
Integrating Cost and Behavior in Type Theory

Robert Harper
June 21, 2023

Computer Science Department
Carnegie Mellon University

Acknowledgements

This talk represents joint work with

• Harrison Grodin (Carnegie Mellon)
• Runming Li (Carnegie Mellon)
• Yue Niu (Carnegie Mellon)
• Parth Shastri (Carnegie Mellon)
• Jon Sterling (Cambridge)

Sponsored by AFOSR awards A210038S0002 and
A210038S0002 (Tristan Nguyen, PM) and by NSF award
CCF1901381.

1

Motivation

Type Theory for Programming

Dependent type theory is a natural setting for specification
and verification of functional programs.

• Essentially, the propositions-as-types principle in action,
formulating Brouwer’s intuitionism.

• cf Martin-Löf’s Constructive Mathematics and Computer
Programming, and Constable, et al’s NuPRL System.

• cf Agda viewed as a programming language.

However, as a logic of programs it leaves evaluation order
undetermined!

• Advantage: compatible with “any”choice.
• Disadvantage: completely unspecified.

2

Example: Sorting

Informally, we may define

• isort : seq → seq (insertion sort)
• msort : seq → seq (merge sort)

Extensionally these are equal as functions, because they both
sort their inputs:

isort .
= msort : s : seq → (s′ : seq×sorted(s)×perm(s, s′))

The choice of types and their associated induction principles
complicates matters, but these issues have been
well-developed.

3

Type Theory for Programming

Levy’s call-by-push-value type theory constrains evaluation
order.

• Positive types A classify values: “data is.”
• Negative types X classify computations: “programs do.”
• Modalities link them: F(A) and U(X).

Pedrot’s and Tabareau’s ∂CBPV extends Levy’s framework to
the dependent case.

• Type families are indexed by value types.
• Polarity imposes order on chaos to permit effects.

Calf also includes mixed-polarity dependent sums/products
(value-value and value-computation forms).

4

Dependent Call-by-Push Value

Syntactically,

v : A ::= nat | seq | v1
.
=A v2 | x : A1 × A2 | x : A1 → A2 | U(X)

e : X ::= F(A) | x : A1 × X2 | x : A1 → X2

Computations are sequenced, using bind(e1; x . e2) and
ret(v), in anticipation of effects.

Define e1 ≃F(A) e2 to mean

thunk(e1)
.
=U(F(A)) thunk(e2).

They are “equal computations.”

5

Acounting for Cost

These type theories capture the behavior of programs . . . but
what about their cost?

Want to state and prove complexity bounds!

• isort : seq n2
−→ F(seq) (quadratic wrt comparisons).

• msort : seq n lg n−→ F(seq) (polylogarithmic).

But how can equal functions have different properties?

And what does cost even mean in this setting?

• What are the steps?
• Sequential vs parallel?

6

Sense and Reference

Frege distinguished sense from reference.

• Reference: what is being described.
• Sense: how it is given.

A similar distinction is considered here:

• Reference: a (computable) function.
• Sense: an algorithm.

Here cost is a precise formulation of sense, and may even be
used to compare proofs.

7

Cost Measures

The textbook story is machine-based.

• Cost = instruction steps (or memory cells).
• Higher-order programming is never considered.
• Parallelism? Specifying p is a non-starter.
• There is no theory of composition of programs.

Blelloch’s language-based formulation is a big improvement.

• Cost semantics specifies a dependency graph whose
edges constrain execution order of steps.

• Provable implementation by a Brent-type theorem whose
proof defines scheduler as a function of platform
characteristics.

8

Cost Measures

Cost is not absolute, ie per-model, but rather relative, ie
per-algorithm.

• Sorting: number of comparisons.
• Graphs: edge inserts or removals, etc.
• Sequences: access, update, map-reduce.

These concepts are not definable at the RAM or TM level!

But notice, abstract cost measures fit well with abstract types,
a fundamentally linguistic notion.

How can this be expressed?

9

Method

Abstract Cost Accounting

First idea: introduce step counting aka profiling.

stepX : C → X → X

where C is a type of costs (think (N,0,+) for now).

eg, for sorting, use step to count comparisons.

But simple-minded instrumentation allows behavior to
influence on cost!

if step count > 1000then . . . else

Such programs ought to be ruled out, but how?

10

Abstract Cost Accounting

Second idea, introduce a writer monad C×− for
computations [Danielsson 98]

• stepc(e) adds c : C to count.
• No operation to branch on step count.

Doing so permits tracking, specification, and verification of
costs of programs . . . but to the exclusion of pure behavior!

eg, isort ̸ .= msort : seq → F(seq), precisely because of
profiling.

11

Phase Distinctions in Type Theory

Achieve full integration using a phase distinction.

1. Prototypically, compile-time vs run-time.
2. For metatheory, syntactic vs semantic.
3. For program modules, static vs dynamic.
4. For information flow, security level.

What do they have in common?

1. Types are hybrid structures: syntax+computability,
types+code, classified+public.

2. Phase (syntactic, static, level) imposes equations that
“collapse” aspects (computability, code, classified).

12

Phases Distinctions in Type Theory

In general a phase is given a proposition, ϕ.

• True only by assumption: x : ϕ ⊢ J.
• Subterminal/proof-irrelevant: Γ ⊢ M .

= M′ : ϕ.

Phases induce two modalities [Rijke, Shulman, Spitters]:

• Open mode: #ϕ(A) := ϕ ⊃ A. “The ϕ part of A.”
• Closed mode: ϕ(A) := ϕ ∨ A. “All of A, with no ϕ part.”

These aspects of a type are exhaustive, but not necessarily
exclusive.

13

Phase Distinctions in Type Theory

Two basic properties of phases:

• #ϕ(ϕ(A)) ∼= 1, but ϕ(#ϕ(A)) ̸∼= 1 (“fringe”).

• A ∼= #ϕ(A)× ϕ(#ϕ(A)) ϕ(A) (pullback wrt fringe).

Non-interference: If f : ϕ(A) → #ϕ(A), then f is constant!

eg, syntax prior to semantics, types do not depend on code,
classified cannot depend on public.

Here: the extensional phase, ext, eliminates step counting.

(Hereafter: #(A), (A) for #ext(A), ext(A), respectively.)

14

Synthetic Cost Analysis

Computation types form a writer monad (C)×−:

• C is a cost monoid, e.g. (N,0,+).
• stepc(e) increments cost by c, then executes e.

Use of closed modality is essential!

• Cost analysis depends on behavioral analysis.
• Costs collapse under open modality.

(The injection of C into (C) is usually elided to lighten
notation.)

15

Stepping Laws

General laws for step counting:

• step0(e) ≃ e.
• stepc(stepd(e)) ≃ stepc+d(e).

CBPV-style stepping laws for computations:

• stepc(bind(e; x.f)) ≃ bind(stepc(e); x.f).
• stepc(λ(x . e)) ≃ λ(x . stepc(e)).
• stepc(⟨v1, e2⟩) ≃ ⟨v1,stepc(e2)⟩.

Any enrichment must mesh with stepping in this way.

16

Synthetic Cost Analysis

Extensional phase erases step counting:

: #(stepc(e) ≃F(A) e)

But #((C)) ∼= 1, so #(η•(c)
.
= (C) η•(0)), and so

#(stepc(e) ≃ step0(e) ≃ e).

Thus, the extensional phase isolates behavior:

: #(isort ≃seq→F(seq) msort)

(Proof: they both sort, functions equate extensionally.)

17

Synthetic Cost Analysis

Define isBoundedA(e, c) for e : F(A) and c : C by

d : C×#(d ≤N c)× e ≃F(A) stepd(ret(v))

(Here using C = N, but will be generalized.)

Intensionally, ie non-extensionally, one may specify costs of
algorithms:

• s : seq ⊢ isBoundedseq(isort(s), |s|2).
• s : seq ⊢ isBoundedseq(msort(s), |s| lg |s|).

(or discharge premise using dep. function type.)

Integrates cost and behavior with guaranteed
non-interference!

18

Analyses

Analyzing Algorithms in Calf

How are interesting algorithms defined in total type theory?

• Non-structural recursions are typical.
• Instrumented with step’s counting “figure of merit.”

How is their (behavior and) cost verified?

• Specify recurrence on cost of algorithm.
• Solve recurrence separately.

Example: Euclid’s algorithm, counting modulus operations.

19

Patterns of Recursion

Add a “clock” parameter counting recursion depth.

• Define instrumented algorithm:

gcdclocked : nat → nat2 → F(nat)

• Define upper bound on recursion depth:

gcddepth : nat2 → nat

• Define gcd itself:

gcd(x, y) := gcdclocked(gcddepth(x, y))(x, y)

(cf Kleene normal form theorem for TM’s.)

20

Patterns of Recursion

Explicitly, gcdclocked is defined by recursion on the clock
counter:

gcdclocked(zero)(x, y) = ret(x)
gcdclocked(succ(k))(x,0) = ret(x)

and

gcdclocked(succ(k))(x,succ(y)) =
bind(modinstr(x,succ(y)); r . gcdclocked(k)(succ(y), r))

where modinstr computes and counts moduli.

The total function gcddepth computes recursion depth for a
given input as a generalized value.

21

Correctness

Algorithm gcd is extensionally correct:

1. #(gcd(x,zero) ≃ ret(x))
2. #(gcd(x,suc(y)) ≃ gcd(suc(y),mod(x,suc(y))))

Intensionally cost is characterized by a recurrence:

isBoundedF(nat)(gcd(x, y),gcddepth(x, y)).

Solve recurrence (purely mathematical):

gcddepth(x, y) ≤ Fib−1(x) + 1.

22

Sorting, Revisited

Instrument comparisons with step.

Define isort and msort as above.

• Clocked versions to manage recursion.
• Recursion bound for each algorithm.

Behavioral equivalence:

s : seq ⊢ #(isort(s) ≃F(seq) msort(s)).

Cost discrepancy:

• s : seq ⊢ isBoundedseq(isort(s), |s|2).
• s : seq ⊢ isBoundedseq(msort(s), |s| lg |s|).

23

Parallel Cost Analysis

Following Blelloch & Greiner, change cost monoid to N2:

• Work: sequential cost, as above.
• Span: idealized parallel cost.

Define parallel cost composition:

(w1, s1)⊗ (w2, s2) = (w1 + w2,max(s1, s2))

Enrich langage with parallel pairs, e1 & e2, such that

stepc1(ret(v1)) & stepc2(ret(v2)) = stepc1⊗c2(ret((v1, v2)))

(Brent-type theorem relates abstract parallel cost to
implementation on p-RAM, taking account of scheduling.)

24

Parallel Cost Analysis

Insertion sort remains quadratic in work and span.

Merge sort can be parallelized:

• Sequential merge:

s : seq ⊢ isBounded(msort(s), |s| lg |s|, 2 |s|+ lg |s|)

• Parallel merge:

s : seq ⊢ isBounded(msort(s), lg2(|s|+1), 2 |s| (lg3(|s|+1))

NB: same algorithm, different cost analysis!

(See Agda repo for details.)

25

Amortized Analysis

Two approaches to amortization:

• Inductive definition of instruction sequences.
• Coinductive definition of abstraction.

eg, batched queues with separate front and back “halves.”

• Enqueueing takes zero steps.
• Dequeueing takes length of back half steps.

The two formulations are shown to be equivalent in the
companion paper in CALCO.

26

Computational Adequacy

Computational Adequacy in Calf

Computational adequacy relates denotational to operational
semantics for programs.

• Plotkin’s LCF Considered as a P.L. is paradigmatic.
• Germane to giving Calf operational meaning.

Can Plotkin’s results be generalized to account for cost as well
as behavior?

• LICS ’23: Yes, for Gödel’s T, a total language, and, yes, for a
first-order “while” language with partiality.

• Ongoing: cost-aware adequacy for PCF (and FPC) using
SDT within Calf.

27

Admitting General Recursion

Extend Calf with a lifting monad L(A) satisfying compactness:

If iter(f , v) ≃ stepc(retL(v′)), then for some k ≥ 0,
f k(v) ≃ stepc(retL(v′)).

Consider while programs with first-order store.

• Define cost-aware denotational semantics ||p||.
• Define cost-aware operational semantics e ⇓η•(c) v.

Cost is defined as number of β-steps in execution.

As earlier, the use of the closed modality is critical (costs
collapse extensionally.)

28

Admitting General Recursion

Theorem: Cost-aware adequacy:

For closed while programs p of type bool, if
||p|| ≃ stepc(ret(b)), then e ⇓η•(c) b.

Corollary: Extensional adequacy:

For closed programs p of type bool, if #(||p|| ≃ ret(b)), then
#(e ⇓η•(c) b), ie e ⇓ b in the usual sense.

(Proof uses logical relations defined internally to relate
denotational to operational behavior.)

29

Admitting General Recursion

Internal adequacy may be used to “implement” Calf programs
as while programs.

• Define msortcalf as earlier, counting comparisons.
• Define msortwhile such that

#(msortcalf
.
= ||msortwhile||).

Adequacy ensures

• Correct behavior.
• Proportionate cost.

A possible framework for cost-aware compiler correctness?

30

Origin and Other Applications

Phase Distinction in STC

Sterling’s Synthetic Tait Computability has two characteristic
features:

• Proof-relevant: generalize relations to families.
• Synthetic: all types express computability properties.

Developed to study Cartesian cubical type theory with a full
univalent universe hierarchy.

Computability ensures completeness of a generalization of
normalization by evaluation, crucial for implementation.

31

Phase Distinction in STC

Analytically, a computability structure has two parts:

• A syntactic part, a definitional equivalence class of terms
of a type.

• A semantic part, a proof of that the relevant
computability property holds of the syntax.

Synthetically, all types are computability structures.

• Dependent type structure lifts to computability
structures.

• Syntactic part is isolated by a phase, which collapses
semantic part.

32

Information Flow

The phase distinction may be understood in terms of
information-flow security:

• Profiling is a private matter.
• Delivered code is public.
• Non-interference: Public behavior is independent of

profiling.

Generalize ext ≤ ⊤ to security levels.

• Two-phase sets are maps Iop → Set.
• Generalize to Pop → Set with many levels of “visibility.”

33

Program Modules

The language of program modules is a dependent type theory
a la MacQueen, enriched with

• Static phase, stat, for “compile-time” aspects of a
module (types; static data/indices.)

• Dynamic phase for “run-time” aspects (incl. static).
• Extension types to express sharing:

{A | stat ↪→ M }

34

Program Modules

The type theory of parametricity structures has two phases:

• Syntactic, the subjects of the relations, with left and right
parts.

• Semantic, the proofs of computability.

Extension types specify syntactic aspect of a comp. str.:

{ S | syn ↪→ ⌜x : A→ B⌝ }

35

Future Work

Scaling Up

Mechanization of 15-210 Introduction to Parallel Algorithms.

• FP-based course on parallel algorithms.
• Inductive data structures.
• Unbounded length sequences with map-reduce API.

Verification uses embedding of Calf into Agda prover.

So far, all verifications are for purely functional algorithms:

• Insertion and merge sort, sequential and parallel cost.
• Parallelizable red-black trees with join and singleton.

But probabilistic methods are also important, as are other
effects.

36

Summary

The phase distinction integrates

• Extensional behavior.
• Intensional cost.

Moreover, the theory of phases

• Ensures non-interference.
• Supports abstract cost accounting.

37

Summary

Phase distinctions abound!

• Synthetic Tait Computability.
• Design of module systems.
• Integration of development and delivery.
• Parametricity structures for abstraction.
• Information flow security.

There is nothing more practical than a good theory!

38

References (w/Links Therein)

H. Grodin and R. Harper.
Amortized analysis via coinduction.
CoRR, abs/2303.16048, 2023.

Y. Niu and R. Harper.
A metalanguage for cost-aware denotational semantics.
CoRR, abs/2209.12669, 2022.

Y. Niu, J. Sterling, H. Grodin, and R. Harper.
A cost-aware logical framework.
Proc. ACM Program. Lang., 6(POPL):1–31, 2022.

J. Sterling and R. Harper.
Sheaf semantics of termination-insensitive
noninterference.
In FSCD, volume 228 of LIPIcs, pages 5:1–5:19, 2022.

	Motivation
	Method
	Analyses
	Computational Adequacy
	Origin and Other Applications
	Future Work
	Appendix

