Focusing on Binding and Computation

Robert Harper
(with Daniel R. Licata and Noam Zeilberger)

Carnegie Mellon University

October 2008

Overview

Goal: datatype mechanism with binding and computation.

o LF-like representations of syntactic objects with binding and
scope.

e ML-like computation by structural induction (modulo
renaming).

e Dependent families of types indexed by such objects.

Applications:
e Security-typed languages based on proof-carrying API's.

e Mechanized metatheory via total f.p. (cf., Agda, Delphin,
Beluga).

Overview

Method: focusing, polarization, and contextualization.

e Zeilberger's focused polarized type theory (for operationally
sensitive type systems).

e Nanevski and Pientka's contextual modal type theory for
managing binding.
Key idea: distinguish positive from negative function space.
e Negative = computational = admissible.

e Positive = representational = derivable.

Judgements and Evidence

Judgements are forms of assertion.
e cexpr, e: T, etc.

e Defined by a collection of rules.

Evidence for a basic judgement J is a derivation V consisting of a
composition of rules.

e Abstract syntax trees, typing derivations, etc..
e Write V : J to mean that V is a derivation of J.

Derivability

The derivability judgement J; = J> means J, is derivable from
assumption Ji.

e Assumption is a local axiom.

e Evidence is a pattern, a.V, consisting of evidence V : J
involving the parameter a : J;.

e Primitive rules are just assumed evidence for derivabilities.

In general, a rule
T

is derivable iff Ji,..., o+ J.

Iterated Derivability

Left-iterated derivability (Ji F J) F J means that J is derivable
from rule J; = Js.

e cf. Schroeder-Heister's definitional reflection
e Gives rise to higher-order rules (cf. LF representations).

e Evidence is a pattern with a parameter corresponding to the
assumed rule.

Right-iterated derivability J; F (J2 b J3) means Ji, J - J3, with
multiple assumptions.

Iterated Derivability

Higher-order rules arise naturally:

Atrue - B true
A D Btrue

Expressed as a derivability,

(Atrue - Btrue) - A D Btrue

Derivable rules:

(Atrue - Btrue) - (A A Ctrue - B A Ctrue)

Admissibility

The admissibility judgement J; = J>» means that evidence for J;
may be transformed into evidence for J,.

e Evidence is any (computable) function sending any V; : J; to
some Vs : Jb.

e Typically defined by pattern matching against derivations
V1 : J1 to obtain V3 : J in each case.

A rule
T

is admissible iff J1,...,J, E J.

Admissibility

Admissibility, being implication, is structural:
e Reflexivity: J = J.
e Transitivity: if /1 = J and J» = J3, then J1 = Us.
e Weakening: if J; = J, then J1, b = J.
e Contraction: if Ji,J1 = J, then J; = J.
e Exchange: if J1, b = J, then b, 4 E J.

These could all be phrased as iterated admissibilities, e.g.,

(hEJ)EULLEI).

Admissibility

Admissibilities J; |= J, are not stable under rule extension!
o If J;): Jo, then J ': (Jl): JQ), but not J (Jl ': JQ)

e Why? Admissibility considers all derivations of antecedent.

Adding new rules disrupts evidence for admissibility.
e (IL+ Ix.¢true) = (IL - ¢(t) true) for some term t.
e But this fails for CL = IL + LEM.

Admissibilities circumscribe the evidence for a judgement.

Admissibility

If all primitive rules are pure, then derivability is structural.
o Reflexivity: JF J.
e Transitivity: (J1 F b, bt k) E (L F J).
Weakening: (J1 - J) E (J1, 2 F J).
Contraction: (J1,h+J) = (hFJ).
Exchange: (J1, b+ J) E (L, FJ).

Pure rules are those without side conditions, i.e., without
constraints on applicability.

Admissibility

Evidence for weakening transforms derivations rule-by-rule.

r=h ... THJ,
r=J

That is, we pattern match on the last rule of V : ' - J, and
recursively transform premises and apply the same rule.

The validity of this argument depends on purity! Rule must
continue to apply after transformation of premises.

Admissibility

Evidence for weakening transforms derivations rule-by-rule.

m'eh ... TTFJ,
rreJ

That is, we pattern match on the last rule of V: '+ J, and
recursively transform premises and apply the same rule.

The validity of this argument depends on purity! Rule must
continue to apply after transformation of premises.

Admissibility

Side conditions on rules may be seen as admissibility premises.
o —Jis just J = #.

e Need not be negations, but this is a common case.

Side conditions may disrupt structural properties, e.g.,

r=h ... ITHJy THE-J
r=J

Admissibility

Side conditions on rules may be seen as admissibility premises.
o —Jis just J = #.
e Need not be negations, but this is a common case.

Side conditions may disrupt structural properties, e.g.,

M4 ... TR, TIH-J
e J

Derivability and Admissibility

Two notions of entailment:

@ Derivability: introduced by patterns, eliminated by pattern
matching.

® Admissibility: introduced by any computable transformation
and eliminated by application.

Intermixing these leads to a general theory of rules that accounts
for side conditions, and allows us to express meta-theoretic
properties such as admissibility and derivability of rules.

Polarized Types

Two views of the meaning of a logical connective:

o Verificationist: defined by introduction; elimination inverts
introduction.

e Pragmatist: defined by elimination; introduction inverts
elimination.

Operationally, these determine different connectives:
e Positive, or eager: values are compositions of patterns;
elimination by pattern matching.
o Negative, or lazy: experiments are compositions of patterns;
introduction by pattern matching.

Polarized Types

Positive type: natural numbers.
e Introduction: z, s(z), s(s(z)),

e Elimination:
z = €

s(z) — e

s(s(z)) — e

Crucially, elimination must cover all values!

Polarized Types

Negative type: infinite streams.
e Elimination: hd, tl.

e [ntroduction:
hd — €

tl; hd — e
ththhd — e

Crucially, introduction must cover all experiments!

Polarized Types

Computational (ML, Coq) functions are negative:

e Introduced by defining response to an argument, not by
internal structure.

e Eliminated by application to an argument value.
Computational functions are open-ended:
e Any mapping from domain to range is acceptable.

e Pragmatically, allows us to import functions from other
systems.

Polarized Types

Representational (LF) functions are positive:

e Introduced by compositions of constructors, starting with
variables.

e Eliminated by pattern matching, not application.
Representational functions are closed-ended:
e Cannot enrich with operations that analyze form of input.

e Essentially a value with indeterminates.

Functions and Entailment

Positive (representational) functions witness derivability.
o Parameters are “fresh” axioms/assumptions.

e Body is a derivation schema with distinguished parameters.

Negative (computational) functions witness admissibility.
e Analyzes all possible derivations of antecedent.

e Computes a derivation for each possible argument.

Types for Binding and Computation

Polarization (Girard)
e Distinguish positive (verificationist/inductive/eager) from
negative (pragmatist/coinductive/lazy) connectives.

o Investigated by Zeilberger in connection with operationally
sensitive type systems (intersections and unions).

Types for Binding and Computation

Focusing (Andreoli, Girard)
e Patterns mediate between focus and inversion.
e Positive: (right) focus = choose a value, (left) invert =
pattern match.
o Negative: (left) focus = choose an experiment, (right) invert
= respond to experiments.

Types for Binding and Computation

Contextual Modality (Nanevski and Pientka)

e Types for managing binding and scope (cf., Fiore, Tiuri,
Plotkin pre-sheaf approach).

e Definitional variation for scoped rules (datatype definitions).

e Pronominal representation of binding and scope.

Pronominal representation avoids machinery of names.

e Parameters are pronouns, not nouns (names are not objects,
but pointers to binding sites).

e Crucial for dependency on objects with binding (no effects).

Focusing Framework

Positive (right) focus: choose a value of positive type.

AlFp:Ct TFHo: A
Ik plo] :: C*

A value is given by a pattern under a substitution.
e Variables range only over negative types.

e Variables must be used linearly.

Focusing Framework

Positive (left) inversion: respond to all possible choices.

AlFp::Ct—TAF@ (p) iy
MEval(¢p?): Cr >«

An inversion is defined for all patterns of its domain type.
e ¢ {po(x0) — eo(x0) | p1(xi) — er(xq) | ...}
e Open-endedness: ¢* is an arbitrary mapping!

Positive Patterns

Shifted (negative) type:

X AlFxa| A
Positive product types:

ArlFpr Al AolEprit A
@ I <> ol Al A2 I <p1,p2> i Air X A;

Positive Patterns

Positive sum types:

AlFp* o A] AlFpt o A
Al-inl(p*) - A @ A3 Al-inr(pt) o AT @ A3

Focusing Framework

Negative (left) focus: choose an experiment.

FNMrg:C >y THEo:A TEKM 2y >7
M=gqlo] k™ C >y

Negative (right) inversion: respond to all choices.

AlFg:C>y—TAF¢(q):v
M=val(¢?): C

Negative Patterns

Shifted (positive) types:

FeuT AT > AF
Computational functions:

ArlFpi Al AolEqgu Ay >y
A1 A lEprgi A; = A >y

Negative Patterns

Negative product types:

Al-q: A Al-q: A
Al fst; g 0 AJ&A, > Al snd; g it AJ&A, >y

Focusing Framework

An expression represents an outcome of a computation, either a
positive value or an experiment on a negative variable.
vt CH NEx:C Tk 2C >y
M=vto Ct N-xek vy

Focusing Framework

Cut principles start computations:

FrvtCt Tk Cr>xy
MN-vtek®: vy

FrM-v:C THEk:C>xy
Mr-v ek :v

Operational semantics (cut reduction) is generic!

(plo]) e val(¢) — (&(p))l]

(vie(kithy) = (vieki)iky

Representational Functions

Representational function type, R = A", is positive.
e Represent derivabilities and binders.
e Patterns are patterns of type A" with a parameter of type R.
e Domain is limited to a class of rules.

e Occurrences of X in R are not negative!

Rules declare constructors of an abstract type (cf. ML datatypes).
e Ri=X <Al - <AL
e Side conditions: A; =| (B — C;).
e Derivabilities: A; = R; = C;'.

Representational Functions

Positive patterns: A; WV IFp:: CT.
e Vis arule context uy : Ry,...,up: Ry.
e Context W is not necessarily structural!

Representational function: R = A*.

AV u:RIFp: AT
A VIF A up s R= A

Defined atoms:
VhEu: X <A < <A}
AVIEpr A ... AVIEp, A
A;VIFupy ... ppin X

Representational Conjunction

Representational conjunction: R A A™.

AV u:RIFg: A
A; V|- unpack; u.g :: R A A

Informally, an element consists of a destructor pattern in an
expanded rule context.

Some/Any

Representational connectives exhibit some/any equivalences:
e |[(RAA)=R=|A.
e [(R=A")=RATA"

Informally,

e A (destructor in an expanded context) is a destructor (in an
expanded context).

e A (constructor in an expanded context) is a constructor (in an
expanded context).

Shocking Equivalences

Representational connectives contradict computational intuitions!
e R=(AjeA) = (R=A])®(R=A;)
o (RAAD&(R A AY) =R A (A1&AS).

Informally,

e (A choice of values) involving a parameter is a choice of
(values involving a parameter).

e A pair of (destructors in an expanded context) is a (pair of
destructors) in an expanded context.

Structural Properties

Structural properties for the contextual modality are not assured!
e May not validate weakening/proliferation = adding a new rule.
e May not validate transitivity/substitution = deriving a rule.
o Always validates exchange, contraction.

Impurities disrupt structural properties!
e No impurities: substitution is definable (e.g., LF).
e With impurities: may or may not be definable.

Key: iterated inductive definition.

Example

A simple expression language:

e = numlk]|e1Ore|letx =erine

Represented by context We,p:

zero : nat
succ : nat < nat
num : nat <= exp
binop : exp <= (nat ® nat — nat) < exp
let : exp < exp < (exp < exp)

Example

We wish to define an evaluator for expressions:

fix(E.ev) : (Wexp)(exp — nat)

It suffices to show

Al e: (Wep)exp
—

E : (Wegp)(exp — nat); A - ev(e) : (Wnat)nat

Example

This can be achieved by the following mapping:

numn+——n
binope; f e — f (E e1) (E &)
let &1 (A\u.ex) — E(subst Au.e; 1)

The computational function subst witnesses admissibility of
transitivity for Weyp.

e Exists because rules form an iterated inductive definition.

e Defined by pattern matching on Au.ep.

Future Work

Implementation:

e Currently, represented within Agda.

e Ongoing, design of a concrete language for meta-functions.
Enriched rule formalism:

e Extension to full LF, but without impurities.

e Can we admit impurities (i.e., LF with ML)?
Positive dependent types.

e Admit lNx : A7.A; (negative) and Xx : A].A] (positive).

e Avoid testing equivalence of negative values.

e Simultaneous induction-recursion.

Thank Youl

Questions?

