

Focusing on Binding and Computation

Robert Harper
(with Daniel R. Licata and Noam Zeilberger)

Carnegie Mellon University

October 2008

Overview

Goal: datatype mechanism with **binding** and **computation**.

- LF-like representations of syntactic objects with binding and scope.
- ML-like computation by structural induction (modulo renaming).
- Dependent families of types indexed by such objects.

Applications:

- Security-typed languages based on proof-carrying API's.
- Mechanized metatheory via total f.p. (cf., Agda, Delphin, Beluga).

Overview

Method: **focusing**, **polarization**, and **contextualization**.

- Zeilberger's focused polarized type theory (for operationally sensitive type systems).
- Nanevski and Pientka's contextual modal type theory for managing binding.

Key idea: distinguish **positive** from **negative** function space.

- Negative = computational = admissible.
- Positive = representational = derivable.

Judgements and Evidence

Judgements are forms of assertion.

- $e \text{ expr, } e : \tau, \text{ etc..}$
- Defined by a collection of rules.

Evidence for a basic judgement J is a derivation ∇ consisting of a composition of rules.

- Abstract syntax trees, typing derivations, etc..
- Write $\nabla : J$ to mean that ∇ is a derivation of J .

Derivability

The **derivability** judgement $J_1 \vdash J_2$ means J_2 is derivable from **assumption** J_1 .

- Assumption is a **local axiom**.
- Evidence is a **pattern**, $a.\nabla$, consisting of evidence $\nabla : J_2$ involving the **parameter** $a : J_1$.
- Primitive rules are just assumed evidence for derivabilities.

In general, a rule

$$\frac{J_1 \quad \dots \quad J_n}{J}$$

is **derivable** iff $J_1, \dots, J_n \vdash J$.

Iterated Derivability

Left-iterated derivability $(J_1 \vdash J_2) \vdash J$ means that J is derivable from rule $J_1 \vdash J_2$.

- *cf.* Schroeder-Heister's definitional reflection
- Gives rise to higher-order rules (*cf.* LF representations).
- Evidence is a pattern with a parameter corresponding to the assumed rule.

Right-iterated derivability $J_1 \vdash (J_2 \vdash J_3)$ means $J_1, J_2 \vdash J_3$, with multiple assumptions.

Iterated Derivability

Higher-order rules arise naturally:

$$\frac{A \text{ true} \vdash B \text{ true}}{A \supset B \text{ true}}$$

Expressed as a derivability,

$$(A \text{ true} \vdash B \text{ true}) \vdash A \supset B \text{ true}$$

Derivable rules:

$$(A \text{ true} \vdash B \text{ true}) \vdash (A \wedge C \text{ true} \vdash B \wedge C \text{ true})$$

Admissibility

The **admissibility** judgement $J_1 \models J_2$ means that evidence for J_1 may be transformed into evidence for J_2 .

- Evidence is **any** (computable) function sending any $\nabla_1 : J_1$ to some $\nabla_2 : J_2$.
- Typically defined by **pattern matching** against derivations $\nabla_1 : J_1$ to obtain $\nabla_2 : J_2$ in each case.

A rule

$$\frac{J_1 \quad \dots \quad J_n}{J}$$

is **admissible** iff $J_1, \dots, J_n \models J$.

Admissibility

Admissibility, being implication, is **structural**:

- Reflexivity: $J \models J$.
- Transitivity: if $J_1 \models J_2$ and $J_2 \models J_3$, then $J_1 \models J_3$.
- Weakening: if $J_1 \models J$, then $J_1, J_2 \models J$.
- Contraction: if $J_1, J_1 \models J$, then $J_1 \models J$.
- Exchange: if $J_1, J_2 \models J$, then $J_2, J_1 \models J$.

These could all be phrased as iterated admissibilities, e.g.,

$$(J_1 \models J) \models (J_1, J_2 \models J).$$

Admissibility

Admissibilities $J_1 \models J_2$ are **not stable** under rule extension!

- If $J_1 \models J_2$, then $J \models (J_1 \models J_2)$, but **not** $J \vdash (J_1 \models J_2)$.
- Why? Admissibility considers **all derivations** of antecedent.

Adding new rules disrupts evidence for admissibility.

- $(\mathbf{IL} \vdash \exists x. \phi \text{ true}) \models (\mathbf{IL} \vdash \phi(t) \text{ true})$ for some term t .
- But this fails for $\mathbf{CL} = \mathbf{IL} + \mathbf{LEM}$.

Admissibilities **circumscribe** the evidence for a judgement.

Admissibility

If all primitive rules are **pure**, then derivability is structural.

- Reflexivity: $J \vdash J$.
- Transitivity: $(J_1 \vdash J_2, J_2 \vdash J_3) \vdash (J_1 \vdash J_3)$.
- Weakening: $(J_1 \vdash J) \vdash (J_1, J_2 \vdash J)$.
- Contraction: $(J_1, J_1 \vdash J) \vdash (J_1 \vdash J)$.
- Exchange: $(J_1, J_2 \vdash J) \vdash (J_2, J_1 \vdash J)$.

Pure rules are those without **side conditions**, i.e., without constraints on applicability.

Admissibility

Evidence for weakening transforms derivations rule-by-rule.

$$\frac{\Gamma \vdash J_1 \quad \dots \quad \Gamma \vdash J_n}{\Gamma \vdash J}$$

That is, we pattern match on the last rule of $\nabla : \Gamma \vdash J$, and recursively transform premises and apply the same rule.

The validity of this argument **depends on** purity! Rule must continue to apply after transformation of premises.

Admissibility

Evidence for weakening transforms derivations rule-by-rule.

$$\frac{\Gamma \Gamma' \vdash J_1 \quad \dots \quad \Gamma \Gamma' \vdash J_n}{\Gamma \Gamma' \vdash J}$$

That is, we pattern match on the last rule of $\nabla : \Gamma \vdash J$, and recursively transform premises and apply the same rule.

The validity of this argument **depends on** purity! Rule must continue to apply after transformation of premises.

Admissibility

Side conditions on rules may be seen as admissibility premises.

- $\neg J$ is just $J \models \#$.
- Need not be negations, but this is a common case.

Side conditions may disrupt structural properties, e.g.,

$$\frac{\Gamma \vdash J_1 \quad \dots \quad \Gamma \vdash J_n \quad \Gamma \vdash \neg J}{\Gamma \vdash J}$$

Admissibility

Side conditions on rules may be seen as admissibility premises.

- $\neg J$ is just $J \models \#$.
- Need not be negations, but this is a common case.

Side conditions may **disrupt** structural properties, e.g.,

$$\frac{\Gamma \Gamma' \vdash J_1 \quad \dots \quad \Gamma \Gamma' \vdash J_n \quad \Gamma \Gamma' \not\vdash \neg J}{\Gamma \Gamma' \vdash J}$$

Derivability and Admissibility

Two notions of **entailment**:

- ① **Derivability**: introduced by **patterns**, eliminated by **pattern matching**.
- ② **Admissibility**: introduced by any **computable transformation** and eliminated by **application**.

Intermixing these leads to a general theory of rules that accounts for side conditions, and allows us to express meta-theoretic properties such as admissibility and derivability of rules.

Polarized Types

Two views of the meaning of a logical connective:

- **Verificationist**: defined by introduction; elimination inverts introduction.
- **Pragmatist**: defined by elimination; introduction inverts elimination.

Operationally, these determine different connectives:

- **Positive**, or **eager**: values are compositions of patterns; elimination by pattern matching.
- **Negative**, or **lazy**: experiments are compositions of patterns; introduction by pattern matching.

Polarized Types

Positive type: natural numbers.

- Introduction: $z, s(z), s(s(z)), \dots$
- Elimination:

$$\phi \text{ s.t. } \begin{cases} z & \mapsto e_0 \\ s(z) & \mapsto e_1 \\ s(s(z)) & \mapsto e_2 \\ \dots \end{cases}$$

Crucially, elimination must cover all values!

Polarized Types

Negative type: infinite streams.

- Elimination: `hd`, `tl`.
- Introduction:

$$\sigma \text{ s.t. } \left\{ \begin{array}{ll} \text{hd} & \mapsto e_0 \\ \text{tl; hd} & \mapsto e_1 \\ \text{tl; tl; hd} & \mapsto e_2 \\ \dots & \end{array} \right.$$

Crucially, introduction must cover all experiments!

Polarized Types

Computational (ML, Coq) functions are **negative**:

- Introduced by defining response to an argument, not by internal structure.
- Eliminated by application to an argument value.

Computational functions are **open-ended**:

- **Any** mapping from domain to range is acceptable.
- Pragmatically, allows us to import functions from other systems.

Polarized Types

Representational (LF) functions are **positive**:

- Introduced by compositions of constructors, starting with variables.
- Eliminated by pattern matching, not application.

Representational functions are **closed-ended**:

- Cannot enrich with operations that analyze form of input.
- Essentially a value with indeterminates.

Functions and Entailment

Positive (representational) functions witness **derivability**.

- Parameters are “fresh” axioms/assumptions.
- Body is a derivation schema with distinguished parameters.

Negative (computational) functions witness **admissibility**.

- Analyzes all possible derivations of antecedent.
- Computes a derivation for each possible argument.

Types for Binding and Computation

Polarization (Girard)

- Distinguish positive (verificationist/inductive/eager) from negative (pragmatist/coinductive/lazy) connectives.
- Investigated by Zeilberger in connection with operationally sensitive type systems (intersections and unions).

Types for Binding and Computation

Focusing (Andreoli, Girard)

- Patterns mediate between **focus** and **inversion**.
- Positive: (right) focus = choose a value, (left) invert = pattern match.
- Negative: (left) focus = choose an experiment, (right) invert = respond to experiments.

Types for Binding and Computation

Contextual Modality (Nanevski and Pientka)

- Types for managing binding and scope (*cf.*, Fiore, Tiuri, Plotkin pre-sheaf approach).
- **Definitional variation** for scoped rules (datatype definitions).
- **Pronominal** representation of binding and scope.

Pronominal representation avoids machinery of names.

- Parameters are pronouns, not nouns (names are not objects, but pointers to binding sites).
- Crucial for dependency on objects with binding (no effects).

Focusing Framework

Positive (right) focus: **choose** a value of positive type.

$$\frac{\Delta \Vdash p :: C^+ \quad \Gamma \vdash \sigma :: \Delta}{\Gamma \vdash p[\sigma] :: C^+}$$

A **value** is given by a **pattern** under a **substitution**.

- Variables range **only** over negative types.
- Variables must be used **linearly**.

Focusing Framework

Positive (left) inversion: **respond** to all possible choices.

$$\frac{\Delta \Vdash p :: C^+ \longrightarrow \Gamma \Delta \vdash \phi^+(p) :: \gamma}{\Gamma \vdash \text{val}(\phi^+) :: C^+ > \gamma}$$

An **inversion** is defined for all patterns of its domain type.

- $\phi^+ : \{ p_0(\vec{x}_0) \mapsto e_0(\vec{x}_0) \mid p_1(\vec{x}_1) \mapsto e_1(\vec{x}_1) \mid \dots \}$.
- Open-endedness: ϕ^+ is an **arbitrary** mapping!

Positive Patterns

Shifted (negative) type:

$$\overline{x : A^- \Vdash x :: \downarrow A^-}$$

Positive product types:

$$\frac{\overline{\emptyset \Vdash \langle \rangle :: 1} \quad \frac{\Delta_1 \Vdash p_1 :: A_1^+ \quad \Delta_2 \Vdash p_2 :: A_2^+}{\Delta_1 \Delta_2 \Vdash \langle p_1, p_2 \rangle :: A_1^+ \times A_2^+}}$$

Positive Patterns

Positive sum types:

$$\frac{\Delta \Vdash p^+ :: A_1^+}{\Delta \Vdash \text{inl}(p^+) :: A_1^+ \oplus A_2^+}$$

$$\frac{\Delta \Vdash p^+ :: A_2^+}{\Delta \Vdash \text{inr}(p^+) :: A_1^+ \oplus A_2^+}$$

Focusing Framework

Negative (left) focus: **choose** an experiment.

$$\frac{\Gamma \Vdash q :: C^- > \gamma_0 \quad \Gamma \vdash \sigma : \Delta \quad \Gamma \vdash k^+ :: \gamma_0 > \gamma}{\Gamma \vdash q[\sigma]; k^+ :: C^- > \gamma}$$

Negative (right) inversion: **respond** to all choices.

$$\frac{\Delta \Vdash q :: C^- > \gamma \longrightarrow \Gamma \Delta \vdash \phi^-(q) : \gamma}{\Gamma \vdash \text{val}(\phi^-) : C^-}$$

Negative Patterns

Shifted (positive) types:

$$\overline{\vdash \varepsilon :: \uparrow A^+ > A^+}$$

Computational functions:

$$\frac{\Delta_1 \Vdash p :: A_1^+ \quad \Delta_2 \Vdash q :: A_2^- > \gamma}{\Delta_1 \Delta_2 \Vdash p; q :: A_1^+ \rightarrow A_2^- > \gamma}$$

Negative Patterns

Negative product types:

$$\frac{\Delta \Vdash q :: A_1^-}{\Delta \Vdash \text{fst}; q :: A_1^- \& A_2^- > \gamma}$$

$$\frac{\Delta \Vdash q :: A_2^-}{\Delta \Vdash \text{snd}; q :: A_1^- \& A_2^- > \gamma}$$

Focusing Framework

An **expression** represents an outcome of a computation, either a positive value or an experiment on a negative variable.

$$\frac{\Gamma \vdash v^+ : C^+}{\Gamma \vdash v^+ :: C^+} \quad \frac{\Gamma \vdash x : C^- \quad \Gamma \vdash k^- :: C^- > \gamma}{\Gamma \vdash x \bullet k^- : \gamma}$$

Focusing Framework

Cut principles start computations:

$$\frac{\Gamma \vdash v^+ :: C^+ \quad \Gamma \vdash k^+ :: C^+ > \gamma}{\Gamma \vdash v^+ \bullet k^+ : \gamma}$$

$$\frac{\Gamma \vdash v^- : C^- \quad \Gamma \vdash k^- : C^- > \gamma}{\Gamma \vdash v^- \bullet k^- : \gamma}$$

Operational semantics (cut reduction) is **generic!**

$$(p[\sigma]) \bullet \text{val}(\phi) \hookrightarrow (\phi(p))[\sigma]$$

$$(v^+ \bullet (k_1^+; k_2^+)) \hookrightarrow (v^+ \bullet k_1^+); k_2^+$$

Representational Functions

Representational function type, $R \Rightarrow A^+$, is positive.

- Represent derivabilities and binders.
- Patterns are patterns of type A^+ with a parameter of type R .
- Domain is limited to a class of rules.
- Occurrences of X in R are not negative!

Rules declare constructors of an abstract type (cf. ML datatypes).

- $R ::= X \Leftarrow A_1^+ \Leftarrow \dots \Leftarrow A_n^+$.
- Side conditions: $A_i = \downarrow (B_i^+ \rightarrow C_i^-)$.
- Derivabilities: $A_i = R_i \Rightarrow C_i^+$.

Representational Functions

Positive patterns: $\Delta; \Psi \Vdash p :: C^+$.

- Ψ is a **rule context** $u_1 : R_1, \dots, u_n : R_n$.
- Context Ψ is **not** necessarily structural!

Representational function: $R \Rightarrow A^+$.

$$\frac{\Delta; \Psi, u : R \Vdash p :: A^+}{\Delta; \Psi \Vdash \lambda u. p :: R \Rightarrow A^+}$$

Defined atoms:

$$\frac{\Psi \vdash u : X \Leftarrow A_1^+ \Leftarrow \dots \Leftarrow A_n^+ \quad \Delta; \Psi \Vdash p_1 :: A_1^+ \quad \dots \quad \Delta; \Psi \Vdash p_n :: A_n^+}{\Delta; \Psi \Vdash u p_1 \dots p_n :: X}$$

Representational Conjunction

Representational conjunction: $R \curlywedge A^-$.

$$\frac{\Delta; \Psi, u : R \Vdash q :: A^-}{\Delta; \Psi \Vdash \text{unpack}; u.q :: R \curlywedge A^-}$$

Informally, an element consists of a destructor pattern in an expanded rule context.

Some/Any

Representational connectives exhibit **some/any** equivalences:

- $\downarrow (R \curlywedge A^-) \approx R \Rightarrow \downarrow A^-$.
- $\uparrow (R \Rightarrow A^+) \approx R \curlywedge \uparrow A^+$.

Informally,

- A (destructor in an expanded context) is a destructor (in an expanded context).
- A (constructor in an expanded context) is a constructor (in an expanded context).

Shocking Equivalences

Representational connectives **contradict** computational intuitions!

- $R \Rightarrow (A_1^+ \oplus A_2^+) \approx (R \Rightarrow A_1^+) \oplus (R \Rightarrow A_2^+)$
- $(R \curlywedge A_1^-) \& (R \curlywedge A_2^-) \approx R \curlywedge (A_1^- \& A_2^-)$.

Informally,

- (A choice of values) involving a parameter is a choice of (values involving a parameter).
- A pair of (destructors in an expanded context) is a (pair of destructors) in an expanded context.

Structural Properties

Structural properties for the contextual modality are not assured!

- May not validate weakening/proliferation = adding a new rule.
- May not validate transitivity/substitution = deriving a rule.
- Always validates exchange, contraction.

Impurities disrupt structural properties!

- No impurities: substitution is definable (e.g., LF).
- With impurities: may or may not be definable.

Key: **iterated inductive definition**.

Example

A simple expression language:

$$e ::= \text{num}[k] \mid e_1 \odot_f e_2 \mid \text{let } x = e_1 \text{ in } e_2$$

Represented by context Ψ_{exp} :

zero : nat

succ : nat \Leftarrow nat

num : nat \Leftarrow exp

binop : exp \Leftarrow (nat \otimes nat \rightarrow nat) \Leftarrow exp

let : exp \Leftarrow exp \Leftarrow (exp \Leftarrow exp)

Example

We wish to define an evaluator for expressions:

$$\text{fix}(E.\text{ev}) : \langle \Psi_{\text{exp}} \rangle (\text{exp} \rightarrow \text{nat})$$

It suffices to show

$$\Delta \Vdash e : \langle \Psi_{\text{exp}} \rangle \text{exp}$$

$$E : \langle \Psi_{\text{exp}} \rangle (\text{exp} \rightarrow \text{nat}); \Delta \vdash \text{ev}(e) : \langle \Psi_{\text{nat}} \rangle \text{nat}$$

Example

This can be achieved by the following mapping:

$$\text{num } n \longmapsto n$$

$$\text{binop } e_1 f e_2 \longmapsto f (E e_1) (E e_2)$$

$$\text{let } e_1 (\lambda u. e_2) \longmapsto E(\text{subst } \lambda u. e_2 e_1)$$

The computational function `subst` witnesses admissibility of transitivity for Ψ_{exp} .

- Exists because rules form an **iterated** inductive definition.
- Defined by pattern matching on $\lambda u. e_2$.

Future Work

Implementation:

- Currently, represented within Agda.
- Ongoing, design of a concrete language for meta-functions.

Enriched rule formalism:

- Extension to full LF, but without impurities.
- Can we admit impurities (*i.e.*, LF with ML)?

Positive dependent types.

- Admit $\Pi x : A_1^+.A_2^-$ (negative) and $\Sigma x : A_1^+.A_2^+$ (positive).
- Avoid testing equivalence of negative values.
- Simultaneous induction-recursion.

Thank You!

Questions?