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Motivation



Type Theory for Programming

Dependent type theory is a natural setting for specification
and verification of functional programs.

• Essentially, the propositions-as-types principle in action,
formulating Brouwer’s intuitionism.

• cf Martin-Löf’s Constructive Mathematics and Computer
Programming, and Constable, et al’s NuPRL System.

• cf Agda viewed as a programming language.

However, as a logic of programs it leaves evaluation order
undetermined!

• Advantage: compatible with “any”choice.
• Disadvantage: completely unspecified.
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Example: Sorting

Informally, we may define

• isort : seq → seq (insertion sort)
• msort : seq → seq (merge sort)

Extensionally these are equal as functions, because they both
sort their inputs:

isort .
= msort : s : seq → (s′ : seq×sorted(s)×perm(s, s′))

The choice of types and their associated induction principles
complicates matters, but these issues have been
well-developed.
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Type Theory for Programming

Levy’s call-by-push-value type theory constrains evaluation
order.

• Positive types A classify values: “data is.”
• Negative types X classify computations: “programs do.”
• Modalities link them: F(A) and U(X).

Pedrot’s and Tabareau’s ∂CBPV extends Levy’s framework to
the dependent case.

• Type families are indexed by value types.
• Polarity imposes order on chaos to permit effects.

Calf also includes mixed-polarity dependent sums/products
(value-value and value-computation forms).
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Dependent Call-by-Push Value

Syntactically,

v : A ::= nat | seq | v1
.
=A v2 | x : A1 × A2 | x : A1 → A2 | U(X)

e : X ::= F(A) | x : A1 × X2 | x : A1 → X2

Computations are sequenced, using bind(e1; x . e2) and
ret(v), in anticipation of effects.

Define e1 ≃F(A) e2 to mean

thunk(e1)
.
=U(F(A)) thunk(e2).

They are “equal computations.”
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Acounting for Cost

These type theories capture the behavior of programs . . . but
what about their cost?

Want to state and prove complexity bounds!

• isort : seq n2
−→ F(seq) (quadratic wrt comparisons).

• msort : seq n lg n−→ F(seq) (polylogarithmic).

But how can equal functions have different properties?

And what does cost even mean in this setting?

• What are the steps?
• Sequential vs parallel?
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Sense and Reference

Frege distinguished sense from reference.

• Reference: what is being described.
• Sense: how it is given.

A similar distinction is considered here:

• Reference: a (computable) function.
• Sense: an algorithm.

Here cost is a precise formulation of sense, and may even be
used to compare proofs.
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Cost Measures

The textbook story is machine-based.

• Cost = instruction steps (or memory cells).
• Higher-order programming is never considered.
• Parallelism? Specifying p is a non-starter.
• There is no theory of composition of programs.

Blelloch’s language-based formulation is a big improvement.

• Cost semantics specifies a dependency graph whose
edges constrain execution order of steps.

• Provable implementation by a Brent-type theorem whose
proof defines scheduler as a function of platform
characteristics.
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Cost Measures

Cost is not absolute, ie per-model, but rather relative, ie
per-algorithm.

• Sorting: number of comparisons.
• Graphs: edge inserts or removals, etc.
• Sequences: access, update, map-reduce.

These concepts are not definable at the RAM or TM level!

But notice, abstract cost measures fit well with abstract types,
a fundamentally linguistic notion.

How can this be expressed?
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Method



Abstract Cost Accounting

First idea: introduce step counting aka profiling.

stepX : C → X → X

where C is a type of costs (think (N,0,+) for now).

eg, for sorting, use step to count comparisons.

But simple-minded instrumentation allows behavior to
influence on cost!

if step count > 1000then . . . else . . . .

Such programs ought to be ruled out, but how?
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Abstract Cost Accounting

Second idea, introduce a writer monad C×− for
computations [Danielsson 98]

• stepc(e) adds c : C to count.
• No operation to branch on step count.

Doing so permits tracking, specification, and verification of
costs of programs . . . but to the exclusion of pure behavior!

eg, isort ̸ .= msort : seq → F(seq), precisely because of
profiling.
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Phase Distinctions in Type Theory

Achieve full integration using a phase distinction.

1. Prototypically, compile-time vs run-time.
2. For metatheory, syntactic vs semantic.
3. For program modules, static vs dynamic.
4. For information flow, security level.

What do they have in common?

1. Types are hybrid structures: syntax+computability,
types+code, classified+public.

2. Phase (syntactic, static, level) imposes equations that
“collapse” aspects (computability, code, classified).
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Phases Distinctions in Type Theory

In general a phase is given a proposition, ϕ.

• True only by assumption: x : ϕ ⊢ J.
• Subterminal/proof-irrelevant: Γ ⊢ M .

= M′ : ϕ.

Phases induce two modalities [Rijke, Shulman, Spitters]:

• Open mode: #ϕ(A) := ϕ ⊃ A. “The ϕ part of A.”
• Closed mode:  ϕ(A) := ϕ ∨ A. “All of A, with no ϕ part.”

These aspects of a type are exhaustive, but not necessarily
exclusive.
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Phase Distinctions in Type Theory

Two basic properties of phases:

• #ϕ( ϕ(A)) ∼= 1, but  ϕ(#ϕ(A)) ̸∼= 1 (“fringe”).

• A ∼= #ϕ(A)× ϕ(#ϕ(A))  ϕ(A) (pullback wrt fringe).

Non-interference: If f :  ϕ(A) → #ϕ(A), then f is constant!

eg, syntax prior to semantics, types do not depend on code,
classified cannot depend on public.

Here: the extensional phase, ext, eliminates step counting.

(Hereafter: #(A),  (A) for #ext(A),  ext(A), respectively.)
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Synthetic Cost Analysis

Computation types form a writer monad  (C)×−:

• C is a cost monoid, e.g. (N,0,+).
• stepc(e) increments cost by c, then executes e.

Use of closed modality is essential!

• Cost analysis depends on behavioral analysis.
• Costs collapse under open modality.

(The injection of C into  (C) is usually elided to lighten
notation.)
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Stepping Laws

General laws for step counting:

• step0(e) ≃ e.
• stepc(stepd(e)) ≃ stepc+d(e).

CBPV-style stepping laws for computations:

• stepc(bind(e; x.f )) ≃ bind(stepc(e); x.f ).
• stepc(λ(x . e)) ≃ λ(x . stepc(e)).
• stepc(⟨v1, e2⟩) ≃ ⟨v1,stepc(e2)⟩.

Any enrichment must mesh with stepping in this way.
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Synthetic Cost Analysis

Extensional phase erases step counting:

: #(stepc(e) ≃F(A) e)

But #( (C)) ∼= 1, so #(η•(c)
.
= (C) η•(0)), and so

#(stepc(e) ≃ step0(e) ≃ e).

Thus, the extensional phase isolates behavior:

: #(isort ≃seq→F(seq) msort)

(Proof: they both sort, functions equate extensionally.)
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Synthetic Cost Analysis

Define isBoundedA(e, c) for e : F(A) and c : C by

d : C×#(d ≤N c)× e ≃F(A) stepd(ret(v))

(Here using C = N, but will be generalized.)

Intensionally, ie non-extensionally, one may specify costs of
algorithms:

• s : seq ⊢ isBoundedseq(isort(s), |s|2).
• s : seq ⊢ isBoundedseq(msort(s), |s| lg |s|).

(or discharge premise using dep. function type.)

Integrates cost and behavior with guaranteed
non-interference!
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Analyses



Analyzing Algorithms in Calf

How are interesting algorithms defined in total type theory?

• Non-structural recursions are typical.
• Instrumented with step’s counting “figure of merit.”

How is their (behavior and) cost verified?

• Specify recurrence on cost of algorithm.
• Solve recurrence separately.

Example: Euclid’s algorithm, counting modulus operations.

19



Patterns of Recursion

Add a “clock” parameter counting recursion depth.

• Define instrumented algorithm:

gcdclocked : nat → nat2 → F(nat)

• Define upper bound on recursion depth:

gcddepth : nat2 → nat

• Define gcd itself:

gcd(x, y) := gcdclocked(gcddepth(x, y))(x, y)

(cf Kleene normal form theorem for TM’s.)
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Patterns of Recursion

Explicitly, gcdclocked is defined by recursion on the clock
counter:

gcdclocked(zero)(x, y) = ret(x)
gcdclocked(succ(k))(x,0) = ret(x)

and

gcdclocked(succ(k))(x,succ(y)) =
bind(modinstr(x,succ(y)); r . gcdclocked(k)(succ(y), r))

where modinstr computes and counts moduli.

The total function gcddepth computes recursion depth for a
given input as a generalized value.
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Correctness

Algorithm gcd is extensionally correct:

1. #(gcd(x,zero) ≃ ret(x))
2. #(gcd(x,suc(y)) ≃ gcd(suc(y),mod(x,suc(y))))

Intensionally cost is characterized by a recurrence:

isBoundedF(nat)(gcd(x, y),gcddepth(x, y)).

Solve recurrence (purely mathematical):

gcddepth(x, y) ≤ Fib−1(x) + 1.
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Sorting, Revisited

Instrument comparisons with step.

Define isort and msort as above.

• Clocked versions to manage recursion.
• Recursion bound for each algorithm.

Behavioral equivalence:

s : seq ⊢ #(isort(s) ≃F(seq) msort(s)).

Cost discrepancy:

• s : seq ⊢ isBoundedseq(isort(s), |s|2).
• s : seq ⊢ isBoundedseq(msort(s), |s| lg |s|).
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Parallel Cost Analysis

Following Blelloch & Greiner, change cost monoid to N2:

• Work: sequential cost, as above.
• Span: idealized parallel cost.

Define parallel cost composition:

(w1, s1)⊗ (w2, s2) = (w1 + w2,max(s1, s2))

Enrich langage with parallel pairs, e1 & e2, such that

stepc1(ret(v1)) & stepc2(ret(v2)) = stepc1⊗c2(ret((v1, v2)))

(Brent-type theorem relates abstract parallel cost to
implementation on p-RAM, taking account of scheduling.)
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Parallel Cost Analysis

Insertion sort remains quadratic in work and span.

Merge sort can be parallelized:

• Sequential merge:

s : seq ⊢ isBounded(msort(s), |s| lg |s|, 2 |s|+ lg |s|)

• Parallel merge:

s : seq ⊢ isBounded(msort(s), lg2(|s|+1), 2 |s| (lg3(|s|+1))

NB: same algorithm, different cost analysis!

(See Agda repo for details.)
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Amortized Analysis

Two approaches to amortization:

• Inductive definition of instruction sequences.
• Coinductive definition of abstraction.

eg, batched queues with separate front and back “halves.”

• Enqueueing takes zero steps.
• Dequeueing takes length of back half steps.

The two formulations are shown to be equivalent in the
companion paper in CALCO.
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Computational Adequacy



Computational Adequacy in Calf

Computational adequacy relates denotational to operational
semantics for programs.

• Plotkin’s LCF Considered as a P.L. is paradigmatic.
• Germane to giving Calf operational meaning.

Can Plotkin’s results be generalized to account for cost as well
as behavior?

• LICS ’23: Yes, for Gödel’s T, a total language, and, yes, for a
first-order “while” language with partiality.

• Ongoing: cost-aware adequacy for PCF (and FPC) using
SDT within Calf.
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Admitting General Recursion

Extend Calf with a lifting monad L(A) satisfying compactness:

If iter(f , v) ≃ stepc(retL(v′)), then for some k ≥ 0,
f k(v) ≃ stepc(retL(v′)).

Consider while programs with first-order store.

• Define cost-aware denotational semantics ||p||.
• Define cost-aware operational semantics e ⇓η•(c) v.

Cost is defined as number of β-steps in execution.

As earlier, the use of the closed modality is critical (costs
collapse extensionally.)
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Admitting General Recursion

Theorem: Cost-aware adequacy:

For closed while programs p of type bool, if
||p|| ≃ stepc(ret(b)), then e ⇓η•(c) b.

Corollary: Extensional adequacy:

For closed programs p of type bool, if #(||p|| ≃ ret(b)), then
#(e ⇓η•(c) b), ie e ⇓ b in the usual sense.

(Proof uses logical relations defined internally to relate
denotational to operational behavior.)
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Admitting General Recursion

Internal adequacy may be used to “implement” Calf programs
as while programs.

• Define msortcalf as earlier, counting comparisons.
• Define msortwhile such that

#(msortcalf
.
= ||msortwhile||).

Adequacy ensures

• Correct behavior.
• Proportionate cost.

A possible framework for cost-aware compiler correctness?
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Origin and Other Applications



Phase Distinction in STC

Sterling’s Synthetic Tait Computability has two characteristic
features:

• Proof-relevant: generalize relations to families.
• Synthetic: all types express computability properties.

Developed to study Cartesian cubical type theory with a full
univalent universe hierarchy.

Computability ensures completeness of a generalization of
normalization by evaluation, crucial for implementation.
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Phase Distinction in STC

Analytically, a computability structure has two parts:

• A syntactic part, a definitional equivalence class of terms
of a type.

• A semantic part, a proof of that the relevant
computability property holds of the syntax.

Synthetically, all types are computability structures.

• Dependent type structure lifts to computability
structures.

• Syntactic part is isolated by a phase, which collapses
semantic part.
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Information Flow

The phase distinction may be understood in terms of
information-flow security:

• Profiling is a private matter.
• Delivered code is public.
• Non-interference: Public behavior is independent of

profiling.

Generalize ext ≤ ⊤ to security levels.

• Two-phase sets are maps Iop → Set.
• Generalize to Pop → Set with many levels of “visibility.”

33



Program Modules

The language of program modules is a dependent type theory
a la MacQueen, enriched with

• Static phase, stat, for “compile-time” aspects of a
module (types; static data/indices.)

• Dynamic phase for “run-time” aspects (incl. static).
• Extension types to express sharing:

{A | stat ↪→ M }
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Program Modules

The type theory of parametricity structures has two phases:

• Syntactic, the subjects of the relations, with left and right
parts.

• Semantic, the proofs of computability.

Extension types specify syntactic aspect of a comp. str.:

{ S | syn ↪→ ⌜x : A→ B⌝ }
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Future Work



Scaling Up

Mechanization of 15-210 Introduction to Parallel Algorithms.

• FP-based course on parallel algorithms.
• Inductive data structures.
• Unbounded length sequences with map-reduce API.

Verification uses embedding of Calf into Agda prover.

So far, all verifications are for purely functional algorithms:

• Insertion and merge sort, sequential and parallel cost.
• Parallelizable red-black trees with join and singleton.

But probabilistic methods are also important, as are other
effects.
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Summary

The phase distinction integrates

• Extensional behavior.
• Intensional cost.

Moreover, the theory of phases

• Ensures non-interference.
• Supports abstract cost accounting.
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Summary

Phase distinctions abound!

• Synthetic Tait Computability.
• Design of module systems.
• Integration of development and delivery.
• Parametricity structures for abstraction.
• Information flow security.

There is nothing more practical than a good theory!

38



References (w/Links Therein)

H. Grodin and R. Harper.
Amortized analysis via coinduction.
CoRR, abs/2303.16048, 2023.

Y. Niu and R. Harper.
A metalanguage for cost-aware denotational semantics.
CoRR, abs/2209.12669, 2022.

Y. Niu, J. Sterling, H. Grodin, and R. Harper.
A cost-aware logical framework.
Proc. ACM Program. Lang., 6(POPL):1–31, 2022.

J. Sterling and R. Harper.
Sheaf semantics of termination-insensitive
noninterference.
In FSCD, volume 228 of LIPIcs, pages 5:1–5:19, 2022.


	Motivation
	Method
	Analyses
	Computational Adequacy
	Origin and Other Applications
	Future Work
	Appendix

