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Formal Type Theory
Martin-Löf; Coquand; HoTT

A formal type theory is inductively defined by rules:

• Formation: Γ ` A type, Γ ` M : A.

• Definitional equivalence: Γ ` A ≡ B, Γ ` M ≡ N : A.

Axioms and rules are chosen to ensure:

• Not non-constructive, eg no unrestricted LEM.

• Formal correspondence to logics, eg HA, IHOL.

• Decidability of all assertions.

Ought to admit a computational interpretation as programs.
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Intensional Type Theory
Martin-Löf

The canonical formal dependent type theory: ITT.

• Inductive types: nat, bool, sums, well-founded trees.

• Dependent function and product types: Πx :A.B, Σx :A.B.

• Identity type: IdA(M,N).

Identity type is the least reflexive relation:

• Reflexivity: reflA(M) : IdA(M,M).

• Induction: if P : IdA(M,N) and u:A ` Q : C [M,M, reflA(M)],
then J(u.Q;P) : C [M,N,P].
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The canonical formal dependent type theory: ITT.

• Inductive types: nat, bool, sums, well-founded trees.

• Dependent function and product types: Πx :A.B, Σx :A.B.

• Identity type: IdA(M,N).

Identity type is the least reflexive relation:

• Reflexivity: reflA(M) : IdA(M,M).

• Induction: if P : IdA(M,N) and u:A ` Q : C [M,M, reflA(M)],
then J(u.Q;P) : C [M,N,P].



Computational Meaning of ITT
Martin-Löf

Normalization: reduction of open terms.

• Variables are indeterminates, obey substitution.

• Canonicity via characterization of closed normal forms.

Meaning explanations: evaluation of closed terms.

• Variables range over closed terms, obey functionality.

• Canonicity by definition of observable values.
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Identity Type in ITT

Equational reasoning is handled by the identity type:

x : nat, y : nat ` P(x , y) : Idnat(x + y , y + x)

The proof P(x , y) is non-trivial: induction on x and y .

Type families respect identity proofs:

x , y : nat ` Vec†(P(x , y)) : IdU (Vec(x + y),Vec(y + x)).
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Identity Type in ITT

Identity proofs in IdU (A,B) induce coercions:

a, b : U , p : IdU (a, b) ` coerce(p) : a→ b

In particular, for any M,N : nat,

coerce(Vec†(P(M,N))) : Vec(M + N)→ Vec(N + M)

But for closed M and N these types are definitionally equal!

Thus, no coercion is needed at run-time!
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Program Extraction for ITT
Coq

Program extraction exploits irrelevance of identity proofs.

• Evaluate only closed terms of observable type.

• Erase uses of identity elimination.

Meaning explanation emphasizes extraction and execution.

• No transport operations to erase.

• Exact equality: x , y : nat� x + y
.

= y + x ∈ nat.
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Homotopy Type Theory
Hofmann & Streicher; Awodey & Warren; Voevodsky

IdA(M,N) may be considered as type of paths.

Univalence: if E : Equiv(A,B) is an equivalence, then

ua(E ) : IdU (A,B).

Higher inductive types, such as the “circle”, C:

base : C
loop : IdC(base, base).
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Homotopy Type Theory

Coercions are no longer erasable!

coerce(ua(. . . )) : nat + nat→ bool× nat

(Even for closed terms.)

What is the computational content of HoTT?

coerce(ua(. . . )) 7−→ ???

Identity elimination does not eliminate identifications!
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Higher Meaning Explanations

Judgmental account of higher structure of types:

• What is a path in a type?

• Define the action of a path.

• Ensure that paths can be composed.

Identity type splits into two concepts:

• Exact equality: M
.

= N ∈ A.

• Path type: Pathx .A(M,N).
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Computational Meaning Explanations
Martin-Löf; Constable; Allen

Start with a programming language:

• Programs are closed terms.

• Evaluation M ⇓ V to a canonical form aka value.

Types are programs that name specifications of programs.

• A type means A ⇓ V and V names a specification.

• if A type, then M
.

= M ′ ∈ A means M ⇓ V and M ′ ⇓ V ′ and V and V ′ behave
the same in the sense of A.

What matters is behavior, not form!
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Computational Meaning Explanations

Variables are interpreted semantically.

• Range over closed terms satisfying a type.

• Respect equality at that type.

Functionality: a : A� N ∈ B means

M
.

= M ′ ∈ A implies N[M/a]
.

= N[M ′/a] ∈ B[M/a].

Extensionality: a : A� N
.

= N ′ ∈ B means

M
.

= M ′ ∈ A implies N[M/a]
.

= N ′[M ′/a] ∈ B[M/a].
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Computational Meaning Explanations

Proof theories are secondary, a matter of pragmatics.

• No privileged proof theory. (Down with C-H!).

• No requirement of decidability of judgments.

RedPRL proof theory is a refinement logic.

• Inspired by NuPRL.

• Emphasizes program extraction.

Inverts the conceptual order in ITT and related formalisms!
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Computational Meaning Explanations

A specification is a symmetric, transitive relation on closed values.

Equal specifications must specify the same behavior,
i.e., be interchangeable as classifiers.

The construction of a type system ensures that specifications satisfy these conditions.



Booleans

Programs:

• bool, true, false are canonical.

• if (true;P;Q) 7−→ P.

• if (false;P;Q) 7−→ Q.

• if M 7−→ M ′ then if (M;P;Q) 7−→ if (M ′;P;Q).

The type bool specifies that true and false are equal only to themselves.

bool is an inductive type.
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Booleans

Theorem (Dependent Elimination)

If M ∈ bool and P ∈ A[true/a] and Q ∈ A[false/a], then if (M;P;Q) ∈ A[M/a].

Theorem (Behavioral Typing)

If M
.

= true ∈ bool and P ∈ A[true/a], then if (M;P;Q) ∈ A[M/a].

Theorem (Shannon Expansion)

If a : bool� M ∈ A, then

a : bool� M
.

= if(a;M[true/a];M[false/a]) ∈ A.
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Functions

Programs:

• (a:A)→ B and λa.M are canonical.

• app(λa.P,N) 7−→ P[N/a].

• if M 7−→ M ′, then app(M,N) 7−→ app(M ′,N).

The value λa.M satisfies the spec. (a:A)→ B iff

a : A� M ∈ B.

Values λa.M and λa.M ′ are equal in (a:A)→ B iff

a : A� M
.

= M ′ ∈ B [Ψ].
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Exact Equality
Martin-Löf

Programs:

• EqA(M,N) and ? are canonical.

• No elimination form needed!

The value ? satisfies spec. EqA(M,N) iff M
.

= N ∈ A.

The value ? is equal only to itself whenever it satisfies EqA(M,N).
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Theorem
If M ∈ A, then ? ∈ EqA(M,M).

Theorem
If P ∈ EqA(M,N), then M

.
= N ∈ A.
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Demonstration

Please enjoy Carlo’s demo of RedPRL!
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Higher Meaning Explanations

HoTT encodes path structure in identification types:

A, IdA(M,N), IdIdA(M,N)(P,Q), . . .

Paths re-expressed using the interval I = [0, 1]:

• Points: A.

• Lines btw points: I A,

• Squares, lines btw lines: I (I A) ∼= I2 ; A,

• Cubes, lines btw squares: I3  A, . . .

• n-cubes: In  A
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Cubical Programming Language
Licata, Brunerie; Coquand, et al.

Cubical syntax:

• Dimensions r := 0 | 1 | x .

• Contexts Ψ = x1, . . . , xn.

• Substitutions ψ = 〈r1/x1, . . . rn/xn〉 : Ψ′ → Ψ.

• Action on terms: M ψ

Cartesian cubes = substitutions are structural:

• Faces: 0/x , 1/x .

• Re-indexing: y/x .

• Weakening aka degeneracy: silent.

• Exchange aka symmetry: y , x/x , y .

• Contraction aka diagonal: z , z/x , y .
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Cubical Programming Language

Substitutions act on cubes:

• Faces: M〈0/x〉, M〈1/x〉
• Diagonals: M〈x/y〉

y

x

M〈1/x〉〈1/y〉
.

= M〈1/y〉〈1/x〉
.

= M〈x/y〉〈1/x〉

M〈0/x〉 M〈1/x〉

M〈0/y〉

M〈1/y〉

M
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Cubical Programming Language

Any cube can be seen as a degenerate cube of higher dimension:

y

x
N〈0/x〉 N〈1/x〉

N
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Cubical Programming Language
Licata, Brunerie; Coquand, et al.

Evaluation: M ⇓ V [Ψ].

Conventional functional programming constructs:

• Booleans, pairs, functions.

• Lazy dynamics (weak head reduction).

Unconventional functional programming constructs:

• Circle: C, base, loopx ,C-elima.A(M;N, x .P).

• Kan operations: coe, hcom.
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Cubical Programming Language

Evaluation is sensitive to dimensions:

loop0 7−→ base

loop1 7−→ base

C-elima.A(base;N, x .P) 7−→ N

C-elima.A(loopy ;N, x .P) 7−→ P〈y/x〉.

base
.

= loopx〈0/x〉 loopx〈1/x〉
.

= base
loopx



Higher Meaning Explanations

If A type [Ψ], then all faces of A evaluate to specifications:

• Aψ ⇓ V [Ψ′] for all ψ : Ψ′ → Ψ, and

• Value V names a specification of values.

If M ∈ A [Ψ], then all faces of M satisfy the spec given by A.

That is, for every ψ : Ψ′ → Ψ,

• M ψ ⇓ V , and

• V satisfies the specification given by Aψ.

(Actually, we must define equal types and equal members.)
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Cubical Specifications

Specifications are cubical symmetric, and transitive binary relations.

If V is a canonical type, then all of its faces must be types:

for all ψ : Ψ′ → Ψ, Vψ type [Ψ′].

If W is canonical of type V , then its faces must be elements:

for all ψ : Ψ′ → Ψ, Wψ ∈ Vψ [Ψ′].
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Coherence

An ambiguity arises for A type [Ψ]:

• Aψ1 ⇓ V1 and V1ψ2 ⇓ V2.

• A(ψ1 · ψ2) ⇓ V12.

But are V2 and V12 the same canonical type?

• Not necessarily the same program.

• But should have the same elements and equality.

Coherence demands that they determine the same specification.
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Meaning of Variables

Term variables express functional dependence on closed values at all dimensions.

Thus a : A� B type [Ψ] means for all ψ : Ψ′ → Ψ,

if M
.

= N ∈ A [Ψ′], then Bψ[M/a]
.

= Bψ[N/a] type [Ψ′].

In particular, type families transform lines into lines:

if M ∈ A [Ψ, x ]︸ ︷︷ ︸
line in A

, then B[M/a] type [Ψ, x ]︸ ︷︷ ︸
line of types

.
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Pre- and Kan Types
Voevodsky (HTS)

These conditions define cubical pre-types

• From zero- to higher-dimensional types.

• Not sufficient for HoTT.

A full-fledged type must satisfy the Kan conditions:

• Type lines induce coercions between types.

• Paths must be closed under Kan composition.
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Coercion along a Line of Types

Type lines A type [Ψ, x ] induce coercions:

coer r ′
x .A (M) ∈ A〈r ′/x〉 [Ψ] when M ∈ A〈r/x〉 [Ψ].

Coercion along A type [Ψ, x ] is trivial when r = r ′:

coer r
x .A (M)

.
= M ∈ A〈r/x〉 [Ψ].

Each type defines the meaning of coercion along lines!
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Kan Composition

P〈0/x〉 P〈1/x〉 Q〈0/x〉 Q〈1/x〉

.
=

P Q

P · Q

Paths in a type must compose.

• if P ∈ A [Ψ, x ], and Q ∈ A [Ψ, x ],

and

• P〈1/x〉 .= Q〈0/x〉 ∈ A [Ψ],

then

• there exists P · Q ∈ A [Ψ, x ],

• satisfying composition and identity laws up to higher paths.

Miraculously, there is a simple way to capture the full meaning!
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The HCom Diagram

Pictorially,
x

y
M0

.
= N0 M1

.
= P0

N1 P1

M
.

= hcom0 0
A (M; ~T )

N P

hcom0 1
A (M; ~T )

hcom0 y
A (M; ~T )

Symbolically,

hcom0 y
A ( M︸︷︷︸

cap

; x = 0 ↪→ y .N, x = 1 ↪→ y .P︸ ︷︷ ︸
tube ~T

) ∈ A [Ψ, x , y ].



Composition and Inversion from HCom

Concatenation and reversal are definable:

P0

P0

P1

Q1

P0 Q

P

P · Q

P0

P1

P0

P0

P P0

P0

P−1

Kan composition suffices to derive composition laws.



Strict Booleans

The type bool is defined such that for all M and Ψ,

M ∈ bool [Ψ] iff M ⇓ true or M ⇓ false.

Therefore, we can make bool Kan:

• coer r ′
.bool(M) 7−→ M for any M, r , r ′.

• hcomr r ′
bool (M; ~T ) 7−→ M for any M, ~T , r , r ′.

The properties of bool stated earlier carry over directly.

• Same proofs, using equality pre-type for equations.

• e.g., Shannon expansion.
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Weak Booleans

Canonical:

• wbool, true, and false as before.

• fcomr r ′(M; ~T ), where r 6= r ′.

Fcom = formal composition of booleans:

N

M

N ′
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Weak Booleans

Conditional offloads composition to the motive at higher dims!

ifa.A(true;P;Q) 7−→ P

ifa.A(false;P;Q) 7−→ Q

ifa.A( N

M

N ′ ;P;Q) 7−→

ifa.A(N;P;Q)

ifa.A(M;P;Q)

ifa.A(N′;P;Q)

Result composition is heterogeneous.



Weak Booleans

The motive of the conditional on wbool must be Kan!

a : wbool� A typeKan [Ψ].

Theorem (Dependent Elimination)

If M ∈ bool [Ψ] and P ∈ A[true/a] [Ψ] and Q ∈ A[false/a] [Ψ], then

ifa.A(M;P;Q) ∈ A[M/a] [Ψ].

Looks unremarkable, but is not trivial because of higher dim’s.
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Circle

The circle C is like wbool.

C-elima.A(base;N, x .P) 7−→ N

C-elima.A(loopy ;N, x .P) 7−→ P〈y/x〉

C-elima.A( M

M ′

M ′′ ;N, x .P) 7−→

C-elima.A(M;N, x .P)

C-elima.A(M′;N, x .P)

C-elima.A(M′′;N, x .P)

Iterations of loop defined using formal composition.
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Functions

Abstraction and application as before:

• Canonical: (a:A)→ B, λa.M.

• Non-canonical: app(M,N).

• Computation: app(λa.P,N) 7−→ P[N/a].

Coercion co- and contra-variantly:

coer r ′

x .(a:A)→B(M) 7−→ λa.coer r ′
x .B (app(M, coer

′ r
x .A (a))).

Kan composition by extensionality:

hcomr r ′

(a:A)→B(M; ~T ) 7−→ λa.hcomr r ′
B (app(M, a); app( ~T , a)).
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Paths

The type Pathx .A(P0,P1) specifies paths in A with end points P0 and P1.

Dimension abstraction and application:

• Pathx .A(P0,P1), 〈x〉M are canonical.

• (〈x〉M)@r 7−→ M〈r/x〉.

Paths are Kan, provided that A is Kan.



Paths

Coercion: coe0 1
y .Pathx.A(P0,P1)(M) 7−→

〈x〉com0 1
y .A (M@x ; x = 0 ↪→ y .P0, x = 1 ↪→ y .P1).

y

x
P0〈0/y〉

.
= M@0 M@1

.
= P1〈1/y〉

M@x

P0〈1/y〉 P1〈1/y〉

P0 P1



HoTT, Revisited

HoTT identity type splits into two concepts:

• Exact equality: extensional, evidence-free.

• Paths of arbitrary dimension.

Both may be internalized:

• Equality pre-type, may or may not be Kan.

• Path type, always Kan.

Equality proofs are irrelevant and erasable.

Coercion and composition express the computational content of paths in each type.
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HoTT, Revisited

Path type admits structure of identity type.

• Intro: reflA(M) ∈ Path .A(M,M).

• Elim: J(u.Q;P) with P ∈ Path .A(M,N).

Does not validate β law, because reflexivity is not special.



HoTT, Revisited
Awodey; Cavallo

Jdentity type is definable as free Kan type on reflexivity:

• Validates β law for J.

• Elimination commutes with free Kan structure.

Admits computation: J is never “stuck.”

But does not validate type-directed path laws!

It seems that we cannot have it both ways!
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RedPRL: Proof Refinement Logic
Sterling, Hou, Angiuli

notation meaning

Ψ | Γ =⇒ A true ; e There exists a term e such that if Γ ctx [Ψ], then
Γ� A typepre [Ψ] and Γ� e ∈ A [Ψ].

Ψ | Γ =⇒ A
.

= B typek If Γ ctx [Ψ], then Γ� A
.

= B typek [Ψ].

Ψ | Γ =⇒ e synth ; A There exists a term A such that if Γ ctx [Ψ],
then Γ� A typepre [Ψ] and Γ� e ∈ A [Ψ].

Ψ | Γ =⇒ A v B If Γ ctx [Ψ], then Γ � A typepre [Ψ] and Γ �
B typepre [Ψ], and Γ, a : A� a ∈ B [Ψ].

Ψ | Γ =⇒ A v Uk
ω If Γ ctx [Ψ], then there exists some level i and

kind k ′ ≤ k such that Γ� A
.

= Uk′

i typepre [Ψ].



Demonstration

Please enjoy Carlo’s demonstration of RedPRL!
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The Univalence Type
Favonia; CCHM
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Vinx(M,N)
E
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A

B0 B1
B

Vx(A,B,E )
E ∼



The Univalence Type
Favonia; CCHM

M N1

N0 N1
N

Vinx(M,N)

E

∈

A B1

B0 B1
B

Vx(A,B,E )

E ∼



The Coe Diagram

Given M ∈ A [Ψ, x ]:

M0 M1
M

∈ A0 A1
A

Then coex y
x .Ax

(Mx) ∈ Ay [Ψ, x , y ]:

x
y

M0 coe1 0
x .Ax

(M1)

coe0 1
x .Ax

(M0) M1

coex 0
x .Ax

(Mx) ∈ A0

coe0 y
x .Ax

(M0) ∈ Ay coe1 y
x .Ax

(M1) ∈ Ay

coex 1
x .Ax

(Mx) ∈ A1

coex y
x .Ax

(Mx)
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The Com Diagram

com0 1
y .A (M; x = 0 ↪→ y .N0, x = 1 ↪→ y .N1) ∈ A〈1/y〉 [Ψ, x ]

y
x

∈ A〈1/y〉

· ·

· ·

M ∈ A〈0/y〉

A〈0/x〉 3 N0 N1 ∈ A〈1/x〉

· ·

coey 1
y .A〈0/x〉(N0)

coey 1
y .A〈1/x〉(N1)

coe0 1
y .A (M)
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