
Non-Uniform ACC Circuit Lower Bounds

Ryan Williams∗

IBM Almaden Research Center
San Jose, CA

ryanwill@us.ibm.com

Abstract—The class ACC consists of circuit families with
constant depth over unbounded fan-in AND, OR, NOT, and
MODm gates, where m > 1 is an arbitrary constant. We prove:

• NTIME[2n] does not have non-uniform ACC circuits of
polynomial size. The size lower bound can be strengthened
to quasi-polynomials and other less natural functions.

• ENP, the class of languages recognized in 2O(n) time with
an NP oracle, doesn’t have non-uniform ACC circuits of
2no(1) size. The lower bound gives a size-depth tradeoff:
for every d, m there is a δ > 0 such that ENP doesn’t have
depth-d ACC circuits of size 2nδ with MODm gates.

Previously, it was not known whether EXPNP had depth-3
polynomial size circuits made out of only MOD6 gates. The
high-level strategy is to design faster algorithms for the circuit
satisfiability problem over ACC circuits, then prove that such
algorithms can be applied to obtain the above lower bounds.

I. INTRODUCTION

Non-uniform computation allows the sizes of programs to
grow with the sizes of inputs. A non-uniform computation
can be naturally represented as an infinite family of Boolean
circuits, one for each possible input length. A longstanding
aim of complexity theory is to understand the power of non-
uniform computation in relation to the usual uniform models
which have fixed-size programs. One complication is that
non-uniform computations can recognize arbitrary (even
undecidable) languages by having a large enough circuit
for each input length. Finding uniform computations that
cannot be simulated by small non-uniform circuit families
is an extremely difficult venture that is related to other major
problems. For instance, P 6= NP follows if one could provide
an NP problem that cannot be solved by any circuit family
where the size of the nth circuit is at most polynomial in
n. Non-uniform lower bounds establish impossibility results
for computation in the physical world: it could be that
P 6= NP, yet NP problems can still be efficiently solved
using “bloated” programs with sufficiently many lines of
code for large inputs. Non-uniform circuit size lower bounds
for NP could rule this out. (However, it is currently possible
that every problem in NP has circuits of size 6n.)

In the early 1980’s, researchers began to carefully study
the power of non-uniform low depth circuits. Intuitively,
such circuits correspond to extremely fast parallel computa-
tions. The initial hope was that if some functions in NP were
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proved to require large, restricted circuit families, then by
gradually lifting the restrictions over time, superpolynomial
size unrestricted lower bounds for NP could be attained,
proving P 6= NP. Furst, Saxe, and Sipser [FSS81] and
independently Ajtai [Ajt83] showed that functions such as
the parity of n bits cannot be computed by polynomial
size AC0 circuits, i.e., polynomial size circuit families of
constant depth over the usual basis of AND, OR, and
NOT gates, where each AND and OR may have arbitrarily
many inputs. Yao [Yao85] improved the lower bounds to
exponential size, and Håstad [Hås86] proved essentially
optimal AC0 lower bounds for parity. Around the same time,
Razborov [Raz85] proved superpolynomial lower bounds
for solving clique with monotone circuits (i.e., general
circuits without NOT gates), and the bound was improved
to exponential size by Alon and Boppana [AB87]. However,
it was later shown [Raz89] that the monotone techniques
probably would not extend to general circuits.

Encouraged by the progress on AC0, attention turned to
lower bounds for what seemed to be minor generaliza-
tions. The most natural generalization was to grant AC0

the parity function for free. Razborov [Raz87] proved an
exponential lower bound for computing the majority of n
bits with constant-depth circuits made up of AND, OR,
NOT, and MOD2 gates. (A MODm gate outputs 1 iff m
divides the sum of its inputs.) Then Smolensky [Smo87]
proved exponential lower bounds for computing MODq with
constant-depth circuits made up of AND, OR, NOT, and
MODp gates, for distinct primes p and q. Barrington [Bar89]
suggested the next step would be to prove lower bounds
for the class ACC, which consists of constant-depth circuit
families over the basis AND, OR, NOT, and MODm for
arbitrary constant m > 1.1 It is here that progress on
strong lower bounds began to falter (although there has been
progress on further restricted cases, cf. the Preliminaries).
Although it was conjectured that the majority of n bits
cannot have polynomial ACC circuits, strong ACC lower
bounds remained elusive.

After failing to prove superpolynomial lower bounds for
some time, the primary questions were weakened. Rather

1The class is also called ACC0 in the literature. However, as ACCi is
hardly studied at all, for any i > 0, at the present time it makes sense to
drop the superscript.



than trying to find simple functions that cannot be computed
with weak circuits, perhaps we could rule out weak circuits
for complicated functions. Could one prove that nondeter-
ministic exponential time (NEXP) doesn’t have polynomial
size circuits? A series of papers [BFNW93], [KvM99],
[IKW02] showed that even this sort of lower bound would
imply derandomization results: in the case of NEXP lower
bounds, it would imply that Merlin-Arthur games can be
non-trivially simulated with nondeterministic algorithms.
This indicated that proving circuit lower bounds for NEXP
would already require significantly new ideas.

In this paper, we address two frontier questions concern-
ing non-uniform circuit complexity:

1) Does nondeterministic 2O(n) time have non-uniform
polynomial size ACC circuits?
(Is NTIME[2O(n)] in non-uniform ACC?)

2) Does exponential time with an NP oracle have non-
uniform polynomial size circuits?
(Is EXPNP ⊆ P/poly?)

Over the years, these questions have turned into notorious
open problems, because it seems so obvious that the answers
should be no. It was open if EXPNP could be recognized with
depth-3 polynomial size circuits made out of only MOD6

gates.2 We make headway on these frontiers, giving a strong
no answer to the first question.

Theorem 1.1: NTIME[2n] does not have non-uniform
ACC circuits of polynomial size.

Stronger size lower bounds hold (e.g. quasi-polynomial
size); cf. the full version of the paper. For EXPNP, we can
prove exponential lower bounds.

Theorem 1.2 (Exponential Size-Depth Tradeoff): For ev-
ery d and m, there is a δ > 0 and a language in ENP that
fails to have non-uniform ACC circuits of depth d and size
2n

δ

with MODm gates.
Recall that the smallest complexity class for which we

know exponential-size (unrestricted) circuit lower bounds
is EXPNPNP

, the third level of the exponential hierar-
chy [MVW99].

Extending the approach of this paper to settle the second
frontier question may be difficult, but this prospect does
not look as implausible as it did before. If polynomial
unrestricted circuits could be simulated by subexponential
ACC circuits, or if one could improve just a little on
the running time of algorithms for the circuit satisfiability
problem, the second question would be settled.

A. An Overview of the Proofs

Let us sketch how these new lower bounds are proved,
giving a roadmap for the rest of the paper. In recent
work [Wil10], the author suggested a research program for
proving non-uniform circuit lower bounds for NEXP. It was

2Note that slightly larger classes such as MAEXP and NEXPNP are
known to not have polynomial size circuits; see the Preliminaries.

shown that for many circuit classes C, sufficiently faster
satisfiability algorithms for C-circuits would entail new non-
uniform lower bounds for C-circuits. The objective of this
paper is to carry out the proposed research program in the
case of ACC circuits.

The proof of the lower bound for ENP (Theorem 1.2) is a
combination of complexity-theoretic ideas (time hierarchies,
compression by circuits, the local checkability of compu-
tation) and algorithmic ideas (fast matrix multiplication,
dynamic programming, table lookup).

1. First, we show that satisfiability algorithms for subex-
ponential size n-input ACC circuits with running time
O(2n/nk) imply exponential size ACC lower bounds for
ENP (Theorem 3.2), where k is sufficiently large. (The model
of computation for the satisfiability algorithm is flexible;
we may assume the multitape Turing machine or a random
access machine. See the Preliminaries.) This step consider-
ably strengthens earlier work, which could only show that an
o(2n/3) time algorithm for ACC circuit satisfiability implies
lower bounds [Wil10]. The idea is to prove that, if there
is a faster algorithm for ACC Circuit SAT, and there are
subexponential (2n

o(1)

) size ACC circuits for ENP, then every
L ∈ NTIME[2n] can be accepted by a nondeterministic
algorithm in O(2nn10/nk) time. (Here, 10 is a substitute for
a small universal constant.) When k > 10 this contradicts the
nondeterministic time hierarchy theorem [SFM78], [Zak83],
so one of the assumptions must be false.

Two known facts are applied in the proof. First, there is a
polynomial-time reduction from any L ∈ NTIME[2n] to the
NEXP-complete problem SUCCINCT 3SAT such that every
instance x of length n (for sufficiently large n) is reduced to
a (unrestricted, not ACC) circuit Cx of size O(n5) with at
most n+5 log n inputs (Fact 3.1). That is, the string obtained
by evaluating Cx on its O(2nn5) possible assignments (in
lex order) encodes a 3CNF formula FCx that is satisfiable
iff x ∈ L. Informally, this says that L ∈ NTIME[2n] have
“succinct” reductions to exponentially long 3SAT instances.

Second, if ENP is in subexponential-size ACC, then (given
an x) there is some satisfying assignment to the formula
encoded by Cx that can be described by an ACC circuit W
of subexponential size (Fact 3.2). That is, the string obtained
by evaluating W on all possible assignments encodes a satis-
fying assignment to the exponentially long FCx . Informally,
this means that, if ENP has subexponential ACC circuits, then
every “succinct” satisfiable 3SAT instance has at least one
“succinct” satisfying assignment: compressible satisfiable
formulas have compressible satisfying assignments.

We can try to combine these two “succinct” facts, as fol-
lows. If Cx were an ACC circuit, then any L ∈ NTIME[2n]
could be accepted in O(2nn5/nk) nondeterministic time, by
guessing a subexponential ACC circuit W and constructing
an ACC circuit satisfiability instance D built of Cx and W ,
where D is satisfiable if and only if W does not encode



a satisfying assignment to FCx (as shown in the author’s
prior paper). The circuit D has at most n + 5 log n inputs
and 2n

o(1)

size, so the assumed ACC satisfiability algorithm
can handle D in O(2nn5/nk) time.

The above argument doesn’t quite work, because we do
not know how to produce a Cx that is an ACC circuit
(indeed, it may not be possible). An ACC SAT algorithm will
not work on D, because D contains a copy of an unrestricted
Cx. However, assuming P has subexponential ACC circuits,
we show how to guess and verify an equivalent ACC circuit
C ′x in nondeterministic O(2nn10/nk) time using a slightly
faster ACC SAT algorithm (Lemma 3.1). This makes it
possible to prove ACC lower bounds even with weak ACC
satisfiability algorithms. Furthermore, this part of the proof
does not use any specific properties of ACC, so it may be
useful for proving stronger lower bounds in the future.

2. Next, we show how satisfiability of subexponential
ACC circuits of depth d and n inputs can be determined in
2n−Ω(nδ) time, for a δ > 0 that depends on d (Theorem 4.1).
Given any such circuit C, replace it with C ′ which is
an OR of 2n

δ

copies of C, where the first nδ inputs of
each copy are substituted with a variable assignment. This
ACC circuit C ′ has n − nδ inputs, 2O(nδ) size, and C is
satisfiable if and only if C ′ is. Applying a powerful result
of Yao, Beigel-Tarui, and Allender-Gore (Lemma 4.1), C ′

can be replaced by an equivalent depth-2 circuit C ′′ of
2n

δ2O(d)

size, which consists of an efficiently computable
symmetric function at the output gate and AND gates below
it. Setting δ � 1/2O(d), and exploiting the structure of
the depth-2 circuit, C ′′ can be evaluated on all of its
possible assignments in 2n−n

δ

poly(n) time (Lemma 4.2).
This concludes the sketch of the ENP lower bound.

The only use of the full assumption “ENP has ACC
circuits” is in Fact 3.2. The lower bound for NEXP (Theo-
rem 1.1) applies the result (which follows from Impagli-
azzo, Kabanets, and Wigderson [IKW02]) that if NEXP
has polynomial size (unrestricted) circuits then satisfiable
instances of SUCCINCT 3SAT already have polynomial size
(unrestricted) circuits W encoding satisfying assignments to
these instances (Theorem 5.1). But if P has ACC circuits,
then these unrestricted circuits must have equivalent ACC
circuits as well (Lemma 5.1). This lets us extend the ENP

lower bound to NEXP. However, the resulting size lower
bound is not exponential: from S(n)-size circuits for NEXP
one only obtains S(S(S(n)c)c)c-size ACC circuits encoding
satisfying assignments. This allows for “half-exponential”
type improvements in the size lower bounds against NEXP.

Perhaps the most interesting aspect of the proofs is that
only the satisfiability algorithm for ACC circuits relies on
specific properties of ACC. Improved exponential algorithms
for satisfiability are the only barrier to further progress
on circuit lower bounds for NEXP. In general, this work
weakens the algorithmic assumptions necessary to prove

lower bounds, and strengthens the lower bounds obtained.
Let C be a class of circuit families that is closed under
composition (the composition of two circuit families from C
is also a family in C) and contains AC0. Possible C include
constant-depth threshold circuits, Boolean formulas, and
unrestricted Boolean circuits. The arguments of Section III
and Section V imply the following metatheorem.

Theorem 1.3: There is a k > 0 such that, if satisfiability
of C-circuits with n variables and nc size can be solved in
O(2n/nk) time for every c, then NTIME[2n] doesn’t have
non-uniform polysize C-circuits.

II. PRELIMINARIES

We presume the reader has background in circuit com-
plexity and complexity theory in general. The textbook of
Arora and Barak [AB09] covers all the necessary material;
in particular, Chapter 14 gives an excellent summary of ACC
and the frontiers in circuit complexity.

Machine model: An important point about this work is
that the choice of uniform machine model is not crucial to
the arguments. We show that if large classes have small non-
uniform ACC circuits, then NTIME[2n] ⊆ NTIME[o(2n)] (in
fact, NTIME[2n] ⊆ NTIME[o(2n/nk)] for sufficiently large
k), which is a contradiction in all computational models we
are aware of. Moreover, Gurevich and Shelah proved that
the nondeterministic machine models are tightly related in
their time complexities. For example, let NTIMERTM [t(n)]
be the languages recognized by nondeterministic t(n) time
random-access Turing machines, and let NTIMETM [t(n)]
be the class for multitape TMs.

Theorem 2.1 (Gurevich and Shelah [GS89]):⋃
c>0 NTIMERTM [n logc n] =

⋃
c>0 NTIMETM [n logc n].

As a consequence, even if we showed NTIMETM [2n] ⊆
NTIMERTM [2n/nk] for sufficiently large k, we would still
obtain the desired contradiction. (Note that such a result is
not known for the deterministic setting.) A random access
Turing machine can also simulate a log-cost random access
machine with only constant factor overhead [PR81]. Hence
in our proof by contradiction, we may assume that the source
algorithm we’re simulating is only a multitape TM, while
the target algorithm has all the power we need to perform
typical computations from the literature.

Notation: Inside of an algorithm description, the inte-
ger n refers to the length of the input to the algorithm. For a
function f : N→ N, we use poly(f(n)) to denote a growth
rate of the form cf(n)c for a constant c.

The size of a circuit refers to the number of wires in it.
However, since attention shall be restricted to circuits with at
least polynomially many gates, the distinction between the
number of wires and gates does not matter. An unrestricted
circuit has gate types AND/OR/NOT, and each gate has fan-
in two. (That is, an unrestricted circuit is the generic variety
used in the definition of P/poly.) All circuit size functions
S considered in this work are assumed to be monotone



nondecreasing, i.e., S(n+ 1) ≥ S(n) for all n.
We say that a circuit class C is a collection of circuit

families that (a) contains AC0 (for every circuit family in
AC0, there is an equivalent circuit family in C) and (b) is
closed under composition: if {Cn} and {Dn} are families in
C, then for every c, the circuit family consisting of circuits
which take n bits of input, feed them to nc + c copies
of circuits from Cn, and feed the outputs to the inputs of
Dnc+c, is also a circuit family in C. Essentially all classes
studied extensively in the literature (AC0, ACC, TC0, NC1,
NC2, P/poly, etc.) are circuit classes in this sense. For
classes allowing for superpolynomial size circuits, “nc + c”
in the above may be relaxed appropriately.

For a complexity class C, the class i.o.-C consists of
languages L ⊆ Σ? such that there is a language L′ ∈ C
where L ∩ Σn = L′ ∩ Σn holds for infinitely many n.

When the expression “O(1)” appears inside of the time
bound for a complexity class, this is shorthand for the
union of all classes where the O(1) is substituted by a
constant. For example, the class TIME[2n

O(1)

] is shorthand
for

⋃
c≥0 TIME[2n

c

].

Other prior work: Kannan [Kan82] showed in 1982
that for any superpolynomial constructible function S : N→
N, the class NTIME[S(n)]NP does not have polynomial
size circuits. Another class known to not have unrestricted
polynomial size circuits is MAEXP [BFT98]. Later it was
shown that the MAEXP lower bound can be improved to
half-exponential size functions f which satisfy f(f(n)) ≥
2n [MVW99]. Kabanets and Impagliazzo [KI04] proved that
NEXPRP either doesn’t have polynomial size Boolean cir-
cuits (over AND, OR, NOT), or it doesn’t have polynomial
size arithmetic circuits (over the integers, with addition and
multiplication gates). Note that NEXPRP ⊆ MAEXP.

A line of work has studied ways of representing ACC
circuits by certain depth-two circuits which will play a
critical role in this work. Define a SYM+ circuit to be a
depth-two circuit which computes some symmetric function
at the output gate, and computes ANDs of input variables
on the second layer. Yao [Yao90] showed that every ACC
circuit of s size can be represented by a probabilistic SYM+

circuit of sO(logc s) size, where c depends on the depth, and
the ANDs have poly(log s) fan-in. Beigel and Tarui [BT94]
showed how to remove the probabilistic condition. Allender
and Gore [AG94] showed that every subexponential uniform
ACC circuit family can be simulated by subexponential uni-
form SYM+ circuits; as an application, the Permanent does
not have uniform ACC circuits of subexponential size. Later,
Allender [All99] improved the Permanent lower bound to
polynomial size uniform TC0 circuits. However, these proofs
require uniformity, and the difference between uniformity
and non-uniformity may well be vast (e.g., it is clear that
P 6= NEXP, but open whether NEXP ⊆ P/poly). Green et
al. [GKRST95] showed that the symmetric function can be

assumed to be the specific function which returns the middle
bit of the sum of its inputs. This representation may also be
used in the lower bounds of this work.

There has also been other substantial work on representing
ACC [BT88], [AAD00], [Han06], [KH09] as well as many
lower bounds in restricted cases [BST90], [Thé94], [YP94],
[KP94], [BS95], [Cau96], [Gro98], [GT00], [CGPT06],
[CW09]. Significant work has gone into the constant degree
hypothesis [BST90] that a certain type of low-depth ACC
circuit requires exponential size to compute AND. The
hypothesis is still open. These prior works on non-uniform
ACC lower bounds attack the problem in a “bottom-up” way.
Lower bounds have been proved for highly restricted circuits
and the restrictions have been very gradually relaxed over
time. The strategy of this paper is “top-down”, finding the
smallest complexity classes for which it is still possible to
prove strong ACC lower bounds. This is in line with the goal
of eventually proving circuit lower bounds for NP.

As mentioned before, this paper builds on the author’s
prior work which showed that mildly faster SAT algorithms
can sometimes imply lower bounds. Let us briefly review the
prior state-of-the-art for Circuit SAT algorithms. It is known
that CNF SAT can be solved in 2n−Ω(n/ ln(m/n))poly(m)
time, where m is the number of clauses and n is the
number of variables [Sch05], [CIP06], [DH08]. Calabro,
Impagliazzo, and Paturi have recently shown that AC0 SAT
can be solved by a randomized algorithm in 2n−n

1−o(1)

time, on circuits with n1+o(1) gates [CIP09]. Recently,
Santhanam [San10] applied ideas inspired by formula size
lower bounds to show that for a fixed k, Boolean formula
SAT can be determined in O(2n−n/c

k

) time on formulas of
size cn. Unfortunately, these upper bounds are not strong
enough to prove new circuit lower bounds.

How do we avoid the barriers?: There are several
well-known formal barriers to proving lower bounds. Let
us say a little about their relation to this work. Intuitively,
we circumvent the natural proofs barrier [RR97] because of
the use of diagonalization. More precisely, we rely heavily
on strong completeness properties of a specific NEXP lan-
guage, namely SUCCINCT 3SAT, to prove that it cannot
have small ACC circuits. So it looks unlikely that one
may extract any P-natural or NP-natural properties from
the proof. (Furthermore, there is little evidence that ACC
contains pseudorandom functions, so natural proofs may not
be a barrier for ACC after all.) It is hard to formally rule
out that a proof cannot possibly be made natural, without
showing either an algorithmic lower bound (there is no
efficient algorithm with certain properties) or a circuit upper
bound (the circuit class under discussion has pseudorandom
functions). Nevertheless, statements like “Satisfiability of C
circuits is in O(2n/n10) time” do appear to be far weaker
than statements like “There are no strong pseudorandom
functions implementable with C circuits”.



More conclusively, the approach of this work definitely
avoids relativization [BGS75] and algebrization [AW09]
because there are oracles A relative to which NEXPA ⊂
ACCA, and even NEXPÃ ⊂ ACCA (Scott Aaronson, per-
sonal communication). The ACC SAT algorithm used in
the lower bounds relies on non-relativizing properties of
ACC circuits. In general, the approach of using slightly-
faster SAT algorithms to prove lower bounds appears fruitful
for circumventing oracle-based barriers, because all known
improved SAT algorithms break down when oracles (or
algebraic extensions thereof) are added to the instance. That
is, improvements over exhaustive search necessarily exploit
structure in instances that black-box methods cannot see.

III. A STRENGTHENED CONNECTION BETWEEN SAT
ALGORITHMS AND LOWER BOUNDS

In this section, we prove that if one can achieve a very
minor improvement over exhaustive search in satisfying
ACC circuits, then one can prove lower bounds for ACC.
The required improvement is so minor that we are able to
achieve it, in the sequel. However, all results in this section
hold equally well for other circuit classes as well: we only
require basic properties of ACC that practically all robust
circuit classes satisfy.

Define the ACC CIRCUIT SAT problem to be: given an
ACC circuit C, is there an assignment of its inputs that
makes C evaluate to 1? In recent prior work [Wil10],
the author proved a relation between algorithms for ACC
CIRCUIT SAT and lower bounds for ACC circuits:3

Theorem 3.1 ([Wil10]): Let s(n) = ω(nk) for every k. If
ACC CIRCUIT SAT instances with n variables and nc size
can be solved in O(2n/3/s(n)) time for every c, then ENP

does not have non-uniform ACC circuits of polynomial size.
We shall sharpen this theorem considerably. Let S : N→

N be a monotone nondecreasing function such that S(n) ≥
n. Let C be a circuit class as defined in the Preliminaries. (C
can be ACC, TC0, NC1, P/poly, etc.) Define the C-CIRCUIT
SAT problem to be: given a circuit C from class C, is there
an assignment of its inputs that makes C evaluate to 1?

Theorem 3.2: Let S(n) ≤ 2n/4. There is a c > 0 such
that, if C-CIRCUIT SAT instances with at most n + c log n
variables, depth 2d + O(1), and O(n S(2n) + S(3n)) size
can be solved in O(2n/nc) time, then ENP does not have
non-uniform C circuits of depth d and S(n) size.

The constant c depends on the model of computation, but
for all typical models, c is not large (less than 10). For us,
the important corollary is this: if ACC SAT has a slightly
faster algorithm on circuits that are mildly larger than S(n),
then ENP does not have ACC circuits of S(n) size. In what
follows, we prove Theorem 3.2 only for ACC circuits, but
the proof also works for other circuit classes. (The reader

3In fact a more general result for any circuit class was proved, which
implies Theorem 3.1.

can verify that the only two properties of ACC used are
that the class contains AC0, and the class is closed under
composition of circuit families.)

To understand the difficulty behind proving Theorem 3.2,
let us recall the proof of Theorem 3.1 to see why it needed
such a strong assumption. The generic proof idea is to
derive a contradiction from assuming small circuits for ENP

and a faster algorithm for CIRCUIT SAT. In particular, it
is shown that under the two assumptions, every language
L ∈ NTIME[2n] can be recognized in NTIME[o(2n)], which
is false by the nondeterministic time hierarchy [SFM78],
[Zak83]. The contradiction is derived from stitching together
several facts about circuits and satisfiability.

Define SUCCINCT 3SAT as the problem: given a circuit
C on n inputs, let FC be the 2n-bit instance of 3-SAT
obtained by evaluating C on all of its possible inputs in
lexicographical order. Is FC satisfiable?

That is, given a compressed encoding of a 3-CNF formula,
the task is to determine if the underlying decompressed
formula is satisfiable. Call FC the decompression of C,
and call C the compression of FC . The SUCCINCT 3SAT
problem is a canonical NEXP-complete problem [PY86].

Fact 3.1: There is a constant c > 0 such that for every
L ∈ NTIME[2n], there is a reduction from L to SUCCINCT
3SAT which on input x of length n runs in poly(n) time
and produces a circuit Cx with at most n+c log n inputs and
O(nc) size, such that x ∈ L if and only if the decompressed
formula FCx of 2n · poly(n) size is satisfiable.

Fact 3.1 follows from several prior works concerned with
the complexity of the Cook-Levin theorem.

Theorem 3.3 ([Tou01], [FLvMV05]): There is a c > 0
such that for all L ∈ NTIME[n], L reduces to 3SAT in
O(n(log n)c) time. Moreover there is an algorithm (with
random access to its input) that, given an instance of L with
length n and an integer i ∈ [dn(log n)c] in binary (for some
d depending on L), outputs the ith clause of the resulting
3SAT formula in O((log n)c) time.

The proofs in the above references build on even ear-
lier work of Schnorr, Cook, Gurevich-Shelah, and Rob-
son [Sch78], [Coo88], [GS89], [Rob91]. In a nutshell, all
of these proofs exploit the locality of computation: ev-
ery nondeterministic computation running in linear time
can be represented with a nondeterministic circuit of size
O(n ·poly(log n)) which has a highly regular and efficiently
computable structure. This circuit can be easily modeled as a
3-CNF formula using the Tseitin transformation that assigns
a variable to each circuit wire and uses 3-CNF clauses to
model the input-output relationships for each gate.

The value of c in Theorem 3.3 depends on the underlying
computational model; typically one can take c ≤ 4. A
standard padding argument (substituting 2n in place of n)
yields Fact 3.1. In more detail, given L ∈ NTIME[2n], we
apply Theorem 3.3 to the language L′ = {x012|x| | x ∈ L},



which is in NTIME[n]. On an input x, this generates an
equivalent 3SAT instance of length O(2|x||x|c). As it is easy
to simulate random accesses to an input of the form x012|x|

with a uniform poly(|x|) size circuit, one can simulate the
O((log n)c) time algorithm of Theorem 3.3 on L′, with a
uniform poly(|x|c) size circuit.

Using Fact 3.1, one can prove that every compressible
satisfiable formula output by the SUCCINCT 3SAT reduction
has a compressible satisfying assignment.

Fact 3.2: If ENP has ACC circuits of size S(n), then there
is a constant c such that for every language L ∈ NTIME[2n]
and every x ∈ L of length n, there is an ACC circuit Wx

of size at most S(3n) with k ≤ n+ c log n inputs such that
the variable assignment zi = W (i) for all i = 1, . . . , 2k is a
satisfying assignment for the formula FCx , where Cx is the
circuit obtained by the reduction in Fact 3.1.
Proof of Fact 3.2. Consider the ENP machine:
N(x, i): Compute the SUCCINCT 3SAT reduction from

x to Cx in polynomial time. Decompress Cx, obtaining a
formula F of O(2|x||x|c) size. Let k be the number of inputs
to Cx. Binary search for the lexicographically smallest
satisfying assignment A to F , by repeatedly querying: given
(F,A) where |A| ≤ 2k, is there an assignment A′ ≤ A that
satisfies F ? Then output the ith bit of A.

Note the queries can be answered in NP, and N needs
O(2k) queries to the oracle. By assumption, N has ACC
circuits of size S(n). It follows that for every x ∈ L there
is some satisfying assignment to F which is encoded by
a circuit of size S(|〈x, i〉|) ≤ S(3|x|), where 〈·, ·〉 is a
polynomial-time computable pairing function. �

With these two facts, we may try to recognize any
L ∈ NTIME[2n] with a o(2n) nondeterministic algorithm
(a contradiction), as follows. Given a string x of length
n, compute the SUCCINCT 3SAT circuit Cx in polynomial
time and nondeterministically guess a S(3n) size circuit
W . We must verify that W succinctly encodes a satisfying
assignment for the underlying formula FCx . To verify this,
the algorithm constructs a CIRCUIT SAT instance D. The
circuit D has n+ c log n inputs fed to O(n) copies of Cx,
so that when i is input to D, the copies altogether print the
ith clause of the 3CNF formula FCx . These copies output
three variable indices of length at most n + c log n, along
with sign bits (whether or not the variables are negated in
the clause). Then D feeds each index to a copy of W ,
which prints a bit. Finally D compares the sign bits with the
three bits printed by the copies of W , and outputs 0 iff the
assignment encoded by W satisfies the ith clause. Observe
D has poly(n) + O(S(3n)) size. Running a fast enough
CIRCUIT SAT algorithm lets us determine the satisfiability
of D in o(2n) time. Finally, this algorithm for L accepts x
iff D is unsatisfiable. To see that this algorithm is correct,
observe there is a size-S(3n) circuit W such that D is
unsatisfiable, if and only if there is such a W encoding a

satisfying assignment for FCx , if and only if x ∈ L.
The above argument cannot be carried out directly to

prove ACC circuit lower bounds from ACC CIRCUIT SAT
algorithms, because of Fact 3.1. Given an instance x of
L, the circuit Cx produced in the reduction from L to
SUCCINCT 3SAT can be constructed in polynomial time,
however it looks hard (perhaps impossible) to implement
Cx directly with ACC circuits. As Cx is a component of
the circuit D, it follows that D itself would not be an ACC
circuit, so an ACC CIRCUIT SAT algorithm would not seem
to be useful for determining the satisfiability of D.

In the proof of Theorem 3.1 in the author’s prior
work [Wil10], this problem was fixed by settling for a
weaker reduction from L to SUCCINCT SAT, which gen-
erates an AC0 circuit C ′x with 3n + O(log n) inputs rather
than n+O(log n). Unfortunately this constant factor makes
a huge difference: to determine satisfiability of the resulting
circuit D′ in o(2n) time, a 2n/3/nω(1) time algorithm for
ACC CIRCUIT SAT is needed, instead of 2n/nω(1) time.
Algorithms of the former type are not known even for 3SAT;
algorithms of the latter type are much more plentiful.

While it is unlikely that these Cx circuits can be im-
plemented in ACC, note we already assume that ACC is
powerful: in a proof by contradiction, we assume many func-
tions have small ACC circuits! Since the function computed
by Cx is computable in P, then even if we assume P has
ACC circuits, there still exists a circuit C ′x which is ACC
and equivalent to Cx, but it is from a non-uniform family,
and therefore may be difficult to construct. However, we
can use nondeterminism in the algorithm recognizing L in
NTIME[o(2n)], so at the very least we can guess this elusive
C ′x. We also have a good algorithm for ACC CIRCUIT SAT
at our disposal. By guessing two more ACC circuits to help,
it turns out that we can always generate a correct ACC circuit
C ′x that is equivalent to Cx in o(2n) time.

Lemma 3.1: There is a fixed d > 0 with the following
property. Assume P has ACC circuits of depth d′ and size at
most S(n), and assume ACC CIRCUIT SAT on circuits with
n+c log n inputs, depth 2d′+O(1), and at most O(S(3n)+
S(2n)n) size can be solved in O(2n/nc) time, for large
enough c > 2d. Then for every L ∈ NTIME[2n], there is a
nondeterministic algorithm A such that:

• A runs in O(2n/nc + S(3n) · poly(n)) time,
• for every x of length n, A(x) either prints reject or it

prints an ACC circuit C ′x with n+d log n inputs, depth
d′, and S(n + d log n) size, such that x ∈ L if and
only if C ′x is the compression of a satisfiable 3-CNF
formula of 2n · poly(n) size, and

• there is always at least one computation path of A(x)
that prints the circuit C ′x.

That is, given an instance x, the algorithmA nondetermin-
istically generates an equivalent SUCCINCT 3SAT instance
C ′x which is an ACC circuit.



Proof of Lemma 3.1. We describe A in detail. On input x of
length n,A guesses an ACC circuit C ′x of size S(n+d log n),
and constructs the SUCCINCT 3SAT circuit Cx with n +
d log n inputs and knd + k size (of Fact 3.1) in polynomial
time, for some d independent of L. By Fact 3.1, x ∈ L if
and only if Cx is the compression of a satisfiable formula
FCx of O(2nnd) length. We must efficiently verify that C ′x
and Cx compute the same function.

WLOG, the unrestricted circuit Cx has gate types AND,
OR, NOT, and INPUT, where each AND and OR has fan-in
two. By definition an INPUT gate has no inputs, and the
output value of an INPUT is the appropriate input bit itself.
The gates are indexed by the numbers 1, . . . , knd+k, where
the first n + d log n indices correspond to the n + d log n
INPUT gates, and the (knd + k)th gate is the output gate.

Since the map x 7→ Cx is polynomial time computable,
the following function f is polynomial-time computable:

Given x, and a gate index j = 1, . . . , knd + k, f(x, j)
outputs the gate type (AND, OR, NOT, INPUT) of the jth
gate in the circuit Cx. Furthermore, if the gate type is NOT,
then f outputs the gate index j1 in Cx whose output is the
input to j; if the gate type is an AND or OR, then f outputs
the two gate indices j1 and j2 in Cx whose outputs are the
two inputs of j.

Consider the decision problem Df : given x, j, and i =
1, . . . , 2d log n + O(1), decide if the ith bit of f(x, j) is
1. Df is solvable in P and hence has O(S(n + d log n +
O(log log n)))-size, d′-depth ACC circuits, by assumption.

Let D(x, j) be an ACC circuit implementing the func-
tionality of f . Note we may assume the size of D is
O(S(n+O(log n)) log n), by simply taking 2d log n+O(1)
copies of the S(n + O(log n))-size circuit solving the
decision problem Df . (By convention, let us assume that
when D is printing the gate information for an INPUT gate,
it prints all-zeroes strings in place of j1 and j2, and when
D is printing the information for a NOT gate, it prints all-
zeroes in place of j2.)

The nondeterministic algorithm A guesses D, and verifies
that D is correct on the given input x in time

O(ndS(n+O(log n)) · poly(logS(n+O(log n))))

≤ nd · S(2n) · poly(logS(2n)) ≤ O(22n/3),

by evaluating D(x, ·) on all j = 1, . . . , knd + k, checking
that the outputs of D correspond to the gates of Cx. If D
does not output all gates of Cx correctly, then A rejects.

Next, consider the problem:
Given x, an input i of n+ d log n bits, and a gate index

j = 1, . . . , knd + k, output the bit value on the output wire
of the jth gate when Cx is evaluated on i.

By assumption, this problem also has ACC circuits, since
Cx can be constructed and evaluated on any input i in
polynomial time. Let E(x, i, j) be an ACC circuit of size
S(n + (n + d log n) + d log n + O(1)) ≤ S(3n) and depth

d′ with this functionality.
Now A guesses E and wishes to verify its correctness

on x. To do this, A constructs a circuit VALUE(i, j) built
out of D and E, where i has n + d log n bits and j =
1, . . . , knd+k. Intuitively, VALUE(i, j) will output 0 if and
only if E produces a sensible output for the jth gate of Cx
evaluated on input i.

First, VALUE(i, j) feeds j to the circuit D(x, ·), pro-
ducing gate indices j1, j2, and a gate type g. VALUE
then computes v1 = E(x, i, j1), v2 = E(x, i, j2) and
v = E(x, i, j). (Depending on g, these j1 and j2 may be
all-zeroes, but this does not matter to us.)

If g = INPUT, then VALUE outputs 0 if and only if
j ∈ {1, . . . , n + d log n} and the jth bit of i equals v.
This behavior can be implemented with an AC0 circuit
of O(n logS(n)) size: an AND over all 2n choices of
a bit from input i along with a bit v, of ORs of fan-in
logS(n) +O(1).

If g = NOT, VALUE outputs 0 if and only if v1 = ¬v.
If g = AND, VALUE outputs 0 if and only if v1∧v2 = v.
If g = OR, VALUE outputs 0 if and only if v1 ∨ v2 = v.
Each of the above three conditions can be implemented

with O(1) gates, given the values g, v1, v2, and v. It follows
that VALUE can be implemented as an ACC circuit.

Since A has not rejected, D is correct, so we know that
for all i, j, the gate types g and input connections j1 and
j2 are correct. Therefore VALUE(i, j) = 1 if and only if E
asserts that the output of gate j in Cx(i) equals v, and E
asserts the inputs to j have values v1, v2, but the gate type
g dictates that the output of j should be ¬v. It follows that
VALUE is an unsatisfiable circuit if and only if E prints
correct values for all gates in Cx(i), over all i.

Therefore, by calling ACC SAT on VALUE(·, ·), A de-
termines whether E is correct. The algorithm A rejects
if E is deemed incorrect. The circuit VALUE(i, j) has
n+2d log n+O(1) inputs, depth 2d′+O(1), and O(S(3n)+
S(2n) logS(2n) +n logS(n)) ≤ O(S(3n) +S(2n)n) size.
By assumption, the assumed ACC SAT algorithm runs in
O(2n/nc) time for c chosen to be greater than 2d.

After checking that E is a correct guess, the question
of whether C ′x is equivalent to Cx can now be verified.
(Alternatively, at this point we may simply print the circuit
E(·, knd + k) as a valid circuit that is equivalent to Cx(·).)
First, if E is correct, then for all i, Cx(i) = E(x, i, knd+k).
Therefore it suffices to set up an ACC circuit EQUIV(i)
which outputs 1 if and only if C ′x(i) 6= E(x, i, knd + k),
and determine if EQUIV is satisfiable using the algorithm
for ACC CIRCUIT SAT. Since EQUIV(i) has n + d log n
inputs, depth d′ + O(1), and size O(S(n+ O(log n))), the
circuit SAT call runs in O(2n/nc) time by assumption. If
EQUIV is satisfiable, then A rejects.

Finally, A prints its guessed circuit C ′x if the algorithm
did not reject on any of the above steps. �



Remark 1: The proof of the lemma does not require
specific properties of ACC. We only need that the underlying
circuit class C contains AC0 and is closed under composition
of two circuit families. The same goes for the proof of
Theorem 3.2 below.

With Lemma 3.1, the proof of Theorem 3.2 closely
follows the author’s prior work (Theorem 3.1), except the
circuit C ′x is substituted in place of Cx. Let us give the
details, using the specific example of ACC in place of a
generic circuit class C.

Reminder of Theorem 3.2 Let S(n) ≤ 2n/4. There is a
c > 0 such that, if C-CIRCUIT SAT instances with at most
n + c log n variables, depth 2d + O(1), and O(n S(2n) +
S(3n)) size can be solved in O(2n/nc) time, then ENP does
not have non-uniform C circuits of depth d and S(n) size.

Proof of Theorem 3.2. Suppose ACC CIRCUIT SAT in-
stances with n + c log n variables, depth 2d + O(1), and
O(n S(2n) + S(3n)) size can be solved in O(2n/nc) time
for a sufficiently large c. Further suppose that ENP has non-
uniform ACC circuits of depth d and S(n) size. The goal
is to show that NTIME[2n] ⊆ NTIME[o(2n)], contradicting
the nondeterministic time hierarchy [SFM78], [Zak83].

Let L ∈ NTIME[2n]. We describe a fast nondeterministic
algorithm B deciding L. As discussed earlier (Lemma 2.1),
we may assume L is accepted by a nondeterministic multi-
tape TM in O(2n) time, and we only need to simulate L on
a nondeterministic RAM in O(2n/nc) time for large enough
c to obtain the contradiction.

On input x of length n, B first runs the nondeterministic
algorithm A of Lemma 3.1. Using the ACC CIRCUIT SAT
algorithm and the fact that P has ACC circuits, A runs in
O(2n/nc+S(3n)·poly(n)) ≤ O(2n/nc) time, and for some
computation path, A produces an ACC circuit C ′x of S(n+
c log n) size and n + c log n inputs such that x ∈ L if and
only if C ′x is the compression of a satisfiable formula FC′x .

Then B nondeterministically guesses a S(3n)-size circuit
W . By Fact 3.2, there exists such a W that encodes a
satisfying assignment for FC′x if and only if x ∈ L.

Next, B constructs an ACC CIRCUIT SAT instance D to
verify that W is correct (just as in the proof of Theorem 3.1).
The circuit D has n+ c log n inputs fed to O(n) copies of
C ′x, so that when i is input to D, the ith clause of the 3CNF
formula FC′x is printed on O(n) bits of output. The O(n) bits
encode three variable indices along with sign bits for each
variable. For the three variables, an assignment is computed
for them by evaluating the indices on three copies of W .
Finally, D compares the sign bits with the bits output by
the copies of W , and outputs 0 iff the variable assignment
encoded by W satisfies the ith clause.

Observe that D has O(n S(2n)+S(3n)) size, depth 2d+
O(1), and n+c log n inputs. By assumption, the satisfiability
of D can be determined in O(2n/nc) time, hence B decides
if x ∈ L in O(2n/nc) time. �

IV. A SATISFIABILITY ALGORITHM FOR ACC CIRCUITS

Now we present an algorithm for ACC SAT that runs
slightly faster than the 2n runtime of exhaustive search.
There are two components in the algorithm: a nice repre-
sentation of ACC circuits, and a method for evaluating this
representation quickly on all of its inputs.

It follows from the work of Yao [Yao90], Beigel and
Tarui [BT94], and Allender and Gore [AG94] that, given
any ACC circuit of size s, one can produce a sO(logc s) size
SYM+ circuit in poly(sO(logc s)) time that has equivalent
functionality, and very special properties. (For more back-
ground, see the Preliminaries.)

Lemma 4.1: There is an algorithm and function f : N×
N → N such that given an ACC circuit with MODm gates
of depth d and size s, the algorithm outputs an equivalent
SYM+ circuit of sO(logf(d,m) s) size. The algorithm takes
at most sO(logf(d,m) s) time. Furthermore, given the number
of ANDs in the circuit that evaluate to 1, the symmetric
function itself can be evaluated in sO(logf(d,m) s) time.

The function f(d,m) is estimated to be no more than
mO(d). Allender and Gore show that given a uniform ACC
circuit (with an efficiently computable connection language),
there is a similarly uniform SYM+ circuit of the appropriate
size. Their proof gives an efficient, deterministic algorithm
computing the transformation, and it works equally well if
it is simply given any ACC circuit as input (not necessarily
uniform). A proof of the lemma is in the full version.

A. Rapid evaluation of an ACC circuit on all of its inputs

The other component of the ACC SAT algorithm is a
method for rapidly evaluating a given SYM+ circuit on all
of its possible satisfying assignments:

Lemma 4.2 (Evaluation Lemma): There is an algorithm
that, given a SYM+ circuit of size s ≤ 20.1n and n inputs
with a symmetric function that can be evaluated in poly(s)
time, runs in (2n+poly(s))·poly(n) time and prints a 2n-bit
vector V which is the truth table of the function represented
by the given circuit. That is, V [i] = 1 iff the SYM+ circuit
outputs 1 on the ith variable assignment.

That is, any SYM+ circuit can be evaluated on all 2n

assignments in polynomial amortized time per assignment.
Brute force search would take 2n · poly(s) time, but the
algorithm manages to use roughly 2n+poly(s) time instead.

Unfortunately we do not have space to include the proof
of Lemma 4.2 here. However we can give some intuition.
Representing a function f with a size-s SYM+ circuit
amounts to representing f as a composition of two functions
f = g ◦ h, where g : {0, . . . , s} → {0, 1} is arbitrary, and
h : {0, 1}n → {0, . . . , s} is a multilinear polynomial with
at most s monomials. The h is provided in its coefficient
representation: all coefficients for the monomials are speci-
fied. All we need is to efficiently convert this representation
into the point representation, giving the value of h on all



points in {0, 1}n. With the point representation of h, it is
easy to evaluate g ◦ h on all 2n points in O(2n log s) time,
by storing g as a lookup table.

There are multiple ways to efficiently perform the con-
version; here is a simple one. We may write h as h = x1 ·
h1(x2, . . . , xn) + h2(x2, . . . , xn) for multilinear h1 and h2.
This suggests the strategy: recursively obtain 2n−1-vectors
R1 and R2 which point-represent h1 and h2, then output
the 2n point representation of h as the concatenation of R2

and R1 + R2. (If n = 2, then compute the representation
directly.) This recursive strategy can be implemented in
2n · poly(n) + poly(s) time, even on multitape TMs.

B. The final algorithm

Theorem 4.1: For d > 1 and m > 1 there is an ε ∈ (0, 1)
such that satisfiability of depth-d ACC circuits with MODm
gates, n inputs, and 2n

ε

size can be determined in 2n−Ω(nδ)

time for some δ > ε that depends only on d and m.
Proof: Let `, ε be parameters to set later. Suppose we

are given a depth-d ACC circuit C of s = 2n
ε

size and n
inputs. Make a circuit C ′ with s · 2` size and n − ` inputs
which is obtained by producing 2` copies of C, plugging in
a different possible assignment to the first ` inputs of C in
each copy, and taking the OR of these copies. Observe C ′

is a depth-(d + 1) ACC circuit, and C is satisfiable if and
only if C ′ is satisfiable.

Applying Lemma 4.1, a circuit C ′′ equivalent to C ′ can be
produced, where C ′′ consists of a symmetric gate connected
to s′′ ≤ se(`

e loge s) ANDs of variables, for some constant
e that depends on the depth d and modulus m. Producing
C ′′ from C ′ takes only sO(`e loge s) steps. When s = 2n

ε

,
s′′ ≤ 2en

ε(`enεe). Set ` = n1/(2e), and observe s′′ ≤ 2n
2/3

for all sufficiently large n and sufficiently small ε.
By the evaluation lemma (Lemma 4.2) and the fact that

the symmetric function of C ′′ can be evaluated in poly(s′′)
time, C ′′ can be evaluated on all of its possible assignments
in O(2n−` · poly(n)) ≤ 2n−Ω(n1/(2e)) time, hence the
satisfiability of C can be determined within this time.

V. ACC LOWER BOUNDS

Combining the results of the previous two sections, non-
uniform lower bounds for ACC can be proved.

Reminder of Theorem 1.2 For every d and m, there is a
δ > 0 and a language in ENP that fails to have non-uniform
ACC circuits of depth d and size 2n

δ

with MODm gates.
Proof: Theorem 4.1 states that for every d and m there

is an ε > 0 so that satisfiability of depth-d ACC circuits
with MODm gates, n inputs, and 2O(nε) size can be solved
in 2n−Ω(nδ) time, for some δ > ε. Theorem 3.2 says there
is a c > 0 such that, if ACC SAT instances with n+ c log n
variables, depth 2d + O(1), and s = n 2O(nε) size can
be solved in O(2n/nc) time, then ENP does not have ACC
circuits of depth d and 2n

ε

size. The lower bound follows,
as 2(n+c logn)−Ω((n+c logn)δ) � O(2n/nc) for every c.

Note this lower bound can be “padded down”:
Corollary 5.1: For every constant d ≥ 2, the class

QuasiPNP = TIME[nlogO(1) n]NP does not have non-uniform
ACC circuits of depth d and polynomial size.

It is known that NTIME[nlogO(1) n]NP does not have poly-
nomial size (unrestricted) circuits [Kan82]. Superpolynomial
ACC lower bounds for NEXP are also provable. First we
need a theorem established in prior work: if NEXP has
(unrestricted) polynomial size circuits, then every satisfi-
able formula output by the SUCCINCT 3SAT reduction
in Fact 3.1 has some satisfying assignment that can be
represented with a polynomial size unrestricted circuit.

More precisely, say that SUCCINCT 3SAT has succinct
satisfying assignments if there is a constant c such that for
every language L ∈ NTIME[2n] and every x ∈ L of length
n, there is a circuit Wx of poly(n) size with k ≤ n+c log n
inputs such that the variable assignment zi = W (i) for all
i = 1, . . . , 2k is a satisfying assignment for the formula FCx ,
where Cx is the circuit obtained by the SUCCINCT 3SAT
reduction in Fact 3.1. Say that Wx is a succinct satisfying
assignment for Cx.

Theorem 5.1 ([Wil10]): Suppose NEXP has polynomial
size circuits. Then SUCCINCT 3SAT has succinct satisfying
assignments.

Theorem 5.1 is not explicitly proved in the paper, however
it follows immediately from another theorem. Say that
NEXP has universal witness circuits of polynomial size if for
every L ∈ NEXP and every correct exponential time verifier
for L, there is a c > 0 such that for every x ∈ L, there is a
circuit of size at most |x|c+c which encodes a witness for x
that is accepted by the verifier. (For more formal definitions,
see [Wil10].) The following directly implies Theorem 5.1:

Theorem 5.2 ([IKW02], [Wil10]): If NEXP ⊆ P/poly
then every language in NEXP has universal witness circuits
of polynomial size.

The proof of Theorem 5.2 follows an argument by Im-
pagliazzo, Kabanets, and Wigderson [IKW02]. The second
ingredient is a simple folklore lemma.

Lemma 5.1 (Folklore): Let C be any circuit class. If P
has non-uniform C circuits of S(n)O(1) size, then there is a
c > 0 such that every T (n)-size circuit family (uniform or
not) has an equivalent S(n+O(T (n) log T (n)))c-size circuit
family in C.

Proof: If P has non-uniform S(n)O(1)-size C circuits,
then for some c > 0, the CIRCUIT EVAL problem has S(n)c-
size circuits. (Recall the CIRCUIT EVAL problem is: given
an arbitrary Boolean circuit C and input x, evaluate C
on x and output the answer.) Let {Dn(·, ·)} be a S(n)c-
size circuit family for this problem. Now let {Cn} be an
arbitrary T (n)-size circuit family. To obtain an equivalent
C-circuit family {C ′n} of S(n + O(T (n) log T (n)))c size,
define C ′|x|(x) = Dn1

(C|x|, x) for an appropriate length
n1 ≤ n+O(T (n) log T (n)).



Note if S(n) and T (n) are polynomials, then S(n +
O(T (n) log T (n)))c is also polynomial.

Reminder of Theorem 1.1 NTIME[2n] does not have non-
uniform ACC circuits of polynomial size.

Proof: First, we claim that if NTIME[2n] has polysize
ACC circuits, then every language in NEXP has polysize
ACC circuits. A sketch of this implication is in the full
version of the paper, but it is not hard to deduce.

By Lemma 5.1 and Theorem 5.1, it follows that SUC-
CINCT 3SAT has succinct satisfying assignments that are
polynomial size ACC circuits. We claim that a contradiction
can be obtained by examining the proof of Theorem 1.2 (the
lower bound for ENP). There, the only place requiring the
full assumption “ENP has non-uniform ACC circuits of size
S(n)” is inside the proof of Theorem 3.2. In particular, the
assumption is needed in Fact 3.2, where it is shown that
for every satisfiable instance of SUCCINCT 3SAT, at least
one of its satisfying assignments can be encoded in a size-
S(3n) ACC circuit. (The only other part of Theorem 3.2
where the assumption is applied is Lemma 3.1, but there it
is only required that P has non-uniform ACC circuits.) But
from the above, we already have that SUCCINCT 3SAT has
succinct satisfying assignments which are ACC circuits.

The ACC CIRCUIT SAT instance D constructed in Theo-
rem 3.2 with the witness circuit W has size polynomial in its
n+c log n inputs. The Circuit SAT algorithm of Theorem 4.1
can determine satisfiability of any n+ c log n input, nc size
ACC circuit in O(2n−log2 n) time, for every c. Therefore
unsatisfiability of D can be determined in O(2n/nc) time
for every constant c, and the desired contradiction follows
from the nondeterministic time hierarchy.

It follows that problems complete under AC0 reductions
for NEXP such as SUCCINCT 3SAT require superpolyno-
mial size ACC circuits.

VI. CONCLUSION

This paper demonstrates that it is possible to make
progress in circuit complexity by designing faster algorithms
for analyzing circuits. The reader is strongly urged to see the
full version of this paper for many more results and details.

Further work will surely improve the results. Three nat-
ural next steps are: replace ACC with TC0 circuits in the
lower bounds, or replace NEXP with EXP, or extend the
exponential lower bounds from ENP to NEXP.

The results of Section III and Lemma 5.1 show that one
only has to find a very minor improvement in algorithms
for TC0 satisfiability in order to establish non-uniform TC0

lower bounds for NEXP. The author sees no serious imped-
iment to the existence of such an algorithm. The evaluation
lemma for SYM+ circuits is key to the ACC SAT algorithm,
and it would be very interesting to find similar lemmas for
TC0 or NC1. It is plausible that the characterization of NC1

as width-5 branching programs [Bar89] could lead to an

analogous evaluation lemma for Boolean formulas, which
would imply nontrivial depth lower bounds for NEXP. (Note
that permutation branching programs of width 4 can be
simulated in ACC [BT88], while width 5 captures NC1.)
Along the lines of the author’s prior work [Wil10], Oded
Goldreich and Or Meir (personal communication) observed
that the consequence of Theorem 3.2 holds even when
we replace C-CIRCUIT SAT with the problem: given an
n-input S(n)-size C-circuit, approximate its probability of
acceptance on a uniform random input to within a 1/6
additive factor. It is widely believed that this problem can
be solved in polynomial time for any reasonable C.

It should be possible to extend the superpolynomial
lower bound for ACC down to the class QuasiNP =
NTIME[nlogO(1) n]. This paper comes fairly close to proving
this result. The only step missing is a proof of the im-
plication: “if QuasiNP has polynomial-size ACC circuits,
then there are polynomial-size ACC circuits that encode
witnesses to QuasiNP languages.” A couple of lemmas rely
only on P having non-uniform ACC circuits, so they could be
potentially applied in proofs of even stronger lower bounds.
At any rate, the prospects for future circuit lower bounds
look very promising.
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