS[na] ⊆ DTS[na′

]

for some a > a′. Notice that we do not know if DTS[na] * DTS[na′

] when a′ > a, as the

space bounds on both sides of the inequality are the same. However one can still show by a

translation argument (similar to the footnote) that either DTS[na] * DTS[na′

] or NTIME[n] *
DTS[nc], concluding the proof.

While the second example is somewhat clever in its structure, the most interesting aspect of

this proof is that it was found by a computer program. By “found”, we mean that the program

applied the Speedup and Slowdown Lemmas in precisely the same order and with precisely the

same parameter settings, having only minimum knowledge of these Lemmas along with a way to

check the validity of the parameters. Moreover, the program verified that the above proof is the

best possible alternation-trading proof that applies the Speedup and Slowdown Lemmas for at most

seven times. A precise definition of “alternation-trading proof” will be given in the next section,

along with a description of the program and its experimental results.

3 Automated Time-Space Lower Bounds for Satisfiability

We start our study with time-space lower bounds for nondeterministic linear time problems, such

as satisfiability. In this setting we shall give a highly detailed description of our methodology. As

all three settings have similar features, our treatment of the other two is far briefer and assumes

some knowledge of this section.

As mentioned earlier, every lower bound proof by alternation-trading applies a sequence of

“speedups” and “slowdowns” in some order. We formalize the notion of an alternation-trading

proof in the following definition.

Definition 3.1 Let c > 1. An alternation-trading proof for c is a list of complexity classes of the

form

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1 ],

where k is a non-negative integer, Qi ∈ {∃,∀}, Qi 6= Qi+1, ai > 0, and bi ≥ 1, for all i. (When

k = 0, the class is deterministic.) The items of the list are called lines of the proof. Each line
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is obtained from the previous line by applying either a speedup rule or a slowdown rule. More

precisely, if the ith line is

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1 ],

then the (i + 1)st line has one of three possible forms:

1. (Speedup Rule 0) If k = 0 (i.e. the ith line is a deterministic class), then

(Qk nx)max{x,1}(Qk+1 n)1DTS[nak+1−x],

for some x ∈ (0, ak+1).
4

2. (Speedup Rule 1) If k > 0, then

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x})max{x,bk+1}(Qk+1 n)bk+1DTS[nak+1−x],

for some x ∈ (0, ak+1).

3. (Speedup Rule 2) If k > 0, then

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n)bk+1DTS[nak+1−x],

for some x ∈ (0, ak+1).

4. (Slowdown Rule) If k > 0, then

(Q1 na1)b2(Q2 na2) · · ·bk−1 (Qk−1 nak−1)bkDTS[nc·max{ak+1,ak,bk,bk+1}].

We say that an alternation-trading proof shows (NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2) if its first

line is A1 and its last line is A2.

The justification for the definition comes directly from the proofs of the Speedup Lemma (Lemma 2.1)

and the Slowdown Lemma (Lemma 2.2). For instance, Speedup Rule 1 holds, since

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1]

⊆ (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk nx)max{bk+1,x}(Qk+1 n)bk+1DTS[nak+1 ]

⊆ (Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x})max{bk+1,x}(Qk+1 n)bk+1DTS[nak+1 ],

since two quantifier blocks of the same type can always be “merged.” Rule 2 is akin to Rule 1,

except that it uses opposite quantifiers in its invocation of the Speedup Lemma. The Slowdown

Rule works analogously to the Slowdown Lemma (Lemma 2.2). It follows that alternation-trading

proofs are sound, in that an alternation-trading proof of NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2 is

indeed a proof that the implication is true.

Note that Speedup Rules 0 and 2 add two quantifier blocks to the line, while Speedup Rule 1

adds only one new quantifier block, and all of them introduce a new real-valued parameter x that

must be determined. We can prove that it is actually never beneficial to apply Speedup Rule 2,

and so it does not hurt us to remove it from consideration. To prove this we first need a lemma

relating the ai’s and bi’s of an alternating class.

4The astute reader will notice that the (k +1)th quantifier block in the new class is larger than what the Speedup
Lemma needs: here it is n, while for the Speedup Lemma it was only log n. With the rules we are using, this
distinction does not matter.
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Definition 3.2 A class (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1 ] is orderly if it is either

(a) a DTS[na] class, or (b) for all i = 1, . . . , k, ai ≤ bi+1.

Lemma 3.1 Suppose A1 is orderly. Then every alternation-trading proof beginning with A1 con-

sists of only orderly classes.

Proof. By induction on the number of lines. The base case is trivial. We hypothesize that the

ℓth line given by

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1]

is orderly. For the (ℓ + 1)th line, we consider the rules in turn:

• (Speedup Rule 0) Clearly (Qk nx)max{x,1}(Qk+1 n)1DTS[nak+1−x] is orderly.

• (Speedup Rule 1) Suppose the line is

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x})max{x,bk+1}(Qk+1 n)bk+1DTS[nak+1−x].

Then ak ≤ bk+1 by the induction hypothesis, so max{ak, x} ≤ max{x, bk+1}, 1 ≤ bk+1, thus

the class is orderly.

• (Speedup Rule 2) This case is clear, as the line is:

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n)bk+1DTS[nak+1−x].

• (Slowdown Rule) Obvious, given the hypothesis.

This concludes all the cases. 2

Lemma 3.2 Let A1 be orderly. For every alternation-trading proof of NTIME[n] ⊆ DTS[nc] =⇒
A1 ⊆ A2, there is another alternation-trading proof of the same that does not use Speedup Rule 2.

Proof. Consider a proof P that applies Speedup Rule 2 at some line. By definition, that line has

the form

A = (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n)bk+1DTS[nak+1−x].

We consider two cases:

1. If x ≤ ak, then x ≤ bk+1 by Lemma 3.1. By applying Speedup Rule 2, one obtains

A = (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n)bk+1DTS[nak+1−x]

= (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nx)bk+1(Qk+2 n)bk+1DTS[nak+1−x].

If we instead apply Speedup Rule 1 with x′ = x, the class is

B = (Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak,x′})max{x′,bk+1}(Qk+1 n)bk+1DTS[nak+1−x′

]

= (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 n)bk+1DTS[nak+1−x].

11



Then by applying Speedup Rule 1 with x′ = 0, the above class is in

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 n)bk+1(Qk+2 n)bk+1DTS[nak+1−x].

It is clear that B ⊆ A: every parameter in B is at most the corresponding parameter in A.

Thus any inclusion derived with Rule 2 could only be made stronger by applying Rule 1 twice

instead.

2. If x ≥ ak, then Speedup Rule 2 gives

A = (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n)bk+1DTS[nak+1−x].

Speedup Rule 1 with x′ = ak gives

B = (Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x′})max{x′,bk+1}(Qk+1 n)bk+1DTS[nak+1−x′

].

= (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 n)bk+1DTS[nak+1−ak ].

where we used the fact that x′ = ak ≤ bk+1 (Lemma 3.1). Applying Speedup Rule 1 again

with x′ = x− ak, B is contained in

(Q1 na1)b2 · · ·bk (Qk nak)bk+1(Qk+1 nmax{x−ak,1})max{x−ak ,bk+1}(Qk+2 n)bk+1DTS[nak+1−x].

Again, observe that B ⊆ A in this case, and every parameter in B is at most the corresponding

parameter in A.

This completes the proof. 2

In the next section, we shall actually show that every alternation-trading proof can in fact be

rewritten so that the first line of the proof is a DTS class, and therefore all lines of the constituent

proof are orderly. Because of this, from now on we just refer to the Speedup Rule as Speedup Rule

0 or Speedup Rule 1, depending on which applies to the situation.

3.1 A normal form for alternation-trading proofs

Lower bound proofs using the alternation-trading scheme apply the assumption NTIME[n] ⊆
DTS[nc] to derive a contradiction to a time hierarchy theorem along the lines of Theorem 2.2.

To consider all possible ways to derive a time hierarchy contradiction (at least, between alternat-

ing, nondeterministic, and deterministic classes), we consider the most general setting of deriving

a contradiction from complementary alternating classes.

Definition 3.3 We say that A1 and A2 are complementary alternating classes if A1 is the com-

plement of A2.

Every known time-space lower bound for Sat proves NTIME[n] ⊆ DTS[nc] implies A1 ⊆ A2,

for some complementary alternating classes A1 and A2. A similar claim holds for nondeterministic

time-space lower bounds against tautologies (all of which prove NTIME[n] ⊆ coNTS[nc] implies

A1 ⊆ A2), and lower bounds for hybrid one-tape machines (which prove NTIME[n] ⊆ DTIMEh[nc]

implies A1 ⊆ A2). We now introduce a restriction to the space of alternation-trading proofs we

12



consider, calling it a “normal form.” Our intent is to show that any lower bound provable with

complementary alternating classes can also be proved with a normal form proof, so it suffices for

us to explore normal form proofs. This simplification will greatly reduce our proof search space in

the future.

Definition 3.4 Let c ≥ 1. An alternation-trading proof for c is in normal form if

• The first and last lines are DTS[na] and DTS[na′

] respectively, for some a ≥ a′.

• No other lines are DTS classes.

First we show that a normal form proof for c implies that NTIME[n] * DTS[nc].

Lemma 3.3 Let c ≥ 1. If there is an alternation-trading proof for c in normal form having at

least two lines, then NTIME[n] * DTS[nc].

Proof. Let P be an alternation-trading proof for c in normal form. We consider two cases.

• Suppose a > a′. In this case, NTIME[n] ⊆ DTS[nc] implies DTS[na] ⊆ DTS[na−δ] for some

δ > 0. By translation, DTS[na] ⊆ DTS[na−δ] implies

DTS[na2/(a−δ)] ⊆ DTS[na] ⊆ DTS[na−δ],

and DTS[na·(a/(a−δ))i
] ⊆ DTS[na−δ] for all i ≥ 0. Since δ > 0, this implies DTS[nL] ⊆

DTS[na−δ] for all L ≥ a− δ. Therefore, if NTIME[n] ⊆ DTS[nc] then for all L ≥ a,

NTIME[nL] ⊆ DTS[nLc] ⊆ DTS[na−δ] ⊆ coNTIME[na−δ],

a contradiction to the time hierarchy (Theorem 2.2).

• Suppose a = a′. Let A be a line in P with a positive number of alternations. (Such a line

must exist since P has at least two lines.) The proof P shows that NTIME[n] ⊆ DTS[nc]

implies DTS[na] ⊆ A ⊆ DTS[na′

], so A = DTS[na].

Since DTS[na] is closed under complement,

A = A′, (1)

where A′ is the complement of A. Without loss of generality, assume A = (∃ nδ)B and

A′ = (∀ nδ)B′ for some δ > 0 and complementary classes B and B′. It is easy to see that

A′ = (∀ nδ)A′ and A = (∃ nδ)A. (2)

Now consider the class DTS[nδ⌈k
δ
⌉] ⊇ DTS[nk], for arbitrary k ≥ 1. By the Speedup Lemma

(Lemma 2.1) and the fact that DTS[nε] ⊆ A′ for some ε > 0,

DTS[nk] ⊆ DTS[nδ⌈k
δ
⌉] ⊆ (∃ nδ)(∀ nδ) · · · (∃ nδ)(∀ nδ)

︸ ︷︷ ︸

⌈k/δ⌉

A′.
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Applying equations (1) and (2), we have

(∃ nδ)(∀ nδ) · · · (∃ nδ)(∀ nδ)A′

= (∃ nδ)(∀ nδ) · · · (∃ nδ)A′

= (∃ nδ)(∀ nδ) · · · (∃ nδ)A

= (∃ nδ)(∀ nδ) · · ·A
= · · · = (∃ nδ)(∀ nδ)A′ = (∃ nδ)A′ = (∃ nδ)A = A.

Therefore DTS[nk] ⊆ A, for every k ≥ 1. Hence NP ⊆ DTS[nO(1), no(1)] ⊆ A. But by applying

a slowdown step for a finite number of times to A, there is an alternation-trading proof that

A ⊆ DTS[nK ] for a constant K. It follows that NP ⊆ A ⊆ DTS[nK ] ⊆ coNTIME[nK ],

contradicting the time hierarchy (Theorem 2.2). So NTIME[n] * DTS[nc] in this case as well.

2

We now prove that any alternation-trading proof that NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2 for

complementary alternating classes A1 and A2 can be converted into an analogous normal form

proof. Therefore, to find good lower bounds it suffices for us to find good normal form proofs.

Theorem 3.1 Let A1 and A2 be complementary. If there is an alternation-trading proof P for c

that shows (NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2), then there is a normal form proof for c, of length

at most that of P .

Proof. Consider an alternation-trading proof P for c, written as

P = A1, C1, . . . , Ck, A2.

Define the dual proof P ’ by

P ′ = A2,¬C1, . . . ,¬Ck, A1,

where the notation ¬C denotes the unique complementary alternating class for C, i.e. every ‘∀’ in

C is replaced with ‘∃’, and vice-versa. Note that P ′ is an alternation-trading proof if and only if P

is one.

Since the quantifiers of the first and last line of P are different, there must be a line Ci = DTS[na]

for some a.

• Suppose there is only one deterministic class in P ; call it Ci. Then

P ′′ = Ci, Ci+1, . . . Ck, A2,¬C1, . . . ,¬Ci

is also an alternation-trading proof, obtained by piecing together the appropriate lines from

P and P ′. However, Ci = ¬Ci, since DTS[na] is closed under complement. Hence P ′′ is in

normal form: its first and last lines are DTS classes, and no intermediate class is a DTS class.

• Suppose there are k ≥ 2 different DTS classes in P . Write P as:

P = A1, . . . ,DTS[na1 ], . . . ,DTS[na2 ], . . . , . . . ,DTS[nak ], . . . , A2.

There are two cases:
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- If there is an i ∈ [k] satisfying ai ≥ ai+1, we are done: simply take P ′′ to be the sequence

of lines from DTS[nai ] and DTS[nai+1 ] to be the normal form proof.

- If ai < ai+1 for every i, then set P ′′ = DTS[nak ], . . . , A2, . . . ,DTS[na1 ], where the classes

in the first “. . .” in P ′′ are taken directly from P , and the classes in the second “. . .”

in P ′′ are gotten by taking the lines A2, . . . ,DTS[na1 ] in P ′. P ′′ is in normal form since

ak > a1.

2

N.B. For the remainder of this section, we assume that all alternation-trading proofs under

discussion are in normal form.

3.2 Proof annotations

Different lower bound proofs can result in quite different sequences of speedups and slowdowns. A

proof annotation represents such a sequence.

Definition 3.5 A proof annotation for an alternation-trading proof of ℓ lines is the unique (ℓ−1)-

bit vector A that has A[i] = 1 (respectively, A[i] = 0) if the ith line is obtained by a Speedup Rule

(respectively, a Slowdown Rule), for all i = 1, . . . , ℓ− 1.

By definition, an (ℓ−1)-bit proof annotation corresponds to a proof strategy for an ℓ-line proof.

For a normal form alternation-trading proof with ℓ lines, its proof annotation A must have A[1] = 1,

and A[ℓ − 1] = 0. In fact, A[ℓ − 2] = 0 as well – otherwise the last line would have at least one

quantifier block. Thus every proof annotation begins with a 1 and ends with two 0’s.

How many possible proof annotations are there? The number is closely related to the number

of well-balanced strings over parentheses. For a string x = x1 · · · xℓ−1 with xi ∈ Σ, define x[i..j] :=

xixi+1 · · · xj for i ≤ j.

Definition 3.6 Let n > 0 be an integer and x ∈ {(, )}n. x is well-balanced if

• for all i = 1, . . . , n− 1, the number of (’s in x[1..i] is greater than the number of )’s, and

• the number of (’s in x equals the number of )’s in x.

Recall that the kth Catalan number is C(k) = 1
k+1

(2k
k

)
. A well-known fact in combinatorics

states that the number of well-balanced strings of a given length can be counted with the Catalan

numbers.

Fact 3.1 The number of well-balanced strings of length 2k is C(k).

Proposition 1 Let ℓ > 3 be even. The number of possible annotations for proofs of ℓ lines is

C(ℓ/2− 1).

Proof. Consider an (ℓ− 1)-bit vector A = [1, . . . , 0]. The first 1 introduces two quantifier blocks

in line 1 of the corresponding proof. All subsequent 1’s introduce only one quantifier block. All
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0’s remove one quantifier. So in order for A to count as a proof annotation, it must be that the

number of 1’s in any prefix of A is greater than (or equal to) the number of 0’s, up to the last line,

in which the number of 0’s becomes the number of 1’s plus one. (Recall that in normal form, only

the first and last lines of a proof are DTS classes.)

Given these observations, it is not hard to see that every proof annotation can be expressed

as a well-balanced string of the form (x)y, where x and y are well-balanced strings such that

|x| + |y| = ℓ − 4, corresponding to the bit vector [1, x′, 0, y′, 0], where x′ and y′ are the strings

gotten by replacing ‘(’ with ‘1’ and ‘)’ with ‘0’ in x and y, respectively. But the number of such

well-balanced strings is C(ℓ/2 − 1), for even ℓ > 3: every well-balanced string of length ℓ − 2 can

be written in the form (x)y, where |x|+ |y| = ℓ− 4, and by the fact, the number of such strings is

precisely C(ℓ/2− 1). 2

Corollary 3.1 Let ℓ > 3 be even. The number of possible annotations for proofs of ℓ lines is

Θ(2ℓ/ℓ3/2).

Proof. By the previous proposition, the number is

C((ℓ/2)− 1) =
2

ℓ

(
ℓ− 2

ℓ/2− 1

)

= Θ

(
1

ℓ
· 2ℓ

ℓ1/2

)

,

where the last equality follows from a standard estimate. 2

That is, the number of n-bit proof annotations is only a poly(n)-fraction of the total number

of n-bit strings.

Note that a proof annotation in itself does not determine the proof entirely– each application

of a speedup rule introduces a new real-valued parameter x that must be set to some value. The

problem of determining optimal values for these parameters shall be tackled in the next section.

To illustrate the proof annotation concept, let us consider four examples where the first two

correspond to proofs that were discussed in the Preliminaries.

• The n
√

2 lower bound of Lipton and Viglas uses the only possible 3-bit annotation: [1, 0, 0].

• The n1.6004 lower bound discussed in the Preliminaries has annotation [1, 1, 0, 0, 1, 0, 0].

• The nφ lower bound of Fortnow and Van Melkebeek is an inductive proof, corresponding to

an infinite sequence of proof annotations. In normal form, the sequence looks like:

[1, 0, 0], [1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0, 0], . . .

• The n2 cos(π/7) lower bound contains two stages of induction, and this is reflected in its proof

annotations. Let A = 1, 0, 1, 0, . . . , 1, 0, 0, where the ‘. . .’ contain some arbitrarily large num-

ber of repetitions of 1, 0. The sequence of annotations is given by:

[A], [1, A,A], [1, 1, A,A, A], [1, 1, 1, A,A, A,A], . . .

That is, the proof performs many speedups, then a sequence of many slowdown-speedup

alternations, then two consecutive slowdowns, repeating this until all the quantifiers have

been removed.
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3.3 Translation Into Linear Programming

We have defined alternation-trading proofs, given a nice normal form for them, and have shown

how the strategies of prior lower bounds can be expressed succinctly in terms of proof annotations.

A potential plan for finding new lower bounds is to try searching over all proof annotations to see

which is best. In order for this plan to be sensible, we need a way to efficiently determine the

best proof that can be obtained with a given annotation. The primary issue here is that there are

multiple real-valued parameters that need to be set in a particular way to yield a good lower bound.

We describe how to take any proof annotation A and constant c > 1, and formulate an instance of

linear programming that has a feasible solution if and only if there is an alternation-trading proof

of NTIME[n] * DTS[nc] that follows the steps of annotation A.

Let A be a proof annotation of ℓ − 1 bits and let c > 1. Let m be the maximum number of

quantifier blocks in any line of A; note m can be computed in linear time by reading the bits of A.

The corresponding linear programming instance has variables ai,j, bi,j, and xi, for all i = 0, . . . , ℓ−1

and j = 1, . . . ,m.5 These variables have the interpretation:

ai,j is the exponent for the runtime of the jth quantifier block in the class on the ith line,

bi,j is the exponent for the input to the jth quantifier block of the class on the ith line,

and for all lines i that use a Speedup Rule,

xi is the choice of x in the use of the Speedup Rule.

For example:

• If the kth line of a proof is DTS[na], the corresponding constraints for that line are

ak,1 = a, bk,1 = 1, (∀k > 0) ak,i = bk,i = 0.

• If the kth line of a proof is (∃ na′

)bDTS[na], then the constraints are

ak,0 = a, bk,1 = b, ak,1 = a′, bk,1 = 1, (∀k > 1) ak,i = bk,i = 0.

The objective function of the linear program shall be to minimize
∑

i,j ai,j+bi,j. We now describe

the constraints of the linear programming instance, along with justification for their correctness. In

a sentence, the problem of determining valid xi’s can be viewed as a circuit evaluation with gates of

type max, +, and multiplication by a fixed constant, and it is well known that such circuits can be

evaluated using a linear program. For example, we can effectively replace c = max{a, b} by c ≥ a,

c ≥ b, keeping in mind that our obtained value for c may be larger than necessary. For every line

i, we include the constraints

(∀j : 1 ≤ j ≤ m− 1) ai,j ≤ bi,j+1

to enforce the orderly constraint implied by Lemma 3.1.6

5We start the numbering of lines at 0, so that at the ith line it follows that i rules have been applied.
6These constraints are not strictly necessary, but they are useful in guiding an LP solver.
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Initial constraints. For the 0th and (ℓ− 1)th lines, we have the constraints

a0,1 ≥ 1, b0,1 = 1, (∀ k > 1) a0,k = b0,k = 0, and

aℓ,1 ≥ 1, bℓ,1 = 1, (∀k > 1) aℓ,k = bℓ,k = 0,

representing the classes DTS[na0,1 ] and DTS[naℓ−1,0 ], respectively. The constraint a0,1 ≥ aℓ−1,1 is

also included, to ensure that the proof is in normal form. The first line of a proof is always an

application of the first Speedup Rule, being of the form

(Q1n
x)max{x,1}(Q2 n)1DTS[na−x].

The corresponding LP constraints for the first line are therefore:

a1,1 = a0,1 − x1, b1,1 = 1,

a1,2 = 1, b1,2 ≥ x1, b1,2 ≥ 1,

a1,3 = x3, b1,3 = 1

(∀ k : 4 ≤ k ≤ m) a1,k = b1,k = 0.

Speedup Rule constraints. For the ith line where i > 1 and A[i] = 1, the constraints are

ai,1 ≥ 1, ai,1 ≥ ai−1,1 − xi, bi,1 = bi−1,1

ai,2 = 1, bi,2 ≥ xi, bi,2 ≥ bi−1,1,

ai,3 ≥ ai−1,2, ai,3 ≥ xi, bi,3 ≥ bi−1,2

(∀ k : 4 ≤ k ≤ m) ai,k = ai−1,k−1, b1,k = bi−1,k−1.

These constraints express that

· · · b2(Q2 na2)b1DTS[na1 ]

in the ith line is replaced with

· · · b2(Q2 nmax{a2,x})max{x,b1}(Q1 n)b1DTS[nmax{a1−x,1}]

in the (i + 1)st line, where Q1 is opposite to Q2.

Slowdown Rule constraints. For the ith line where A[i] = 0, the constraints are

ai,1 ≥ c · ai−1,1, ai,1 ≥ c · ai−1,2, ai,1 ≥ c · bi−1,1, ai,1 ≥ c · bi−1,2, bi,1 = bi−1,2

(∀ k : 2 ≤ k ≤ m− 1) ai,k = ai−1,k+1, bi,k = bi−1,k+1

ai,m = bi,m = 0.

These express the replacement of

· · · b2(Q1n
a2)b1DTS[na1 ]

in the ith line with

· · · b2DTS[nc·max{a1,a2,b1,b2}]

in the (i + 1)st line.

This concludes the description of the linear program. The above discussion, combined with a

binary search, yields the following theorem.

Theorem 3.2 Given a proof annotation of n lines, the best possible lower bound proof following

the annotation can be determined up to n digits of precision, in poly(n) time.
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3.4 Experimental Results

Armed with the LP formulation, we wrote proof search routines in Maple 10 using the Optimization

package. Thanks to built-in procedures, our code is quite short – under a few hundred lines. For

large proof annotations (exceeding 100 lines), we used the freeware lp solve package to solve the

corresponding linear program.7 We hope to make our code available for public use soon. Our

routines include the following:

• list2LPc: Takes a proof annotation as input and outputs a set of constraints corresponding

to the relevant LP instance. This routine performs the translation given in the previous

section.

• proofproduce: Takes a solution to a LP instance (given as a set of assignments to variables)

and prints a line-by-line human-readable proof.

• binarysearch: Takes a proof annotation and range (c1, c2) as input, and prints a human-

readable proof as well as the largest c ∈ (c1, c2) (within nine digits of precision) such that an

nc lower bound could be proved for the given annotation.

• randomadmiss: Takes an integer k and outputs a random k-bit proof annotation, drawn

uniformly at random over all such annotations. (Random bits are obtained using the Blum-

Blum-Shub generator [BBS86].) To perform the sampling, we adapted a simple method for

producing random well-balanced strings, given by Arnold and Sleep [AS80].

• heuristicsearch: Takes an ordered list of proof annotations and lower bound exponent c

as input and runs as follows: take the first annotation A on the list and try all possible

annotations A′ gotten by inserting a 1 and 0 in A. For each A′, if binarysearch(A′, c, 2)
succeeds and A′ achieves the best exponent so far for proofs of its length, then add A′ to the

end of the list. (A tabu list is maintained to keep redundant comparisons at a minimum.)

Examining the printed results of this heuristic method turns out to be an efficient way to

find better proof annotations, starting from one that is known to be good. In fact, by calling

heuristicsearch([[1,0,0]],1.4) one actually generates the whole table of results below.

• writeLP: Takes an LP instance and filename and writes the LP to the *.lp file format, used

by lp solve.

Our first objective was to verify some lower bounds that we knew to hold, such as the n1.8019

result. In particular, we wished to ensure that our choice of parameters in the 1.8019 proof were

tight. We tested a 300-line LP (consisting of a few hundred variables) corresponding to an annota-

tion for our proof of the 1.8019 bound, and found that it was feasible for c = 1.8017 but infeasible

for 1.8018; moreover, its choice of parameters mimicked our own.

Our second objective was to search as much of the space of proof annotations as we could,

looking for interesting patterns. For all even-numbered k from 2 to 26, we conducted an exhaustive

search over all valid proof annotations with k lines. The best proof annotations for each k are

7The lp solve package is an open source simplex-based linear programming solver. It is maintained by a com-

munity on Yahoo Groups: http://groups.yahoo.com/group/lp solve.
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given in the below table. For k > 26 we have not exhaustively searched the space of all proofs,

but we have searched by random uniform sampling (> 40, 000 samples) over all proof annotations

– these rows in the following table are marked with an asterisk (∗). For those rows with multiple

annotations, we checked the annotations to two more decimal places to further verify that the

obtained lower bounds are the same. The ∆ of a row is the difference between the lower bound

exponent of that row and the exponent of the previous row.

#Lines Best Proof Annotation(s) L.B. ∆

4 [1, 0, 0] 1.4142 0
6 [1, 0, 1, 0, 0] 1.5213 0.1071

[1, 1, 0, 0, 0]
8 [1, 1, 0, 0, 1, 0, 0] 1.6004 0.0791
10 [1, 1, 0, 0, 1, 0, 1, 0, 0] 1.633315 0.032915

[1, 1, 0, 1, 0, 0, 1, 0, 0]
[1, 1, 1, 0, 0, 0, 1, 0, 0]

12 [1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0] 1.6635 0.0302
14 [1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.6871 0.0236
16 [1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.699676 0.012576

[1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0]
[1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0]

18 [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.7121 0.0125
20 [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0] 1.7232 0.0111
22 [1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7322 0.0090
24 [1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.737851 0.005651

[1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0]
[1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0]

26 [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7437 0.005849
28* [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7491 0.0054
30* [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0] 1.7537 0.0046
32* [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0] 1.7577 0.0040
34* [1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0] 1.760632 0.002932

[1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]
[1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]

Before we analyze the above table, let us first note that the proofs produced by the above

annotations bear strong similarities to those in our 1.801 lower bound. To give a small example,

the best 14-line proof (establishing an Ω(n1.6871) time lower bound) is output as:

0, DTS[n^5.275587925]

1, (E n^1.853485593)(A n^1.)DTS[n^3.422102331]

2, (E n^1.853485593)(A n^1.422102331)(E n^1.)DTS[n^2.000000001]

3, (E n^1.853485593)(A n^1.422102331)(E n^1.000000001)(A n^1.000000000)DTS[n^1.]

4, (E n^1.853485593)(A n^1.422102331)(E n^1.000000001)DTS[n^1.687100000]

5, (E n^1.853485593)(A n^1.422102331)DTS[n^2.846306408]

6, (E n^1.853485593)(A n^1.423153204)(E n^1.000000000)DTS[n^1.423153204]

7, (E n^1.853485593)(A n^1.423153204)DTS[n^2.401001771]

8, (E n^1.853485593)DTS[n^4.050730087]
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9, (E n^1.853485593)(A n^1.000000000)DTS[n^2.197244494]

10, (E n^1.853485593)DTS[n^3.706971186]

11, (E n^1.853485593)(A n^1.000000000)DTS[n^1.853485593]

12, (E n^1.853485593)DTS[n^3.127015544]

13, DTS[n^5.275587925]

(Note that the LP actually returns numbers to 18 decimal places– the proof-printing routine

truncates them to keep the presentation legible.)

Turning back to the results of the table, we see a strong correlation between later rows of the

table and earlier ones. For example, there is a tie for best annotation at 10, 16, 24, and 34 lines,

among three annotations that differ only in three of their bits. To develop a greater understanding

of what is happening, let us introduce some abbreviations in the annotation. Where an annotation

contains the string (1 0)k 0, we put the symbol k, for k ≥ 1. Where an annotation contains the

string 11000, we just put 0. The following table emerges:

#Lines Best Proof Annotation(s) L.B. ∆

4 1 1.4142 0
6 2 1.5213 0.1071

0
8 1 2 1.6004 0.0791
10 1 1 2 1.633315 0.032915

1 2 1
1 0 1

12 1 1 1 1 1 1.6635 0.0302
14 1 1 1 1 2 1.6871 0.0236
16 1 1 1 2 2 1.699676 0.012576

1 1 2 1 2
1 1 0 1 2

18 1 1 1 1 1 1 2 1.7121 0.0125
20 1 1 1 1 1 2 2 1.7232 0.0111
22 1 1 1 1 1 2 3 1.7322 0.0090
24 1 1 1 1 2 2 3 1.737851 0.005651

1 1 1 2 1 2 3
1 1 1 0 1 2 3

26 1 1 1 1 1 1 1 2 3 1.7437 0.005849
28* 1 1 1 1 1 1 2 2 3 1.7491 0.0054
30* 1 1 1 1 1 1 2 3 3 1.7537 0.0046
32* 1 1 1 1 1 1 2 3 4 1.7577 0.0040
34* 1 1 1 1 1 2 2 3 4 1.760632 0.002932

1 1 1 1 2 1 2 3 4
1 1 1 1 0 1 2 3 4

For an optimal annotation that ends with a non-zero k, a longer optimal annotation can be

obtained by adding either a k or k+1 to the end, and a 1 at the beginning. (There are of course

some restrictions– there are no more than three consecutive 1’s, no more than two consecutive 2’s,
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etc.) Unfortunately, we do not yet know how to prove that all of the best proofs must have this

behavior, but it would be rather extraordinary if this pattern deviated at some later point.

We solved the corresponding LP for many proof annotations, including all annotations used by

previous time lower bounds, with no success beyond the 2 cos(π/7) exponent. The above table sug-

gests that it should suffice for us to examine those proof annotations of the form 1 · · · 1 0 1 2 3 4 · · ·;
however, these annotations also do not lead to an improvement. To illustrate, for the 424 line proof

annotation denoted by the sequence

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 · · · 17 18 19,

experiments with lp solve revealed that the optimal exponent is only in the interval [1.80175, 1.8018).

These empirical results point strongly to a conjecture:

Conjecture 3.1 There is no alternation-trading proof that NTIME[n] * DTS[nc], for any c >

2 cos(π/7) ≈ 1.8019.

At present we do not know how to prove the conjecture, but we can give a partial result. It was

already believed that alternation-trading proofs of lower bounds for Sat had limitations, in that a

quadratic time lower bound appeared to be the best one could do. In our formalism it is relatively

easy to prove that a quadratic lower bound is impossible to achieve:

Theorem 3.3 There is no alternation-trading proof that NTIME[n] * DTS[n2].

Proof. Suppose there is such a proof, and let A be an annotation for it. We assume |A| > 3, for

in this case the only annotation is [1, 0, 0] and that can only attain an n
√

2 lower bound.8 We claim

that if the subsequence 1, 0 occurs in the proof, then some occurrence of it can be removed and the

proof can only be improved. This claim implies a contradiction, by the following reasoning. Note

that every proof contains a sequence 1, 0. Recall that proof annotations can be put in one-to-one

correspondence with strings of balanced parentheses, so there is some occurrence of 1, 0 in the

proof that corresponds to an adjacent parentheses pair ( ) from the corresponding string. Let us

remove that occurrence of 1, 0 from the annotation, and the appropriate ( ) from the parentheses

string. By repeatedly removing parentheses pairs, at some point we reach the single string ( )

corresponding to the annotation [1, 0, 0], yielding a contradiction.

It remains to prove the claim. If 1, 0 occurs, then the two lines in the proof corresponding to

the sequence (including the previous line) look like:

· · ·bk−1 (Qk−1 nak−1)bk(Qk nak)bk+1DTS[nak+1 ] (3)

· · ·bk−1 (Qk−1 nak−1)bk(Qk nmax{x,ak})max{x,bk+1}(Qk+1 log n)bk+1DTS[nak+1−x] (4)

· · ·bk−1 (Qk−1 nak−1)bk(Qk nmax{x,ak})max{x,bk+1}DTS[nmax{c(ak+1−x),cx,cbk+1}] (5)

It is clear that every parameter in the class (5) is at least the corresponding parameter in the

class (3), except for possibly the runtime of the DTS computation. Therefore if ak+1 ≤ c(ak+1−x),

8While the computer verified this, it is also easy to prove on paper as well.

22



or ak+1 ≤ cx, or ak+1 ≤ cbk+1, then the sequence 1, 0 could be removed with no harm to the proof.

So suppose for contradiction that ak+1 > c(ak+1−x) and ak+1 > cx. Then 2ak+1 > c(ak+1−x)+cx,

a contradiction when c ≥ 2. 2

One could imagine a proof of Conjecture 3.1 along similar lines as the above, by ruling out

so many particular subsequences in the proof annotation that the annotation is forced to take a

form that we know is suboptimal. If the conjecture is true, it is very useful knowledge in that it

forces us to rethink our whole approach. In order to significantly exceed the current best result,

it appears that we cannot expect to rearrange the existing ingredients– we must find ways to

mix in additional complexity-theoretic components. Perhaps we could use randomness as well as

alternation to perform interesting “speed ups” of DTS, where the addition of randomness allows us

to obtain new types of proof-by-contradiction. Perhaps we can find a better method for “slowing

down”, removing alternations more efficiently than the simple Slowdown Lemma. There are plenty

of tools out there, and we believe the search is not over but instead is only beginning.

3.5 Some Extensions

Explicit Time-Space Tradeoffs. A tweak to the speedup rules in the LP formulation lets us

prove some new time-space tradeoff lower bounds for solving Sat. In particular, we just have to

translate the more general version of the Speedup Lemma (Lemma 2.1) instead of the special DTS

version. This introduces a new parameter e (the exponent of the space bound) which we must set

in advance to keep the constraint program linear.

The table below gives time-space function pairs for which our theorem-prover has shown that

no Sat algorithm can satisfy both time and space requirements simultaneously. Experimentation

suggested that the optimal annotations for the no(1) space setting were still the best possible,

independently of the space bound. In the results below, the proof annotation used is a sufficiently

large one from the 2 cos(π/7) lower bound.

Time Space

n1.06 n.9

n1.17 n.75

n1.24 n.666

n1.36 n.5

n1.51 n.333

n1.58 n.25

n1.7 n.1

n1.75 n.05

Extending to Quantified Boolean Formulas. The approach for Sat lower bounds can easily

be extended to proving time lower bounds for k-QBF, the problem of solving quantified Boolean

formulas with k quantifiers. Let us just sketch how the formalism changes. The rules behind these

lower bounds are the same as with the Sat case, except that in the Slowdown Rules of the linear

program, we now allow for k quantifier blocks to be removed in one application of the rule (instead

of just one for Sat). The resulting computer program obtained very similar results to the lower
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bounds for the Sat setting, and did not find a better lower bound than the nck time and no(1)

space bound of our earlier work [Wil07b], where ck is the positive root in (1, 2) of the polynomial

p(x) = x3/k − x2 − 2x + k.

4 Nondeterministic Time-Space Lower Bounds for Solving Tau-

tologies

Along with proving deterministic time-space lower bounds for NP problems, the problem of proving

nondeterministic time-space lower bounds for co-NP has also been studied. However, the latter

problem has seen less progress. Fortnow and Van Melkebeek [FvM00] first studied the problem

and proved that Tautology requires Ω(n
√

2−o(1)) time on a nondeterministic no(1)-space RAM,

but since their result no further progress had been made on this problem. We shall sketch how

to extend the LP-based approach of the previous section to this lower bound problem, and find

that the best proof annotations actually look quite different from the previous setting. Here the

approach turns out to be quite successful; in fact, the seven-year-old n
√

2 lower bound can already

be improved with a very short eleven-line proof. By analyzing the results further on paper, we

uncover a new inductive argument that leads to a Ω(n
3√4−o(1)) time lower bound for Tautology.

4.1 The Framework

Similar to the class DTS, we define NTS[na] := NTISP[na, no(1)] and coNTS[na] := coNTISP[na, no(1)]

for notational brevity. As in the previous setup, there are speedup and slowdown rules that are

applied in a manner that contradicts a time hierarchy theorem. The Speedup Lemma is essentially

the same as before, but the Slowdown Lemma is a little different. In the following, let Q represent

any string of quantifier blocks of the form

Q = (Q1 na1)b2 · · · (Qk−1 nak−1).

Lemma 4.1 (Speedup) For b ≥ 1, a ≥ 1, x ≥ 0, and s ≥ 0,

QbNTISP[na, ns] ⊆ Qb(∃ nx+s)max{b,x+s}(∀ log n)max{b,s}NTISP[na−x, ns].

In particular for s = o(1) we have NTS[na] ⊆ (∃ nx)max{1,x}(∀ log n)1NTS[na−x].

Proof. The proof is analogous to Lemma 2.1 (the Speedup Lemma for DTISP). 2

Lemma 4.2 (Slowdown) If Tautology is in NTS[nc] then

1. Qb(∃ nak)bk+1NTS[nak+1] ⊆ QbcoNTS[nc·max{ak ,ak+1,bk+1,b},

2. Qb(∀ nak)bk+1coNTS[nak+1] ⊆ QbNTS[nc·max{ak ,ak+1,bk+1,b}],

3. Qb(∃ nak)bk+1coNTS[nak+1] ⊆ Qb(∃ nak)bk+1NTS[nc·max{ak+1,bk+1}], and

4. Qb(∀ nak)bk+1NTS[nak+1] ⊆ Qb(∀ nak)bk+1coNTS[nc·max{ak+1,bk+1}].
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Proof. To prove (2), observe that

(∀ nak)bk+1coNTS[nak+1 ] ⊆ coNTIME[nmax{ak ,ak+1,bk+1}],

and the assumption along with Corollary 2.1 implies that this class is contained in NTS[nc·max{ak ,ak+1,bk+1}].
The proof of (1) is analogous. To prove (3), use the fact that

(∃ nak)bk+1coNTS[nak+1] ⊆ (∃ nak)bk+1coNTIME[nak+1 ],

so the assumption implies the above is in (∃ nak)bk+1NTS[nc·max{ak+1,bk+1}]. The proof of (4) is

analogous. 2

To yield contradictions, one can use the alternating time hierarchy (Theorem 2.2) just as in the

deterministic case.

4.2 Translation Into Linear Programming

The above rules immediately lead to a natural definition of alternation-trading proof that coNTIME[n] ⊆
NTS[nc] =⇒ A1 ⊆ A2, for classes A1 and A2. Such a definition is completely analogous to the one

given for satisfiability time lower bounds.

Another way to yield a contradiction is to use a result that has nearly identical structure to

Lemma 3.3, which showed that NTIME[n] ⊆ DTS[nc] implies DTS[na] * DTS[na′

] for a > a′.

Lemma 4.3 If coNTIME[n] ⊆ NTS[nc] then NTS[na] * coNTS[na′

] for a > a′.

Just as in the Sat lower bounds setting, we may use this lemma to motivate a definition of

normal form proof, and prove that any alternation-trading proof can be converted into a normal

form type.

Definition 4.1 Let c ≥ 1. An alternation-trading proof of coNTIME[n] ⊆ NTS[nc] =⇒ A1 ⊆ A2 is

in normal form proof for c if

• A1 = NTS[na] and A2 = coNTS[na′

], for some a ≥ a′.

• No other lines are NTS or coNTS classes.

Lemma 4.4 Let c ≥ 1. If there is an alternation-trading proof that coNTIME[n] ⊆ NTS[nc] =⇒
A1 ⊆ A2 in normal form that has at least two lines, then coNTIME[n] * NTS[nc].

Theorem 4.1 Let A1 and A2 be complementary. If there is an alternation-trading proof P that

(NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2), then there is a normal form proof for c, of length at most

that of P .
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Example. If Tautology is in NTS[nc] then coNTIME[n] ⊆ NTS[nc] by Theorem 2.1. Thus

NTS[n2] ⊆ (∃ n)1(∀ log n)1NTS[n] NTISP Speedup (Lemma 4.1)

⊆ (∃ n)1(∀ log n)1coNTS[nc] NTISP Slowdown (Lemma 4.2)

⊆ (∃ n)1NTS[nc2] (Slowdown)

⊆ coNTS[nc3]. (Slowdown)

When c ≤ 3
√

2 ≈ 1.25 we have NTS[na] ⊆ coNTS[na′

] for some a > a′, which contradicts Lemma 4.3.

As earlier, we can define proof annotations for this setting, where

• the ith bit of a proof annotation is 1 if the ith line of the proof is a speedup lemma application,

and

• the ith bit of a proof annotation is 0 if the ith line of the proof is a slowdown lemma

application.

The bit vectors that correspond to valid proof annotations change a bit, due to differences in the

Speedup and Slowdown Lemmas. Here is a procedure for checking if a given bit string is a proof

annotation:

If A[1] 6= 1 then return invalid. Set n← 2, q ← 0.

For all i = 2, . . . , (ℓ− 1),

If A[i] = 1 and ¬q then n← n + 2.

If A[i] = 1 and q then n← n + 1 and q ← 0.

If A[i] = 0 and ¬q then q ← 1.

If A[i] = 0 and q then n← n− 1.

If n < 1 then return invalid.

End for

If n = 0 then valid else invalid.

The parameter n corresponds to the number of quantifier blocks in the current line, and q = 1

iff the last quantifier of the current line has the same type as the final time-space class. That is,

q = 1 precisely when the class is either of the form · · · (∃)NTS or · · · (∀)coNTS. For examples, we

note that [1, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0], and [1, 0, 1, 0, 0, 0, 0] are proof annotations for this setting, the

first being the annotation for our small example above.

The translation of a proof annotation to linear programming for the “Tautology versus NTS”

problem follows exactly the same strategy as that for the “Sat versus DTS” problem: we define

variables ai,j, bi,j, xi for all lines i and possible quantifier blocks j, and replace components of the

form max{a, a′} = a′′ with a′′ ≥ a, a′′ ≥ a′. It is clear from the Speedup and Slowdown Lemmas

given above that this reduction suffices. In implementation, the reduction is more complicated due

to the four possible cases for applying the Slowdown Lemma, but the overall idea is precisely the

same.
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4.3 Experimental Results

While the proofs of these new Speedup and Slowdown Lemmas are quite similar to those used for

the “Sat versus DTISP” problem, the structure of good lower bound proofs for the “Tautology

versus NTISP” problem look rather different. We wrote similar routines to those in the deterministic

setting, and the resulting program uncovered very interesting results. It turns out that Fortnow

and Van Melkebeek’s n
√

2 lower bound is not optimal; in fact, the optimal eleven line proof already

establishes a 1.419 exponent:

0, NTS[n^4.788956584]

1, (E n^2.369956583)(A n^1.)NTS[n^2.419]

2, (E n^2.369956583)(A n^1.)(E n^1.419)(A n^1.)NTS[n^1.]

3, (E n^2.369956583)(A n^1.)(E n^1.419)(A n^1.)coNTS[n^1.419]

4, (E n^2.369956583)(A n^1.)(E n^1.419)NTS[n^2.013561000]

5, (E n^2.369956583)(A n^1.)coNTS[n^2.857243059]

6, (E n^2.369956583)(A n^2.378351877)(E n^1.)coNTS[n^1.181167036]

7, (E n^2.369956583)(A n^2.378351877)(E n^1.)NTS[n^1.676076023]

8, (E n^2.369956583)(A n^2.378351877)coNTS[n^2.378351877]

9, (E n^2.369956583)NTS[n^3.374881314]

10, coNTS[n^4.788956584]

Below is a table of results found by exhaustive search over valid annotations.

#Lines Best Proof Annotation(s) L.B.

5 [1, 0, 0, 0] 1.323
8 [1, 1, 0, 0, 0, 0, 0] 1.380

[1, 0, 1, 0, 0, 0, 0]
11 [1, 1, 0, 0, 0, 1, 0, 0, 0, 0] 1.419
14 [1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] 1.433

[1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]

17 [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0] 1.445
[1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

20 [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 1.455
[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]
[1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

23 [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0] 1.465

Note how larger annotations are composed of smaller ones: for example, [1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

is [1, A7, A4, 0], where A4 and A7 are optimal annotations for four and seven lines. In particular,

observe that three optimal annotations from the table have a very distinctive pattern, namely

[1, 0, 0, 0], [1, 1, 0, 0, 0, 1, 0, 0, 0, 0], and [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0].

The pattern is: given a sequence, the next sequence is obtained by concatenating two copies of the

current sequence, and placing a 1 at the beginning and 0 at the end. Thus the next annotation in
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the pattern would be

[1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,

1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

a 47-line annotation that gives a 1.49 exponent. To determine if this annotation is indeed good, we

implemented a heuristic search which starts by putting a given annotation on a queue, and noting

the exponent obtained with that annotation. Then the search repeats in a loop where the head

of the queue is removed, and all possible ways to insert at most 3 bits into that annotation are

tried. If one of these new annotations is valid, obtains a better exponent than the original, and is

at least as good as the best of that length found so far, the new annotation is added to the end of

the queue.

For many line numbers ℓ, the heuristic search found a large number of proof annotations that

achieve exactly the same lower bound. For example, there are eight such annotations of 26 lines.

Each optimal annotation we found could be written as a concatenation of smaller optimal annota-

tions along with an additional 1 and 0. After a long search, the heuristic search found the above

47-line annotation, and all other annotations found (with at most 47 lines) gave as good of a lower

bound.

4.4 New Time Lower Bound for Solving Tautologies With Nondeterminism

After examining the optimal proof annotations closely, it was evident that the particular annotations

A1 = [1, 0, 0, 0]

A2 = [1, 1, 0, 0, 0, 1, 0, 0, 0, 0]

A3 = [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

A4 = [1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,

1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

enjoy a special relationship, namely Ai+1 = [1, Ai, Ai, 0] (with a slight abuse of notation). This

observation strongly suggests that we should look for a new lower bound proof by induction, where

the induction hypothesis is applied twice in the inductive step. Doing so, we arrived at the following

result.

Theorem 4.2 The Tautology problem requires n
3√4−o(1) time for nondeterministic algorithms

that use no(1) space.

To prove Theorem 4.2, we need to establish an inductive lemma. For a given constant c ≥ 1,

define the sequence x1 := 1, x2 := c, xk := c3(xk−1)
2/(

∑k−1
i=1 xi).

Lemma 4.5 If coNTIME[n] ⊆ NTS[nc] and c2(xk)
2 ≥

∑k
i=1 xi, then for all k ≥ 2,

NTS[n
∑k

i=1 xi ] ⊆ (∃ nxk)(∀ nxk)coNTS[nxk ].
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In the following, we do not bother with specifying the inputs to quantifier blocks, except where

absolutely necessary for the argument.

Proof. For k = 2 we have NTS[nc+1] ⊆ (∃ nc)(∀ log n)NTS[n] ⊆ (∃ nc)(∀ log n)coNTS[nc]. Note

that c2(xk)
2 ≥∑k

i=1 xi implies xk+1 ≥ 1. By induction we have that

NTS[n
∑k+1

i=1 xi ] ⊆ (∃ nxk+1)(∀ log n)1 NTS[n
∑k

i=1 xi ] (Speedup)

⊆ (∃ nxk+1)(∀ log n)1(∃ nxk)(∀ nxk)coNTS[nxk ] (by Induction Hypothesis)

⊆ (∃ nxk+1)(∀ log n)1(∃ nxk)NTS[ncxk ] (Slowdown)

⊆ (∃ nxk+1)(∀ log n)1coNTS[nc2xk ] (Slowdown)

⊆ (∃ nxk+1)(∀ log n)1(∀ nc2(xk)2/(
∑

i xi))(∃ nc2(xk)2/(
∑

i xi))NTS[nc2(xk)2/(
∑

i xi)]

(Induction Hypothesis, and Assumption)

⊆ (∃ nxk+1)(∀ log n)1(∀ nc2(xk)2/(
∑

i xi))coNTS[nc3(xk)2/(
∑

i xi)] (Slowdown)

⊆ (∃ nxk+1)(∀ nxk+1)coNTS[nxk+1].

2

Note that the lemma indeed applies its induction hypothesis twice. The proof of the lower

bound on tautologies can now be derived.

Proof of Theorem 4.2. Assume coNTIME[n] ⊆ NTS[nc]. Suppose ℓ is the smallest integer

satisfying c2(xℓ)
2 <

∑ℓ
i=1 xi. Note that c2(x2)

2 = c4 ≥ c + 1 = x1 + x2 for c > 1.2207, which we

know holds due to Fortnow and Van Melkebeek. Therefore ℓ ≥ 3. By Lemma 4.5 and the Slowdown

Lemma, for every k < ℓ we have

NTS[n
∑k

i=1 xi ] ⊆ (∃ nxk)(∀ nxk)coNTS[nxk ] ⊆ coNTS[nc2xk ]. (6)

Define the sequence sk := (
∑k

i=1 xi)/xk = 1 +
∑k−1

i=1 xi/xk. By induction it is easily shown that

sk = 1+(sk−1)
2/c3, and that this sequence is increasing. The inclusion (6) says that we can obtain

a contradiction with Lemma 4.3 when c2 ≤ sk. Hence if c2 ≤ sℓ−1, we have a contradiction with

Lemma 4.3 (the NTS versus coNTS hierarchy). However, we know that c2xℓ <
∑ℓ

i=1 xi/xℓ and

c2xℓ−1 ≥
∑ℓ−1

i=1 xi/xℓ−1, by our choice of ℓ. Taken together, the two inequalities are equivalent to

the condition xℓ+1 < c ≤ xℓ. By simple algebra and the fact that c3 > c + 1 (which holds for

c > 1.33), one can show that this condition implies c2 ≤ sℓ−1. Hence no such ℓ exists.

So suppose instead that c2(xk)
2 ≥ ∑k

i=1 xi, for all k. Then inclusion (6) holds for all k. For

which c can we obtain c2 ≤ sk, for sufficiently large k? Either the sequence {sk} is unbounded (in

which case we’re done, as the inequality holds for all c) or it has a limit point. In the latter case, we

have s∞ = 1+ s2
∞/c3. The polynomial p(x) = 1+x2/c3−x has roots x = c · (c2/2±

√

(c4 − 4c)/2).

When c = 41/3, this root is imaginary, therefore s∞ would be imaginary, a contradiction. It follows

that c < 41/3. 2

It can be verified that the above theorem’s proof annotations are precisely A1, A2, A3, etc.;

in fact, the sequence of exponents xi are precisely those chosen by the computer program for the

annotations A1, A2, A3, etc. Therefore the above formal proof completely corresponds to our best

experimental results. For further generalizations of this new lower bound, the reader is invited to

peruse our joint tech report with Diehl and Van Melkebeek [DvMW07]. Given that our experimental
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results indicated that the sequence A1, A2, A3, etc. is among the best one can do, we posit that

our above lower bound is optimal.

Conjecture 4.1 There is no alternation trading proof that coNTIME[n] * NTS[nc], for any c >
3
√

4.

5 Lower Bounds for Hybrid One-Tape Turing Machines

Finally, we consider lower bounds on a “hybrid” Turing machine model, which subsumes both

the small-space random access machine and off-line one-tape Turing machine models. As in the

previous section, the automated approach yields new lower bounds here too, and we are able to

extrapolate an inductive lower bound proof from the experiments. Recall that the hybrid one-tape

TM machine model has:

• an input tape that is read-only, random access,

• a small storage of no(1) bits that is read-write, random access, and

• an unbounded one-dimensional tape that is read-write with sequential (two-way) access.

The hybrid one-tape model holds importance in this area, since it is the most powerful deterministic

model we know for which one can still prove an n1+Ω(1) lower bound for solving satisfiability.

5.1 The Framework

We define DTIMEh[t(n)] to be the class of languages recognized by hybrid Turing machines running

in O(t(n)) time. The lower bound proofs for hybrids have a somewhat different structure from the

earlier ones. These proofs exploit the fact that a hybrid one-tape Turing machine can be weakly

simulated by a nondeterministic random access machine having a modest space bound. More

precisely, let Q represent any string of quantifier blocks of the form Q = (Q1 na1)b2 · · · (Qk−1 nak−1).

Lemma 5.1 (DTIMEh to DTISP) Let Qk+1 ∈ {∃,∀}. Then for all 0 < s ≤ a and b ≥ 1,

QbDTIMEh[na] ⊆ Qb(Qk+1n
a−s)max{a−s,b}DTISP[na, ns].

The proof of Lemma 5.1 is a standard crossing sequence argument. We include a sketch of it

for completeness.

Proof. (Sketch) Let M be a hybrid one-tape machine and let x be an input. Define CS(x) to be

the set of crossing sequences for M(x) on its sequential tape. We associate each sequence with a

cell of the tape. Notice that each element of a crossing sequence for a particular cell is of no(1) size.

For every i = 1, . . . , ns, define CS(x, i) to be the subset of sequences from CS(x) ranging over

the cells numbered i + k · ns, for k = 0, 1, . . . , na−s − 1. Observe that the union of all CS(x, i) is

exactly CS(x), and that CS(x, i) ∩ CS(x, j) = ∅ for i 6= j. It follows that since the total sum

of the lengths of all crossing sequences for M(x) is at most na, there exists a j so that the total

length of all crossing sequences in CS(x, j) is at most na−s. If we guess CS(x, j) upfront, then our
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computation of M(x) reduces to a na+o(1) time and ns+o(1) space computation, by checking that

the computation between the crossing sequences of CS(x, j) is a valid and accepting computation.

Note that the guess can be existential or universal: if it is universal then we work with crossing

sequences of the complement machine M , and verify that M(x) does not accept, no matter which

offset and na−s subset of crossing sequences that we try. 2

Using the DTIMEh to DTISP Lemma, one can incorporate the Speedup and Slowdown Lemmas

for space-bounded machines (Lemmas 2.1 and 2.2) to infer complexity class inclusions. Another

Slowdown Lemma is also required, but its proof is straightforward and follows the lines of earlier

results. Again, let Q be a string of quantifier blocks.

Lemma 5.2 (Slowdown for DTIMEh) Suppose NTIME[n] ⊆ DTIMEh[nc]. Then for all appropri-

ate ai, bi ≥ 0,

Qbk(Qk+1 nak)bk+1DTIMEh[nak+1 ] ⊆ QbkDTIMEh[nc·max{bk ,bk+1,ak,ak+1}]

and for all e ≤ ak+1,

Qbk(Qk+1 nak)bk+1DTISP[nak+1, ne] ⊆ QbkDTIMEh[nc·max{bk,bk+1,ak,ak+1}].

Finally, we use a simple time hierarchy for hybrid machines.

Lemma 5.3 If NTIME[n] ⊆ DTIMEh[nc] for some c ≥ 1, then DTIMEh[na] ⊆ DTIMEh[na′

] for

a > a′.

Proof. Analogous to Lemma 3.3, which showed that NTIME[n] ⊆ DTS[nc] implies DTS[na] *
DTS[na′

]. 2

Example. In 1983, Kannan proved that NTIME[n] * DTIMEh[n
4
√

3/2]. His argument used a

weaker version of Lemma 5.1. By reproducing the steps of his argument, we obtain:

DTIMEh[n3/2] ⊆ (∃ n)DTISP[n3/2, n1/2] by DTIMEh to DTISP (Lemma 5.1)

⊆ (∃ n)(∀ log n)DTISP[n, n1/2] by DTISP Speedup (Lemma 2.1)

⊆ (∃ n)DTIMEh[nc] by DTISP Slowdown (Lemma 2.1)

⊆ DTIMEh[nc2] by Slowdown for DTIMEh

A contradiction is reached for c <
√

3/2. But Sat ∈ DTIMEh[nc] implies NTIME[n] ⊆ DTIMEh[nc+o(1)]

(Theorem 2.1), so Sat does not have an n
√

3/2−ε algorithm on a hybrid TM. This is the lower bound

attained by Van Melkebeek-Raz [vMR05] and Maass-Schorr [MS87] who used Lemma 5.1.

5.2 Translation Into Linear Programming

As before, using the above tools as a direct guide, we can define a corresponding notion of

alternation-trading proofs and proof annotations. Note that the alternating classes under con-

sideration can now have a DTISP[t, s] or DTIMEh[t] class in the deterministic phase, i.e. classes of
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the form (Q1 na1)b2 · · · (Qk nak)bk+1DTIME1[n
ak+1 ] or (Q1 na1)b2 · · · (Qk nak)bk+1DTISP[nak+1 , nsk+1]

are both possible. Also notice that at every step there are two possible speedup lemmas for a class

with a DTISP phase: one that introduces only a single quantifier, and one that introduces two

quantifiers. However, just as in the deterministic space-bounded case, we can show (along the lines

of Lemma 3.2) that the second speedup lemma is unnecessary when the space bound is O(n). Due

to this, we can define proof annotations for this setting just as before, with bits for the two rules

we can apply at each step: if the deterministic class is a DTIMEh class, a “speedup” means that we

apply the DTIMEh to DTISP Lemma; if the deterministic class is DTISP, a “speedup” means that

we apply the Speedup Lemma. Thus, our short example above will have the annotation [1, 1, 0, 0].

The procedure for determining if an annotation is valid is a little more complex, since speedups

have different effects depending on whether the deterministic class is DTISP or DTIMEh.

Similar to the previous cases, we can also define a version of normal form proof, which begins

with a DTIMEh[na] class and ends with a DTIMEh[na′

] where a′ ≤ a and the proof has at least

two lines. The fact that normal form proofs imply lower bounds can be obtained from Lemma 5.3.

One can prove that for every alternation-trading proof of a lower bound there is a corresponding

normal form proof by using an argument exactly along the lines of Theorem 4.1.

The translation of a proof annotation to a linear program is analogous to the previous cases,

except that when translating the DTIMEh to DTISP simulation (Lemma 5.1), we must introduce

a new variable si for the space exponent, and such a variable must be present in each line i that

contains a DTISP class.

5.3 Experimental Results

A summary of lower bounds found by the LP-based theorem prover is given in the below table.

Unlike the previous two cases, the optimal bounds attained by optimal proofs has non-monotonic

behavior (with respect to length) at first.

#Lines Best Proof Annotation(s) L.B.

5 [1, 1, 0, 0] 1.224
6 [1, 1, 0, 1, 0] 1.224
7 [1, 1, 1, 0, 0, 0] 1.201

8,9 [1, 1, 0, 1, 1, 0, 0], [1, 1, 0, 1, 1, 0, 1, 0] 1.262
10 [1, 1, 1, 0, 0, 1, 1, 0, 0] 1.261

11, 12 [1, 1, 0, 1, 1, 0, 1, 1, 0, 0], [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0] 1.274
13 [1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0] 1.277

14, 15 [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0],[1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0] 1.278
16, 17 [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0], [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0] 1.287

19 [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0] 1.292
25 [1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0] 1.297
28 [1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0] 1.298

After 15 lines, the optimal annotations look like

A = [1 1 1 (0 1 1)k 0 (0 1 1)ℓ 0 0],

for integers k, ℓ. In other words, the string ‘00’ occurs exactly twice. Might it be that for larger

proof lengths we begin to see optimal annotations with three occurrences of ‘0 0’? Apparently this
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is not the case. As with the other two problems, we implemented a heuristic search routine that

takes a queue of annotations as input. The search repeatedly takes the annotation at the head of

the queue and tries all possible ways to insert up to four bits in the annotation (i.e. for all 34 = 81

ways to choose a subset of four Boolean variables and set them, the search tries all possible ways

to insert those bits into the current annotation). If an annotation is obtained that is at least as

good as the best one found of that length so far, it is added to the end of the queue. Even when

we chose the initial queue to consist of [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] (an annotation that is far in

Hamming distance from the allegedly optimal annotations) this search uncovered more interesting

annotations, but all of the best found had the form of A above. For example, the best 24 line proof

was:

0, DTIMEh[n^1.751958454]

1, (E n^.9999975822)DTISP[n^1.751958454,n^.7519608720]

2, (E n^1.040108911)(A n^1.)DTISP[n^1.463810415,n^.7519608720]

3, (E n^1.040108911)(A n^1.)(E n^1.)DTISP[n^1.215771287,n^.7519608720]

4, (E n^1.040108911)(A n^1.)DTIMEh[n^1.577881470]

5, (E n^1.040108911)(A n^1.)DTISP[n^1.577881470,n^.5778814720]

6, (E n^1.040108911)(A n^1.)(E n^1.)DTISP[n^1.155762944,n^.5778814720]

7, (E n^1.040108911)(A n^1.)DTIMEh[n^1.5]

8, (E n^1.040108911)(A n^1.)DTISP[n^1.5,n^.5]

9, (E n^1.040108911)(A n^1.)(E n^1.)DTISP[n^1.,n^.5]

10, (E n^1.040108911)(A n^1.)DTIMEh[n^1.297844000]

11, (E n^1.040108911)DTIMEh[n^1.684399048]

12, (E n^1.040108909)DTISP[n^1.684399048,n^.6442901394]

13, (E n^1.040108909)(A n^1.)DTISP[n^1.288580278,n^.6442901394]

14, (E n^1.040108909)DTIMEh[n^1.672376183]

15, (E n^1.040108909)DTISP[n^1.672376183,n^.6322672739]

16, (E n^1.040108909)(A n^1.)DTISP[n^1.264534548,n^.6322672739]

17, (E n^1.040108909)DTIMEh[n^1.641168576]

18, (E n^1.040108909)DTISP[n^1.641168576,n^.6010596669]

19, (E n^1.040108911)(A n^1.)DTISP[n^1.202119332,n^.6010596669]

20, (E n^1.040108911)DTIMEh[n^1.560163362]

21, (E n^1.040108911)DTISP[n^1.560163362,n^.5200544533]

22, (E n^1.040108908)(A n^1.)DTISP[n^1.040108908,n^.5200544533]

23, (E n^1.040108908)DTIMEh[n^1.349899105]

24, DTIMEh[n^1.751958454]

The best found by running our heuristic search routine for a couple of days was the 66 line

annotation

[1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,

1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0],

which gives a 1.300925 exponent. It seems clear that the best annotations indeed have the form

[1 1 1 (0 1 1)k 0 (0 1 1)ℓ 0 0]. In the next section we show that the convergence is rather rapid in
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this setting, as the above 66-line proof agrees with the case where k and ℓ are arbitrarily large in

four decimal places.

5.4 New Time Lower Bound for Hybrid Machines

The annotation form [1 1 1 (0 1 1)k 0 (0 1 1)ℓ 0 0] suggests a proof where we establish an inductive

lemma capturing the (0 1 1)∗ behavior, and apply this lemma twice to a proof of six more lines.

This suggestion leads readily to a new lower bound.

Theorem 5.1 NTIME[n] * DTIMEh[nc], for all c < r where r is the unique root in (1, 2) of the

polynomial p(x) = 12x5 − 12x4 − x3 − 13x + 4x2 + 2.

By numerical calculation we determine that r < 1.30094. The following is immediate.

Corollary 5.1 Satisfiability requires n1.3009 time to solve on a hybrid Turing machine.

Before we prove Theorem 5.1, we first give the (promised) inductive lemma, the structure of

which resembles a similar result proved for the space-bounded setting in our earlier work [Wil06].

Let c ≥ 1, and define the sequence e1 := 2, ek+1 := 1 + ek/(2c).

Lemma 5.4 Suppose NTIME[n] ⊆ DTIMEh[nc]. Then for all k ≥ 1,

DTIMEh[nek ] ⊆ (∃ n)(∀ log n)DTISP[n, n.5].

Proof. When k = 1,

DTIMEh[nek ] ⊆ (∃ n)DTISP[n2, n.5] ⊆ (∃ n)(∀ log n)DTISP[n, n.5],

by Lemma 5.1 (DTIMEh to DTISP) and Lemma 2.1 (DTISP Speedup), respectively. For the induc-

tive step, we have

DTIMEh[n1+e/(2c)] ⊆ (∃ n)DTISP[n1+e/(2c), ne/(2c)] (DTIMEh to DTISP)

⊆ (∃ n)(∀ log n)DTISP[ne/c), ne/(2c)] (Speedup)

⊆ (∃ n)DTIMEh[ne] (DTIMEh Slowdown)

⊆ (∃ n)(∃ n)(∀ log n)DTISP[n, n.5] = (∃ n)(∀ log n)DTISP[n, n.5],

where the last inclusion holds by the induction hypothesis. 2

It is easy to see that any proof annotation for DTIMEh[nek ] ⊆ (∃ n)(∀ log n)DTISP[n, n.5] has

the form (1 1 0)k−1 1 1, by following the steps of the above proof.

Corollary 5.2 For all ε > 0 and c ≥ 1, if NTIME[n] ⊆ DTIMEh[nc] then DTIMEh[n1+1/(2c−1)−ε] ⊆
(∃ n)(∀ log n)DTISP[n, n.5].

Proof. For all e < 1 + 1/(2c − 1), we have that e < 1 + e/(2c − 1). In fact, the sequence

sk = 1 + sk−1/(2c − 1) converges to 1 + 1/(2c − 1) for all c ≥ 1. (Note e = 1 + e/(2c) implies

e = 1/(1−1/(2c)) = 2c/(2c−1) = 1+1/(2c−1).) Therefore, for any e∗ < 1+1/(2c−1), by setting

34



e = 1.5 and observing that DTIMEh[n1.5] ⊆ (∃ n)(∀ log n)DTISP[n, n.5], we can apply Lemma 5.4

a constant number of times to get that the same containment holds for DTIMEh[ne∗]. 2

Intuitively, the corollary tells us that if we make stronger and stronger assumptions about how

quickly Sat can be solved on a hybrid TM, then we can place more and more of DTIMEh[nO(1)] in

the class (∃ n)(∀ log n)DTISP[n, n.5], when c < 1.5. We are now ready to prove the new time lower

bound.

Proof of Theorem 5.1. Let a ≥ 1 be a parameter to set later. Following the optimal normal

form annotations:

DTIME1[n
a] ⊆ (∃ n)DTISP[na, na−1] (DTIMEh to DTISP)

⊆ (∃ nx+(a−1))x+(a−1)(∀ n)1DTISP[na−x, na−1] (Speedup)

= (∃ nx+a−1)x+(a−1)(∀ n)1DTISP[na−x, na−1],

where x is a parameter satisfying x + a ≥ 2. Now by applying Speedup again, the above is in

(∃ nx+a−1)x+(a−1)(∀ na−1+(2−a))1(∃ n)1DTISP[na−x−(2−a), na−1]

⊆ (∃ nx+a−1)x+(a−1)(∀ n)1DTIME1[n
c(a−x−(2−a))] (Slowdown).

Suppose that a and x satisfy c(2a− 2−x) = 1+ 1/(2c− 1)− ε, for some ε > 0. Then we can apply

Corollary 5.2, and the above is contained in

(∃ nx+a−1)(∀ n)(∃ n)DTISP[n1, n.5] ⊆ (∃ nx+a−1)(∀ n)DTISP[nc, n1/2] (Slowdown)

⊆ (∃ nx+a−1)DTIMEh[nc2 ]. (Slowdown)

Note the input to the DTIMEh class is now nx+a−1. Suppose further that a and c satisfy the

equation c2/(x + a− 1) = 1 + 1/(2c − 1)− ε. Then we can apply Corollary 5.2 again, getting

(∃ nx+a−1)(∀ n)DTISP[n(x+a−1), n(x+a−1)/2] ⊆ (∃ nx+a−1)DTIMEh[nc(x+a−1)] (Slowdown)

⊆ DTIMEh[nc2(x+a−1)]. (Slowdown).

We set a = c2(x+a−1), so that the first DTIMEh class equals the last one, and we get a contradiction

with Lemma 5.3.

Observe that a proof annotation for the above has the form [1 1 1 0 (1 1 0)∗ 1 1 0 0 (1 1 0)∗ 1 1 0 0],

or [1 1 1 (0 1 1)k 0 (0 1 1)ℓ 0 0], as desired. The analysis introduced three parameters (c, a, x)

along with three equations to satisfy. Numerically solving the system of equations

a = r2(x + a− 1)

r(2a− 2− x) = 1 + 1/(2r − 1)

r/(x + a− 1) = 1 + 1/(2r − 1)

under the constraint that r ≥ 1, we obtain the unique solution

{r = 1.300942884, x = .2784778050, a = 1.763503141}.

(Observe that this solution also satisfies the additional constraint x + a ≥ 2 that arose in the

analysis.) One can deduce from the equations above that r is a root of the quintic p(x) = 12x5 −
12x4 − x3 − 13x + 4x2 + 2.
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Finally, for any c < r, we can find a, x, and ε > 0 that satisfy c(2a−2−x) = 1+1/(2c−1)− ε,

a = c2(x + a− 1), and c2/(x + a− 1) = 1 + 1/(2c − 1)− ε. This completes the proof. 2

Given the experimental results, we feel safe in conjecturing that our above theorem is optimal

for alternation-trading proofs.

6 Conclusion

We have introduced a general methodology for automatically proving time lower bounds for many

different scenarios in the alternation-trading framework.9 The key contributions of this work are

an improved formalization of the tools used in the framework, and the result that if we fix a

parameter c and sequence of proof rules, the task of finding an alternation-trading proof that uses

the rule sequence to obtain an Ω(nc) lower bound can often be posed as a linear programming

instance. This makes it feasible to search deeply through the space of possible alternation-trading

proofs, and attain a much greater understanding of the limits and potential of current techniques.

Implementing a small-scale theorem prover, we discovered

1. overwhelming empirical evidence that the Ω(n2 cos(π/7)) lower bound for satisfiability on no(1)

space algorithms is actually optimal for the current framework,

2. an Ω(n41/3−o(1)) lower bound for solving tautologies with nondeterministic algorithms, and

3. an Ω(n1.3009) lower bound for solving NP-complete problems with a hybrid Turing machine

model, which has random access to its input, random access to no(1) storage, and sequential

access to a worktape.

Our approach applies to a wider variety of problems than those discussed here, in particular prob-

lems higher up in the polynomial hierarchy such as k-QBF (the problem of solving Quantified

Boolean Formulas with at most k quantifier blocks).

Previously, the problem of finding the right setting of parameters to get a good lower bound

was often an excruciating technical exercise. We believe that our work should reduce the load on

future researchers in this area: once a new speedup or slowdown theorem for a class is found, one

only needs to find the relevant linear programming formulation in order to discover how the new

theorem can contribute. An automated proof system drastically reduces the time spent on tweaking

parameters and allows us increase our focus on finding new tools.

Let us end with a philosophical remark. When we talk about our area’s relation with other

branches of computer science, we typically speak of “applying theory to practice.” This work

reminds us that the relationship need not be asymmetric, and we should also look out for ways to

apply practice to theory.

9In fact, the only alternation-trading proof we know of that does not fit in our scheme is the Paul-Pippenger-
Szemeredi-Trotter theorem that NTIME[n] 6= DTIME[n]. This is because the version of the speedup theorem given in
that work does not contain a free parameter, and it is unclear how to prove a parameterized variant. Note there is a
parameterized variant of Hopcroft-Paul-Valiant, namely DTIME[t] ⊆ ΣsTIME[t/ log s] ([DT83],p.340).
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